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Abstract 
Structure-based approaches to diagnosis pro­
vide useful computational guarantees based 
on a device structure. In particular, these 
approaches can identify device structures for 
which the complexity of model-based diagnosis 
is guaranteed to be linear. Structure-based ap­
proaches, however, can fail to answer even the 
simplest diagnostic queries if the device struc­
ture is not well behaved (strongly connected). 
We show in this paper that this deficiency can 
be addressed to a reasonable extent by utiliz­
ing device behavioral properties (its component 
models in particular) which are typically ig­
nored by structure-based approaches. Specif­
ically, we present a structure-based algorithm 
for diagnosis which takes advantage of a device 
behavior and then present experimental results 
indicating that our algorithm can lead to signif­
icant (orders-of-magnitude) savings over pure 
structural approaches when applied to strongly 
connected devices. 

1 Introduction 
The utilization of problem structure in automated rea­
soning has become a major computational technique in 
certain communities and is gaining momentum in oth­
ers. In probabilistic reasoning and constraint satisfac­
tion, structure is the main aspect of a problem which 
is used to control the complexity of inference [Dechter 
and Dechter, 1996; .Jensen et al\ 1990; Pearl, 1988]. In 
probabilistic reasoning, structure refers to the topology 
of a Bayesian network, and in constraint satisfaction it 
refers to the topology of a constraint network. Structure-
based reasoning has also been introduced to model-
based diagnosis, where structure refers to the intereon-
nectivity of device components [Hamscher et a/., 1992; 
Dechter and Dechter, 1996; Geffner and Pearl, 1987; 
Darwiche, 1998]. 

One of the most interesting aspects of structure-based 
diagnosis is that it ties the complexity of computing di­
agnoses to a very intuitive measure: component inter-
connectivity. As it turns out, the less connected a de­

vice is, the easier it is to diagnose using structure-based 
methods. The connectivity of a device structure is typ­
ically summarized by a measure known as the structure 
width. It is well known that the best-case and worst-case 
complexities of standard structure-based algorithms are 
exponential (only) in the width of a device structure. 
Therefore, if the width is small, all is well. However, if 
the device structure has a large width, then structure-
based algorithms are effectively non-usable. 

This is probably one of the greatest challenges to 
structure-based reasoning especially that some problems 
which are known to be easy (such as inference with Horn 
clauses) can sometimes be posed as problems with com­
plex structures; therefore, making them intractable to 
structure-based methods. Stated differently, one can 
identify problems that have a varying level of difficulty, 
yet posses the same structure. This means that the diffi­
culty of a problem cannot be measured only by its struc­
ture. It also means that some non-structural properties 
must be appealed to if one is to optimize the performance 
of structure-based methods. 

The contribution of this paper is in pursuing this in­
tuition in the context of model-based diagnosis. Specifi­
cally, we provide a structure-based algorithm for model-
based diagnosis which exploits non-structural properties 
of a device. The properties we exploit are the behav­
ioral models of device components, which are typically 
ignored by structure-based methods. 

Our refined algorithm still maintains the standard 
worst-case complexity of structure-based methods, but 
its average-case complexity appears to be significantly 
better as illustrated by our preliminary experimental 
results. According to these results, our refined al­
gorithm can lead to orders-of-magnitude savings over 
pure structure-based methods especially when the de­
vice structure is strongly connected. 

This paper is structured as follows. Section 2 presents 
some technical preliminaries which are needed to phrase 
the model-based diagnosis problem formally. Section 3 
discusses standard approaches to structure-based diag­
nosis, explaining their use of a device structure and 
stressing their non-use of a device behavior. Section 4 
turns to the basic intuition underlying our use of a device 
behavior where we introduce decomposition trees, which 
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Figure 1: A simple device. 

are a key tool we shall use in realizing our intuitions. 
Section 5 presents the technical details of our approach 
and discusses our experimental results. Section 6 closes 
with some concluding remarks. 

2 Model-Based Diagnosis 
Our goal in this section is to present a particular for­
malization of the model-based diagnosis problem. Our 
formalization is not very standard, but it appears cru­
cial to exposing the intuitions behind structure-based 
approaches and our proposed extension to them. 

