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Abstract 
In the present paper we introduce the notion of 
Variable Assignment Problem (VAP) as an ab­
stract framework for characterizing diagnosis. 
Components of the system to be diagnosed are 
put in correspondence with variables, behav­
ioral modes of the components are the values 
of the variables and a diagnosis is a variable 
assignment which explains the observations of 
the diagnostic problem, by considering the con­
straints put by the domain theory. In order 
to have a concise representation of diagnoses 
and to reduce the search space, we introduce 
the notion of scenario for representing a set of 
diagnoses. The paper discusses the definition 
of preference criteria for ranking solutions and 
their use for guiding the heuristic search for di­
agnoses. Experimental data are reported for 
the evaluation of such a heuristic search on a 
real-world diagnostic problem, concerning the 
identification of faults in a space robot arm; in 
this domain, where a high number of diagnoses 
may be possible, our approach allows one to get 
a concise representation of the large number 
of solutions and to define effective diagnostic 
strategies able to provide relevant information 
about fault localization and identification. 

1 Introduction 
In many real-word applications, diagnostic reasoning is 
often embedded in a larger task which may involve mon­
itoring, gathering of additional information for hypothe­
sis discrimination, reconfiguration, repair, etc... In such 
a complex situation, the diagnostic component has to 
summarize the results of the diagnostic reasoning in such 
a way that the intelligent agent (either human or arti­
ficial) who has to use the diagnostic results is able to 
perform the task. Unfortunately, for most artifacts the 
number of possible diagnoses is quite large. In the model-
based diagnosis community there is long tradition to use 
some preference criterion for representing the set of pos­
sible diagnoses: the notion of minimal diagnosis [Reiter, 
1987] has been often used, but its drawbacks are well 

known when the domain theory includes also models of 
the faulty behavior. The characterization of diagnoses 
in terms of partial and kernel diagnosis [de Kleer et al., 
1992] is useful, but it does not guarantee at all that the 
number of diagnoses is small. 
In model-based diagnosis a number of approaches based 
on information theory have been proposed for suggest­
ing additional measurements, in order to discriminate 
between competing diagnostic hypotheses and to reduce 
the number of diagnoses. However, it is not always pos­
sible to get additional measurements and therefore, in 
such cases, other techniques have to be developed for 
representing diagnoses in a more compact way. In sev­
eral domains fault localization is not sufficient for solving 
the diagnostic task: fault identification is needed because 
of different repair actions and/or criticality of the fault. 
In modeling such domains, the behavior of the diagnosed 
system is represented in term of behavioral modes and 
the space of possible solutions is usually quite large. The 
introduction of a preference criterion among diagnoses is 
not only useful for representing in a compact way the set 
of solutions, but it should also guide the search process 
of diagnoses generation, in such a way that preferred di­
agnoses are generated before non-preferred ones (see, for 
example, [de Kleer, 1991] for a probabilistic approach). 
This is a very important requirement in complex do­
mains where the computation of diagnoses is time (or 
space) consuming and therefore the computation is time 
(or space) bounded. 

The present paper aims at solving some of the prob­
lems mentioned above by introducing a characterization 
of diagnostic problem solving (in particular abductive 
diagnosis) as a type of Variable Assignment Problem 
(VAP). In section 2, we introduce the notion of VAP as 
a problem in which some variables have to be assigned, 
depending on the constraints induced by some other en­
tities, called findings, through a set of rules. Several 
kinds of problem solving tasks can be viewed as specific 
instances of a VAP including planning, diagnosis, clas­
sification, learning of operational concepts, etc... In the 
present paper, we will concentrate on the view of diag­
nostic problem solving as a VAP: in section 3 we discuss 
some general issues arising on VAPs, in particular the 
compact representation of set of solutions (sect. 3.1), the 
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use of information theoretic criteria for preference among 
solutions (sect. 3.2) and the use of heuristic search for 
solving VAPs (sect. 3.3). In section 4 we will introduce 
a real-world diagnostic problem, related to the identifi­
cation of faults in a space robot arm [Mugnuolo et al., 
1998] and we will show how mapping such a problem to 
a VAP can allows us to define diagnostic strategies able 
to provide the user with a powerful tool for detecting 
and identifying faults in such a complex system. 

2 Variable Assignment Problems 
A Variable Assignment Problem or VAP is characterized 
by a set of variables having a finite set of admissible val­
ues, and a set of observable parameters (that we will call 
findings) that may constraint the variable values through 
a suitable set of rules representing the domain theory. 
Def ini t ion 2.1 A Variable Assignment Problem (VAP) 
is a triple (V, F, DT) where: 

• is a set of variables taking val­
ues from a predefined set of mutually exclusive val-
ues called the domain of 

is a set of findings represented 
as atomic propositions; 

• is a set of rules relating vari­
ables and findings and called the domain theory 

In the following, given a variable xi, we will indicate as 
a particular instance of the variable (i.e. an assignment 
to from . ). It should be clear that, since values 
in . are mutually exclusive, 
Moreover, in the present work we will discuss the case 
where DT is a Horn theory. 

