
Utilizing Device Behavior in Structure-Based Diagnosis
Adnan Darwiche

Cognitive Systems Laboratory
Department of Computer Science

University of California
Los Angeles, CA 90024
darwiche @cs. ucla. edu

Abstract
Structure-based approaches to diagnosis pro­
vide useful computational guarantees based
on a device structure. In particular, these
approaches can identify device structures for
which the complexity of model-based diagnosis
is guaranteed to be linear. Structure-based ap­
proaches, however, can fail to answer even the
simplest diagnostic queries if the device struc­
ture is not well behaved (strongly connected).
We show in this paper that this deficiency can
be addressed to a reasonable extent by utiliz­
ing device behavioral properties (its component
models in particular) which are typically ig­
nored by structure-based approaches. Specif­
ically, we present a structure-based algorithm
for diagnosis which takes advantage of a device
behavior and then present experimental results
indicating that our algorithm can lead to signif­
icant (orders-of-magnitude) savings over pure
structural approaches when applied to strongly
connected devices.

1 Introduction
The utilization of problem structure in automated rea­
soning has become a major computational technique in
certain communities and is gaining momentum in oth­
ers. In probabilistic reasoning and constraint satisfac­
tion, structure is the main aspect of a problem which
is used to control the complexity of inference [Dechter
and Dechter, 1996; .Jensen et al\ 1990; Pearl, 1988]. In
probabilistic reasoning, structure refers to the topology
of a Bayesian network, and in constraint satisfaction it
refers to the topology of a constraint network. Structure-
based reasoning has also been introduced to model-
based diagnosis, where structure refers to the intereon-
nectivity of device components [Hamscher et a/., 1992;
Dechter and Dechter, 1996; Geffner and Pearl, 1987;
Darwiche, 1998].

One of the most interesting aspects of structure-based
diagnosis is that it ties the complexity of computing di­
agnoses to a very intuitive measure: component inter-
connectivity. As it turns out, the less connected a de­

vice is, the easier it is to diagnose using structure-based
methods. The connectivity of a device structure is typ­
ically summarized by a measure known as the structure
width. It is well known that the best-case and worst-case
complexities of standard structure-based algorithms are
exponential (only) in the width of a device structure.
Therefore, if the width is small, all is well. However, if
the device structure has a large width, then structure-
based algorithms are effectively non-usable.

This is probably one of the greatest challenges to
structure-based reasoning especially that some problems
which are known to be easy (such as inference with Horn
clauses) can sometimes be posed as problems with com­
plex structures; therefore, making them intractable to
structure-based methods. Stated differently, one can
identify problems that have a varying level of difficulty,
yet posses the same structure. This means that the diffi­
culty of a problem cannot be measured only by its struc­
ture. It also means that some non-structural properties
must be appealed to if one is to optimize the performance
of structure-based methods.

The contribution of this paper is in pursuing this in­
tuition in the context of model-based diagnosis. Specifi­
cally, we provide a structure-based algorithm for model-
based diagnosis which exploits non-structural properties
of a device. The properties we exploit are the behav­
ioral models of device components, which are typically
ignored by structure-based methods.

Our refined algorithm still maintains the standard
worst-case complexity of structure-based methods, but
its average-case complexity appears to be significantly
better as illustrated by our preliminary experimental
results. According to these results, our refined al­
gorithm can lead to orders-of-magnitude savings over
pure structure-based methods especially when the de­
vice structure is strongly connected.

This paper is structured as follows. Section 2 presents
some technical preliminaries which are needed to phrase
the model-based diagnosis problem formally. Section 3
discusses standard approaches to structure-based diag­
nosis, explaining their use of a device structure and
stressing their non-use of a device behavior. Section 4
turns to the basic intuition underlying our use of a device
behavior where we introduce decomposition trees, which

1096 QUALITATIVE REASONING AND DIAGNOSIS

Figure 1: A simple device.

are a key tool we shall use in realizing our intuitions.
Section 5 presents the technical details of our approach
and discusses our experimental results. Section 6 closes
with some concluding remarks.

2 Model-Based Diagnosis
Our goal in this section is to present a particular for­
malization of the model-based diagnosis problem. Our
formalization is not very standard, but it appears cru­
cial to exposing the intuitions behind structure-based
approaches and our proposed extension to them.