Components: We start by defining a device, compo-
nent c as an object which is characterized by an id, a set 
of ports, and a diagnosis function. Specifically, id{c) is 
a number representing a unique identifier for the com­
ponent; ports(c) is a set of variables (with finite values) 
representing the component's inputs and outputs; and 
Dg(c,a) is a function capturing the health of compo­
nent c given an instantiation of its ports.1 The value 
of is if instantiation is inconsistent, 
with the normal behavior of component c and is { { } } 
otherwi.se. 

Consider the device in Figure 1 for an example. Let 
c refer to the first buffer. Then id(c) = 1, ports(c) — 

= {{1}} if instantiates A and B 
to different values and .Dg[ = { { } } otherwise. 

Devices: A device is defined as a set of components 
. For example, the device in Figure 1 is defined 

by the set , which refer to the four buffers 
from left to right, respectively. Here, = {A, B} 
and ports = {B,C}. Note that one can figure out 
how components are interconnected by examining the 
components' ports. 

Model-Based Diagnosis: A key question of concern 
to model-based diagnosis is this: Given a device d = 
C1,..., cn and an instantiation of some of the device 
ports, compute the diagnoses consistent with d and fi. 

Our goal in the remainder of this section will be 
to present a simple, brute-force method for answering 
this question. We shall then argue that structure-based 
methods refine this method by exploiting device struc­
ture. Our proposal will then be presented as a further 
refinement of this method based on device behavior. 

Our treatment will make two assumptions: (1) com­
ponents have no fault modes (they are either broken or 
ok); and (2) only minimum-cardinality diagnoses are of 
interest. The first assumption simplifies the discussion 
considerably but without reducing the generality of our 

1An instantiation of a set of variables is an assignment of 
values to these variables. 

treatment. The second assumption, however, (or a simi­
lar assumption for preferring some diagnosis over others) 
is crucial to the techniques we shall propose. 

The brute-force method for computing minimum-
cardinality diagnoses is based on diagnosis-sets: 

- A diagnosis is a set of component IDs. Example: 
{1,3} is a diagnosis with respect to the device in 
Figure 1. It indicates that components 1 and 3 are 
faulty. 

- A diagnosis-set is a set of diagnoses with equal car­
dinalities. The cardinality of a diagnosis-set is the 
cardinality of any of the diagnoses it contains. Ex­
ample: {{1,4}, {2,4}, {3,4}} is a diagnosis-set with 
cardinality 2. It indicates three possible problems, 
each involving two faults.2 

- The union of two diagnosis-sets is defined as follows: 

Note that the diagnosis function , which we in­
troduced earlier, returns a diagnosis-set representing the 
health of component c given an instantiation of the 
component ports. 

Computing minimum-cardinality diagnoses can be 
viewed as extending the diagnosis function to sets of 
components (devices). We shall see that this is straight-
forward given the above operations on diagnosis-sets. 

We will first extend while assuming that a is an 
instantiation of all of the device ports. Specifically, let 

be a device and let a be an instantiation 
of all of d'.s ports. It should be easy to verify that 

(1) 

represents the minimum-cardinality diagnosis for device 
d and instantiation Consider Figure 1 and let be 
the instantiation . We have three faults 
here involving Buffers 1, 2 and 3: 
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Suppose now that ά is an instantiation of only a subset 
of the device ports ports (d). It is not hard to verify that 

is the set of minimum-cardinality diagnoses for device d 
and instantiation . Here, : ports(d) | means that 
is an instantiation of ports(d) which is consistent with 

Given the notions above, the key question of concern 
to us here is: Given a device and an 
instantiation ά of some of its ports, compute Dg(d, ά) 
as defined by Equation 2 as efficiently as possible. In 
the following section, we show the key technique used 
by structure-based approaches to perform this compu­
tation. We then follow by our own proposed techniques 
for improving on this computation. 