A diagnostic problem can be characterized in terms of 
VAP as follows: each variable corresponds to a compo­
nent of the system to be diagnosed, with each value rep­
resenting a behavioral mode of the component [de Kleer 
and Williams, 1989]; each finding corresponds to an ob­
servation, i.e. to an observable parameter of the system; 
the theory represents the model of the system (usually 
a behavioral model relating behavioral modes of com­
ponents to observable manifestations). In this paper, 
for the sake of simplicity, we will ignore the influence 
of input observations in determining the output observa­
tions and we will restrict our attention to two-layers di­
agnostic problems [Peng and Reggia, 1991], where faults 
(and possibly normal behavior) are directly related to 
observations1. 

lThe whole framework can be generalized to more com­
plex models with arbitrary long chains of rules between be­
havioral modes of the components (and input parameters) 
and observations. In such models, variables not correspond­
ing to components but to internal states (endogenous vari­
ables) are present. Also these variables have finite domains 
and the domain theory DT contains rules relating input pa-
rameters and components with internal variables as well as 
rules relating internal variables to findings. Input parameters 
can be viewed as variables whose assignment is already given 
as an external constraint. 

Solving a VAP means to determine the possible assign­
ments to the variables that "satisfy" the rules concerning 
the observed findings. This may mean different things: it 
may be sufficient to require the logical consistency of an 
assignment with respect to observed findings or it may 
be the case that a covering of the findings is required. 
From the diagnosis point of view this corresponds to the 
classical distinction between consistency-based diagnosis 
and abductive diagnosis. In the following we will consider 
the stronger choice of coverability2. 
Def in i t ion 2.2 A solution to a VAP (V.F.DT) is a 
vector X = such that . 

3 Solving VAPs 
3.1 Basic Issues 
Given a VAP as defined in def. 2.1, each finding /, con­
strains the values of a subset of the variables; this means 
that given fi,• the set of possible variable assignments is 
restricted by the rules in DT related to 

Example 1. Let be a VAP 
defined on two ternary variables having values = 
1, =1 ,2 ,3 and with the following theory: 

Solving this VAP produces the following variable assign­
ments: 

For problem solving efficiency, it may not be reasonable 
to "expand" all the possible assignments generated by a 
given finding. By considering one finding at the time, 
we can notice that each constraints only via the 
disjunction so a more compact representation for 
the above variable assignments can be the conjunction 
of disjunctions 

In general, we can represent the set of assignments 
generated by each finding by means of a set of scenarios, 
each being a particular kind of conjunctive normal form 
(CNF) formula. 
Def in i t ion 3.1 Given a VAP ,F,DT), a 
scenario is a CNF formula of the type 

where each conjunct is a disjunction of (at most ) 
instances of the same variable 
In particular, in the case of diagnosis, if the space of el­
ementary variable assignments is very large, a scenario 
can represent in a compact way multiple assignments 
with two potential benefits: 1) easier analysis of diag­
noses for a human or artificial agent, since they are fac­
tored; moreover, remaining sources of indeterminacy re­
quiring further discrimination are pointed out, for each 

2 This choice is justified when the model is reasonably com­
plete (see [Console and Torasso, 1991]): as we shall see in 
section 4, in our case study the behavioral modes as well as 
their relation to observations are known. 
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component within each scenario; 2) reduction in the size 
of the search space. In fact, each finding imposes a con­
straint on a subset of the variables, represented as a set 
of k admissible tuples for such a subset and this may be 
summarized in at most k scenarios. On the other hand, 
the adoption of scenarios does not guarantee that search 
will produce solutions that are elementary assignments, 
even if they can be easily generated from final scenarios. 
Therefore, a good reason for adopting scenarios is their 
ability of trading-off search effort with respect to speci­
ficity of assignments. In complex domains, the adoption 
of scenarios may reduce the search space, but it may 
still be large (as well as the final set of scenarios): the 
introduction of a measure of preference among scenarios 
can then help to focus their generation to most preferred 
ones. 

Example 2. Suppose that the VAP of example 1 is 
modified by adding to DT the following rules: 

We have now five variable assignments solving the 
problem that may be compacted into two scenarios, one 
very general and one very specific 

i the problem is how to compare them. 
The mechanism we propose to approach this problem 

is based on the Minimum Description Length principle 
(MDL) [Rissanen, 1983] adapted to the particular prob­
lem we are tackling. Next section discusses this topic, 
while sect. 3.3 addresses the problem of using such a 
preference information during search. 