Components: We start by defining a device, compo-
nent c as an object which is characterized by an id, a set
of ports, and a diagnosis function. Specifically, id{c) is
a number representing a unique identifier for the com­
ponent; ports(c) is a set of variables (with finite values)
representing the component's inputs and outputs; and
Dg(c,a) is a function capturing the health of compo­
nent c given an instantiation of its ports.1 The value
of is if instantiation is inconsistent,
with the normal behavior of component c and is { { } }
otherwi.se.

Consider the device in Figure 1 for an example. Let
c refer to the first buffer. Then id(c) = 1, ports(c) —

= {{1}} if instantiates A and B
to different values and .Dg[= { { } } otherwise.

Devices: A device is defined as a set of components
. For example, the device in Figure 1 is defined

by the set , which refer to the four buffers
from left to right, respectively. Here, = {A, B}
and ports = {B,C}. Note that one can figure out
how components are interconnected by examining the
components' ports.

Model-Based Diagnosis: A key question of concern
to model-based diagnosis is this: Given a device d =
C1,..., cn and an instantiation of some of the device
ports, compute the diagnoses consistent with d and fi.

Our goal in the remainder of this section will be
to present a simple, brute-force method for answering
this question. We shall then argue that structure-based
methods refine this method by exploiting device struc­
ture. Our proposal will then be presented as a further
refinement of this method based on device behavior.

Our treatment will make two assumptions: (1) com­
ponents have no fault modes (they are either broken or
ok); and (2) only minimum-cardinality diagnoses are of
interest. The first assumption simplifies the discussion
considerably but without reducing the generality of our

1An instantiation of a set of variables is an assignment of
values to these variables.

treatment. The second assumption, however, (or a simi­
lar assumption for preferring some diagnosis over others)
is crucial to the techniques we shall propose.

The brute-force method for computing minimum-
cardinality diagnoses is based on diagnosis-sets:

- A diagnosis is a set of component IDs. Example:
{1,3} is a diagnosis with respect to the device in
Figure 1. It indicates that components 1 and 3 are
faulty.

- A diagnosis-set is a set of diagnoses with equal car­
dinalities. The cardinality of a diagnosis-set is the
cardinality of any of the diagnoses it contains. Ex­
ample: {{1,4}, {2,4}, {3,4}} is a diagnosis-set with
cardinality 2. It indicates three possible problems,
each involving two faults.2

- The union of two diagnosis-sets is defined as follows:

Note that the diagnosis function , which we in­
troduced earlier, returns a diagnosis-set representing the
health of component c given an instantiation of the
component ports.

Computing minimum-cardinality diagnoses can be
viewed as extending the diagnosis function to sets of
components (devices). We shall see that this is straight-
forward given the above operations on diagnosis-sets.

We will first extend while assuming that a is an
instantiation of all of the device ports. Specifically, let

be a device and let a be an instantiation
of all of d'.s ports. It should be easy to verify that

(1)

represents the minimum-cardinality diagnosis for device
d and instantiation Consider Figure 1 and let be
the instantiation . We have three faults
here involving Buffers 1, 2 and 3:

DARWICHE 1097

http://otherwi.se

Suppose now that ά is an instantiation of only a subset
of the device ports ports (d). It is not hard to verify that

is the set of minimum-cardinality diagnoses for device d
and instantiation . Here, : ports(d) | means that
is an instantiation of ports(d) which is consistent with

Given the notions above, the key question of concern
to us here is: Given a device and an
instantiation ά of some of its ports, compute Dg(d, ά)
as defined by Equation 2 as efficiently as possible. In
the following section, we show the key technique used
by structure-based approaches to perform this compu­
tation. We then follow by our own proposed techniques
for improving on this computation.

3 Structure-Based Diagnosis
Structure-based diagnosis systems can be viewed as eval-
uators of Equation 2 based on the following theorem:

Intuitively, the theorem shows how one can decompose
a diagnostic query with respect to a device
into a set of simpler diagnostic queries with respect to
the smaller devices and . Moreover, this decom­
position is exponential only in the number of common
ports between sub-devices and

We have a number of observations about this theorem.
First, if applied recursively, it can reduce the computa­
tion of any diagnosis-set of the form Dg(d,.), where d
is a device, into the union and product of diagnosis-sets
of the form ,.), where c is a component. Second,
the amount of work to compute Dg(d,.) by Theorem 1
can be measured by the number of union operations per­
formed during the application of the theorem. Third, if
it is possible to decompose the components of a device
into sets which share a small number of ports, then di­
agnosing such a device is easy according to Theorem 1.