3 Structure-Based Diagnosis 
Structure-based diagnosis systems can be viewed as eval-
uators of Equation 2 based on the following theorem: 

Intuitively, the theorem shows how one can decompose 
a diagnostic query with respect to a device 
into a set of simpler diagnostic queries with respect to 
the smaller devices and . Moreover, this decom­
position is exponential only in the number of common 
ports between sub-devices and 

We have a number of observations about this theorem. 
First, if applied recursively, it can reduce the computa­
tion of any diagnosis-set of the form Dg(d,.), where d 
is a device, into the union and product of diagnosis-sets 
of the form ,.), where c is a component. Second, 
the amount of work to compute Dg(d,.) by Theorem 1 
can be measured by the number of union operations per­
formed during the application of the theorem. Third, if 
it is possible to decompose the components of a device 
into sets which share a small number of ports, then di­
agnosing such a device is easy according to Theorem 1. 

The main technique underlying structure-based meth­
ods is to compute good device decompositions and use 
them to apply Theorem 1 or a variant. Moreover, the 
main technique used for obtaining such decompositions 
is to compute a jointree for the device structure [Dechter 
and Dechter, 1996; Darwiche, 1998]. 

We will not discuss jointrees in this paper since we 
will not be using them in our approach. Instead, we will 
use a simpler variant on jointrees, called decomposition 
trees, which we introduce later. 

Figure 2: A device with two decomposition trees. 

We are now ready to introduce the key observation 
underlying our contribution in this paper. There are two 
ways to reduce the number of union operations performed 
while applying Theorem 1; one is structural, the other is 
behavioral: 

1. Structural: Minimize the common ports between de­
vices 

2.Behavioral: Skip any instantiation for which 
because the 

contribution of in this case will be ig­
nored by the union operation. 

The first method is structural because it can be achieved 
by reasoning about the structure of the device. The 
second method is behavioral because it requires knowl­
edge of the specific components comprising the device 
and cannot be accomplished based on the device struc­
ture alone. In particular, whether 

holds depends on the diagnosis function 
Dg(c,.) associated with each device component c. This 
behavioral dimension for optimizing the application of 
Theorem 1 can be formalized by the following refined 
version of the theorem: 

This is exactly like Theorem 1 except that we have added 
an extra condition on the instantiation 

Whereas structure-based methods have been mainly 
concerned with reducing the size of 
— therefore, reducing the number of instantiations 

to consider — by appealing to structural device 
properties, our focus will be on identifying those in­
stantiations that do not satisfy the extra condition 

. For this we must 
consult non-structural properties of devices. This new 
technique, as we shall demonstrate, can lead to signifi­
cant savings. 

The next section introduces decomposition trees which 
allow us to provide a simple implementation of Theo­
rem 1. We then follow by refining the algorithm to reflect 
the improvement introduced by Theorem 2. 
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Figure 3: Computing minimum-cardinality diagnoses. 

4 Decomposition Trees 
A decomposition tree for a device is a full binary tree 
whose leaves correspond to the device components; see 
Figure 2. A decomposition tree is simply a control strat­
egy for applying Theorem 1. To be employed for this 
purpose, however, we must associate a few properties 
with each node TV in the tree. First, for a leaf node 
N, , where c is the component asso­
ciated with node N. Second, for an internal node N, 
Ni and Nr are the left and right children of N, respec­
tively, and . Fi­
nally, for any node N, ports(N) are the ports of com­
ponents appearing in comps(N). For example, in Fig­
ure 2(c), 

Here is the intuition behind a decomposition tree. The 
root node N represents the whole device which is decom­
posed into two sub-devices, one represented by Ni and 
another by . Therefore, to compute minimum cardi­
nality diagnoses, all we have to do is apply Theorem 1 
with and being and . Fig­
ure 3 presents a simple recursive algorithm (based on 
Theorem 1) for computing minimum-cardinality diag­
noses given a device decomposition tree. 

We have a number of observations on Figure 3. First, 
note the boundary case where node N is a leaf node. 
In such a case, component c is associated with node N 
and we simply return _ , ,, which is either 
or as stated earlier.4 Second, we have included 
a counter on Line 8 to count the number of union op­
erations performed. This is needed to explain our ex­
perimental results later. Finally, we have included a 
caching mechanism on Lines 2 and 9 because, by defi­
nition, two calls will return 
equal diagnosis-sets whenever ά and ά' agree on the val­
ues of ports(N). Therefore, we keep a cache at each node 

4When a call is made on the root node, we 
assume that is an instantiation of all input and output 
ports of the device. This guarantees that when we reach the 
boundary case on Line 1, would instantiate all ports of the 
component c. 