The main technique underlying structure-based meth­
ods is to compute good device decompositions and use
them to apply Theorem 1 or a variant. Moreover, the
main technique used for obtaining such decompositions
is to compute a jointree for the device structure [Dechter
and Dechter, 1996; Darwiche, 1998].

We will not discuss jointrees in this paper since we
will not be using them in our approach. Instead, we will
use a simpler variant on jointrees, called decomposition
trees, which we introduce later.

Figure 2: A device with two decomposition trees.

We are now ready to introduce the key observation
underlying our contribution in this paper. There are two
ways to reduce the number of union operations performed
while applying Theorem 1; one is structural, the other is
behavioral:

1. Structural: Minimize the common ports between de­
vices

2.Behavioral: Skip any instantiation for which
because the

contribution of in this case will be ig­
nored by the union operation.

The first method is structural because it can be achieved
by reasoning about the structure of the device. The
second method is behavioral because it requires knowl­
edge of the specific components comprising the device
and cannot be accomplished based on the device struc­
ture alone. In particular, whether

holds depends on the diagnosis function
Dg(c,.) associated with each device component c. This
behavioral dimension for optimizing the application of
Theorem 1 can be formalized by the following refined
version of the theorem:

This is exactly like Theorem 1 except that we have added
an extra condition on the instantiation

Whereas structure-based methods have been mainly
concerned with reducing the size of
— therefore, reducing the number of instantiations

to consider — by appealing to structural device
properties, our focus will be on identifying those in­
stantiations that do not satisfy the extra condition

. For this we must
consult non-structural properties of devices. This new
technique, as we shall demonstrate, can lead to signifi­
cant savings.

The next section introduces decomposition trees which
allow us to provide a simple implementation of Theo­
rem 1. We then follow by refining the algorithm to reflect
the improvement introduced by Theorem 2.

1098 QUALITATIVE REASONING AND DIAGNOSIS

Figure 3: Computing minimum-cardinality diagnoses.

4 Decomposition Trees
A decomposition tree for a device is a full binary tree
whose leaves correspond to the device components; see
Figure 2. A decomposition tree is simply a control strat­
egy for applying Theorem 1. To be employed for this
purpose, however, we must associate a few properties
with each node TV in the tree. First, for a leaf node
N, , where c is the component asso­
ciated with node N. Second, for an internal node N,
Ni and Nr are the left and right children of N, respec­
tively, and . Fi­
nally, for any node N, ports(N) are the ports of com­
ponents appearing in comps(N). For example, in Fig­
ure 2(c),

Here is the intuition behind a decomposition tree. The
root node N represents the whole device which is decom­
posed into two sub-devices, one represented by Ni and
another by . Therefore, to compute minimum cardi­
nality diagnoses, all we have to do is apply Theorem 1
with and being and . Fig­
ure 3 presents a simple recursive algorithm (based on
Theorem 1) for computing minimum-cardinality diag­
noses given a device decomposition tree.

We have a number of observations on Figure 3. First,
note the boundary case where node N is a leaf node.
In such a case, component c is associated with node N
and we simply return _ , ,, which is either
or as stated earlier.4 Second, we have included
a counter on Line 8 to count the number of union op­
erations performed. This is needed to explain our ex­
perimental results later. Finally, we have included a
caching mechanism on Lines 2 and 9 because, by defi­
nition, two calls will return
equal diagnosis-sets whenever ά and ά' agree on the val­
ues of ports(N). Therefore, we keep a cache at each node

4When a call is made on the root node, we
assume that is an instantiation of all input and output
ports of the device. This guarantees that when we reach the
boundary case on Line 1, would instantiate all ports of the
component c.

N which stores the result of call DIAG I indexed by
the projection of instantiation ά on ports(N). If another
call is made, the cache is checked first to see
whether we have an entry for the projection of on
ports(N). If there is, the entry is returned. Otherwise,
the call recurses.

The quality of a decomposition tree is measured by
its width and the complexity of Algorithm A is linear
in the number of nodes in the decomposition tree and
exponential only in its width. Following is the formal
definition of a decomposition tree width.
Def ini t ion 1 Let N be a node in a decomposition tree
T. The cluster of node N is defined as follows. If N is a
leaf node, then its cluster is ports(N). If N is an internal
node, then its cluster is the set of ports that appear either
above and below node N in the tree, or in the left and
right subtrees of node N. The width of a decomposition
tree is the size of its maximal cluster minus one.
Consider node n2 in Figure 2(c). Then {B,C,D} and
{A ,B ,C} are the ports that appear above and below
node n2, respectively. Moreover, {A,B} and { A C }
are the ports that appear to the left and right of
n2, respectively Therefore, the cluster of node n2 is

Theorem 3 Let T be the decomposition tree used in Al-
gorithm A. The running time of Algorithm A is
where n is the number of nodes in T and w is its width.5

In standard structure-based approaches, where a join-
tree is used, complexity is also linear in the size of a join-
tree and exponential in its width [Dechter and Dechter,
1996; Darwiche, 1998]. Moreover, for every jointrce of
width w, we can construct in linear time a decomposi­
tion tree with the same width [Darwiche, 1999].6 There­
fore, although we are using decomposition trees instead
of jointrees, we still have the classical complexity result
which characterizes structure-based approaches to diag­
nosis. The use of decomposition trees, however, is es­
sential for exploiting device behavior (as suggested by
Theorem 2), a topic which we discuss next.

5 Exploiting Device Behavior
Our aim in this section is to refine Algorithm A so it
implements the suggestion of Theorem 2 as much as pos­
sible. We will do this in two steps:

1.If on Line 4 of Algorithm A we are able to predict,
, we will skip

2. Otherwise, we will execute Line 5 (and then Line 6)
but we shall abort the execution once it is clear that
the resulting diagnosis-set will have a cardinality
which is greater than Card (DlAG(N,ά)).

We will implement the second proposal first.
5This result assumes that the diagnosis-set operations

take constant time.
6 An algorithm for constructing good jointrees is then an

algorithm for constructing good decomposition trees.
7Note here that

DARWICHE 1099

Figure 4: First improvement on Algorithm A.

Table 1: Evaluating Algorithm B,

5.1 Abor t ing computations

Our second proposal above is implemented in Figure 4.
We have basically introduced a new parameter A: which is
passed to DIAG in addition to node N and instantiation

The meaning of this parameter is as follows. When
executing the call , abort the computation
and return {} once it is clear that the diagnosis-set to
be returned will have a cardinality greater than k.

Note that this cardinality threshold is updated after
each iteration of the for-loop on Lines 6-10, where the
updated value is stored in the variable t. If during one
iteration of the loop we compute a diagnosis-set < dr
which has a cardinality smaller than t, we update the
value of t to take this smaller cardinality.

The two places where this threshold is used are Lines 6
and 7. On Line 6, we require the computation to be
aborted if it will lead to a diagnosis-set with cardinality
greater than t.. If the call on Line 6 succeeds and returns
a diagnosis-set with cardinality t'', the call on Line 7
should be aborted once it is clear that the cardinality of
the diagnosis-set it will return is greater than t — /,'.

Note that we must supply a cardinality threshold k for
the very first call, , where N is the root of
the decomposition tree. We can start by choosing k = 0
as the threshold. If this call fails (returns {}), we set the
threshold to k = 1 and try again. If this fails too, we set
the threshold to A: = 2, and so on.

Table 1 shows five randomly generated devices, each

containing a 100 components.8 With respect to each de­
vice, we generated 20 random instantiations of the device
input and output ports. Each of the instantiations rep­
resents a normal behavior or induces a single fault. The
table shows the average number of union operations per­
formed by each of Algorithm A and Algorithm B. It also
shows the average improvement factor over the 20 ob­
servations generated for each device, where the improve­
ment factor for a particular observation is defined as the
number of union operations performed by Algorithm A
divided by the number of union operations performed
by Algorithm B. The passing of cardinality threshold
has clearly reduced the number of union operations but
the reduction is marginal. The next improvement will
be much more dramatic though.

5.2 Skipping instantiations
We will now present a refinement of Algorithm B which
will bring us even closer to realizing Theorem 2.

Specifically, we will compute a lower bound,
cardinality of the diagnosis-set

:>n Line 8) and skip the instantia­
tion on Line 5 if the bound is greater than threshold t.
We implement this by replacing Line 5 in Figure 4 with
for each
We shall refer to the result as Algorithm C.

We will now explain how to compute the lower bound
on the cardinality of . We pre-

compute for each component c in the device a cardmality
table which gives the cardinality of for any in­
stantiation (that is, does not need to instantiate all
ports of the component c). Suppose that c is a buffer
with A and B as its ports. The cardinality table for this
component will then be as follows:

1100 QUALITATIVE REASONING AND DIAGNOSIS

The devices used in the experiments where generated as
follows. Each device has a 100 components (inputs are con­
sidered components). On average, 20% of the components
have one port (input), 10% have two ports, 40% have three
ports and 30% have four ports. The components are either
buffers or and/or-gates.