N which stores the result of call DIAG I indexed by 
the projection of instantiation ά on ports(N). If another 
call is made, the cache is checked first to see 
whether we have an entry for the projection of on 
ports(N). If there is, the entry is returned. Otherwise, 
the call recurses. 

The quality of a decomposition tree is measured by 
its width and the complexity of Algorithm A is linear 
in the number of nodes in the decomposition tree and 
exponential only in its width. Following is the formal 
definition of a decomposition tree width. 
Def ini t ion 1 Let N be a node in a decomposition tree 
T. The cluster of node N is defined as follows. If N is a 
leaf node, then its cluster is ports(N). If N is an internal 
node, then its cluster is the set of ports that appear either 
above and below node N in the tree, or in the left and 
right subtrees of node N. The width of a decomposition 
tree is the size of its maximal cluster minus one. 
Consider node n2 in Figure 2(c). Then {B,C,D} and 
{A ,B ,C} are the ports that appear above and below 
node n2, respectively. Moreover, {A,B} and { A C } 
are the ports that appear to the left and right of 
n2, respectively Therefore, the cluster of node n2 is 

Theorem 3 Let T be the decomposition tree used in Al-
gorithm A. The running time of Algorithm A is 
where n is the number of nodes in T and w is its width.5 

In standard structure-based approaches, where a join-
tree is used, complexity is also linear in the size of a join-
tree and exponential in its width [Dechter and Dechter, 
1996; Darwiche, 1998]. Moreover, for every jointrce of 
width w, we can construct in linear time a decomposi­
tion tree with the same width [Darwiche, 1999].6 There­
fore, although we are using decomposition trees instead 
of jointrees, we still have the classical complexity result 
which characterizes structure-based approaches to diag­
nosis. The use of decomposition trees, however, is es­
sential for exploiting device behavior (as suggested by 
Theorem 2), a topic which we discuss next. 

5 Exploiting Device Behavior 
Our aim in this section is to refine Algorithm A so it 
implements the suggestion of Theorem 2 as much as pos­
sible. We will do this in two steps: 

1.If on Line 4 of Algorithm A we are able to predict, 
, we will skip 

2. Otherwise, we will execute Line 5 (and then Line 6) 
but we shall abort the execution once it is clear that 
the resulting diagnosis-set will have a cardinality 
which is greater than Card (DlAG(N,ά)). 

We will implement the second proposal first. 
5This result assumes that the diagnosis-set operations 

take constant time. 
6 An algorithm for constructing good jointrees is then an 

algorithm for constructing good decomposition trees. 
7Note here that 
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Figure 4: First improvement on Algorithm A. 

Table 1: Evaluating Algorithm B, 

5.1 Abor t ing computations 

Our second proposal above is implemented in Figure 4. 
We have basically introduced a new parameter A: which is 
passed to DIAG in addition to node N and instantiation 

The meaning of this parameter is as follows. When 
executing the call , abort the computation 
and return {} once it is clear that the diagnosis-set to 
be returned will have a cardinality greater than k. 

Note that this cardinality threshold is updated after 
each iteration of the for-loop on Lines 6-10, where the 
updated value is stored in the variable t. If during one 
iteration of the loop we compute a diagnosis-set < dr 
which has a cardinality smaller than t, we update the 
value of t to take this smaller cardinality. 

The two places where this threshold is used are Lines 6 
and 7. On Line 6, we require the computation to be 
aborted if it will lead to a diagnosis-set with cardinality 
greater than t.. If the call on Line 6 succeeds and returns 
a diagnosis-set with cardinality t'', the call on Line 7 
should be aborted once it is clear that the cardinality of 
the diagnosis-set it will return is greater than t — /,'. 

Note that we must supply a cardinality threshold k for 
the very first call, , where N is the root of 
the decomposition tree. We can start by choosing k = 0 
as the threshold. If this call fails (returns {}), we set the 
threshold to k = 1 and try again. If this fails too, we set 
the threshold to A: = 2, and so on. 

Table 1 shows five randomly generated devices, each 

containing a 100 components.8 With respect to each de­
vice, we generated 20 random instantiations of the device 
input and output ports. Each of the instantiations rep­
resents a normal behavior or induces a single fault. The 
table shows the average number of union operations per­
formed by each of Algorithm A and Algorithm B. It also 
shows the average improvement factor over the 20 ob­
servations generated for each device, where the improve­
ment factor for a particular observation is defined as the 
number of union operations performed by Algorithm A 
divided by the number of union operations performed 
by Algorithm B. The passing of cardinality threshold 
has clearly reduced the number of union operations but 
the reduction is marginal. The next improvement will 
be much more dramatic though. 

5.2 Skipping instantiations 
We will now present a refinement of Algorithm B which 
will bring us even closer to realizing Theorem 2. 

Specifically, we will compute a lower bound, 
cardinality of the diagnosis-set 

:>n Line 8) and skip the instantia­
tion on Line 5 if the bound is greater than threshold t. 
We implement this by replacing Line 5 in Figure 4 with 
for each 
We shall refer to the result as Algorithm C. 

We will now explain how to compute the lower bound 
on the cardinality of . We pre-

compute for each component c in the device a cardmality 
table which gives the cardinality of for any in­
stantiation (that is, does not need to instantiate all 
ports of the component c). Suppose that c is a buffer 
with A and B as its ports. The cardinality table for this 
component will then be as follows: 
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buffers or and/or-gates. 

9The cardinality table can be constructed on demand if it 
is too big to be precomputed. 



Table 2: Evaluating Algorithm C. 

and, hence, the soundness of the extra test on Line 5 of 
Algorithm C. 

This simple extension to Algorithm B leads to dra­
matic savings as shown in Table 2. The table depicts 
10 devices, each containing a 100 components. The de­
vices vary in their connectivity and are listed from the 
least connected to the most connected. With respect to 
each device, we generated 20 observations involving zero 
or one faults. We recorded the number of union opera­
tions performed by each of Algorithms A and C. With 
respect to each device we report x/y where x is the av­
erage number of operations per 20 observations and y 
is the minimum such number. We also report similar 
statistics for the factor of improvement. 

For Algorithm A, the number of union operations does 
not depend on the device observation. It only depends 
on the decomposition tree which depends on the device 
structure. Therefore, the number of union operations is 
effectively a reflection of the device connectivity. 

The results in Table 2 are quite dramatic, show­
ing factors of improvement that exceed a 100 in some 
cases. This clearly illustrates the promise of augmenting 
structure-based methods with non-structural techniques. 
Table 2 also appears to suggest that the improvement in­
creases as the device becomes more connected, although 
a more comprehensive and principled experimental anal­
ysis is needed to verify this. 

We have observed, however, that the improvement fac­
tor reduces as the number of faults increases. To illus­
trate this point, Table 3 shows five scenarios with respect 
to Device 7. Each scenario involves 20 randomly gener­
ated observations with an increasing number of device 
faults. Notice how the factor of improvement reduces 
from 60 to 7! This should not be surprising because as 
the cardinality threshold increases, the test on Line 5 of 
Algorithm C tends to succeed, therefore, permitting an 
increasing number of instantiations f3 to be considered. 

6 Conclusion 
We have proposed a relatively simple extension to 
structure-based methods for model-based diagnosis. The 
extension exploits the behavioral model of a device in 
addition to its structure. The utilization of structure re-

Table 3: Evaluating the impact of diagnosis cardinality. 

tains the desirable guarantees of structure-based meth­
ods, while the utilization of behavior seems to preempt 
combinatorial explosions that are typically caused by a 
strongly connected device structure. To operationalize 
our device-behavior utilization techniques, however, we 
had to provide a structure-based formulation for model-
based diagnosis which is based on decomposition trees 
instead of jointrees. Decomposition trees are more in­
tuitive than jointrees and yet they guarantee the same 
worst-case complexity result as jointrees. 

We conclude by stressing that our results are only a 
first step in augmenting structure-based methods with 
non-structural techniques. We clearly did not take full 
advantage of the optimization suggested by Theorem 2, 
but, through the introduction of decomposition trees, 
we have positioned structured-based algorithms to po­
tentially realize that objective in the future. 
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