9The cardinality table can be constructed on demand if it
is too big to be precomputed.

Table 2: Evaluating Algorithm C.

and, hence, the soundness of the extra test on Line 5 of
Algorithm C.

This simple extension to Algorithm B leads to dra­
matic savings as shown in Table 2. The table depicts
10 devices, each containing a 100 components. The de­
vices vary in their connectivity and are listed from the
least connected to the most connected. With respect to
each device, we generated 20 observations involving zero
or one faults. We recorded the number of union opera­
tions performed by each of Algorithms A and C. With
respect to each device we report x/y where x is the av­
erage number of operations per 20 observations and y
is the minimum such number. We also report similar
statistics for the factor of improvement.

For Algorithm A, the number of union operations does
not depend on the device observation. It only depends
on the decomposition tree which depends on the device
structure. Therefore, the number of union operations is
effectively a reflection of the device connectivity.

The results in Table 2 are quite dramatic, show­
ing factors of improvement that exceed a 100 in some
cases. This clearly illustrates the promise of augmenting
structure-based methods with non-structural techniques.
Table 2 also appears to suggest that the improvement in­
creases as the device becomes more connected, although
a more comprehensive and principled experimental anal­
ysis is needed to verify this.

We have observed, however, that the improvement fac­
tor reduces as the number of faults increases. To illus­
trate this point, Table 3 shows five scenarios with respect
to Device 7. Each scenario involves 20 randomly gener­
ated observations with an increasing number of device
faults. Notice how the factor of improvement reduces
from 60 to 7! This should not be surprising because as
the cardinality threshold increases, the test on Line 5 of
Algorithm C tends to succeed, therefore, permitting an
increasing number of instantiations f3 to be considered.

6 Conclusion
We have proposed a relatively simple extension to
structure-based methods for model-based diagnosis. The
extension exploits the behavioral model of a device in
addition to its structure. The utilization of structure re-

Table 3: Evaluating the impact of diagnosis cardinality.

tains the desirable guarantees of structure-based meth­
ods, while the utilization of behavior seems to preempt
combinatorial explosions that are typically caused by a
strongly connected device structure. To operationalize
our device-behavior utilization techniques, however, we
had to provide a structure-based formulation for model-
based diagnosis which is based on decomposition trees
instead of jointrees. Decomposition trees are more in­
tuitive than jointrees and yet they guarantee the same
worst-case complexity result as jointrees.

We conclude by stressing that our results are only a
first step in augmenting structure-based methods with
non-structural techniques. We clearly did not take full
advantage of the optimization suggested by Theorem 2,
but, through the introduction of decomposition trees,
we have positioned structured-based algorithms to po­
tentially realize that objective in the future.

References
[Darwiche, 1998] Adnan Darwiche. Model-based diag­

nosis using structured system descriptions. Journal of
Artificial Intelligence Research, 8:165-222, 1998.

[Darwiche, 1999] Adrian Darwiche. Compiling knowl­
edge into decomposable negation normal form. Tech­
nical Report R -262, Cognitive Systems Laboratory,
UCLA, 1999.

[Deehter and Dechter, 1996] Rina Dechter and Avi
Dechter. Structure-driven algorithms for truth main­
tenance. Artificial Intelligence, 82:1-20, 1996.

[Geffner and Pearl, 1987] Hector Geffner and Judea
Pearl. An improved constraint-propagation algorithm
for diagnosis. In Proceedings of IJCAI, pages 1105—
1111, Milan, Italy, 1987.

[Hamscher et a/., 1992] Walter Hamscher, Luca Con­
sole, and Johan de Kleer. Readings in Model-Based
Diagnosis. Morgan Kaufrnann Publishers, Inc., San
Mateo, California, 1992.

[Jensen et a/., 1990] F. V. Jensen, S.L. Lauritzen, and
K.G. Olesen. Bayesian updating in recursive graphical
models by local computation. Computational Statis-
tics Quarterly, 4:269-282, 1990.

[Pearl, 1988] Judea Pearl. Probabilistic Reasoning in
Intelligent Systems: Nehvoj^ks of Plausible Inference.
Morgan Kaufrnann Publishers, Inc., San Mateo, Cali­
fornia, 1988.

DARWICHE 1101