3.2 Comparing Scenarios 
The MDL is a principle of parsimony often used in ma­
chine learning or in probabilistic reasoning; the main 
idea is that hypotheses that may be described more con­
cisely should be preferred over other competing hypothe­
ses. The MDL principle is basically motivated by the fact 
that, using concepts from information theory, most prob­
able hypotheses have shortest descriptions (see [Mitchell, 
1997] for a detailed dis cussion). In particular, given a hy­
pothesis h having probability p(h), the optimal encoding 
for h assigns — bits to the hypothesis descrip­
tion. Notice that in our case, the direct encoding of a 
compound hypothesis represented by a given scenario is 
not really appropriate; indeed, if a scenario represents 
the compound hypothesis , the coding length had 
to be proportional to — which is 
strictly greater than the coding length of the compound 
hypothesis given by . In fact, from 
the information theoretic point of view we want to pro­
vide the receiver with the information that there is some 
indeterminacy in deciding which is the right hypothesis 
for the variable, so we have to transmit two separate 
messages: one for describing h1 and another message for 
describing . 

To apply a comparing principle based on MDL in our 
case, we first need to introduce some notational facilities. 
Given a VAP we associate 
with each variable Xi a bitmap of length | 
such that = 1 if the variable xi, may be assigned the 

kth value and otherwise. We then define B = 
to be a bitmap associated with the whole 

set of variables, . being the concatenation operator. 
It should be clear that every scenario generated by 

the findings can be encoded as a bitmap B defined as 
above. Of course, a scenario is inconsistent if there exist 
a in B such that A bitmap B is said to 
be elementary if it represents an elementary variable as­
signment (i.e. an assignment of exactly one value to each 
variable , thus if and only if 
Every generic bitmap B represents one or more elemen­
tary bitmap such that 
being | the "bitwise or" operator. 
In the following, we make the assumption that variables 
may be assigned independently to each other3. Under 
this assumption, given an elementary bitmap we de­
fine its coding length (or equivalently the coding length 
of the corresponding variable assignment) as: 

The above definition requires the specification of some 
probability priors on single variable assignments; in case 
no specific information is available on such assignments 
we can assume a uniform prior for each variable. 

Given a generic bitmap B and its elementary bitmaps 
, the coding length of B (or equivalently of 

the corresponding scenario) is then defined as 

In particular, we will be interested in considering dif­
ferent preference criteria among scenarios represented 
as bitmaps, defined by considering a suitable transform 
T(B) of the bitmap B and by computing . The 
choice of r and equation 1 allow us to trade-off the like­
ly hood of a given scenario and its specificity/generality 
with respect to specific requirements concerning the cur­
rent task and application. In general, the coding length 
of each elementary scenario weights the probability of 
the corresponding assignment, while the sum over the 
elementary assignments of the scenario gives a penalty 
to less specific and then less informative ones. The r 
transform allows one to tune the amount of penalty for 
less informative scenarios, by taking into account the 
expected use of such scenarios. In particular, for VAPs 
representing diagnostic problems, we identified the fol­
lowing basic transforms: 

3 In diagnostic terms this corresponds to the usual assump­
tion of prior independence among faults. 
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where ' is the empty bitmap if has all bits set to 
1 and ' = . otherwise; is the bitmap having all 
zeros, but in the most probable position if is a bi tmap 
having all ones and otherwise; is the bitmap 
obtained from by resetting to zero all but the most 
probable position. 

Scenarios having smaller coding length are then pre­
ferred over those having larger coding length. The choice 
of the proper transform essentially depends on the use 
of the scenarios representing final solutions. Let us con­
sider a diagnostic setting: in some cases, more specific 
diagnoses may be more conveniently used because they 
imply less discrimination effort (i.e. less tests), so Tl 
may be the most suitable choice; in some other cases the 
operator using the diagnostic system may be biased to­
wards preferring some particular assignments contained 
in a final scenario. For example the operator can ignore 
components for which no restriction on possible behav­
ioral mode has been provided by the observations ana­
lyzed so far. This is the basis of the notion of part ial 
and kernel diagnoses [de Kleer et a/., 1992]. Transform 
T2 assures that a component for which all behavioral 
modes are sti l l possible do not contribute to the eval­
uation of the F function. Therefore it guarantees that 
the equivalent (in our framework) of a kernel diagnosis 
is preferred to a partial (or total) diagnosis generated 
by the kernel one. Also T3 treats in a different way 
components for which no information is provided (all 
the behavioral modes are possible): in such a case, T3 
weights the component as it would be assigned the most 
probable (usually the normal) behavioral mode. It guar­
antees that the equivalent in our framework of a kernel 
diagnosis has a coding length T not larger of the one 
of a part ial (or total) diagnosis generated by the kernel 
one. In transform T4 the contribution of each compo­
nent to the evaluation of T is given by the most prob­
able behavioral mode sti l l admissible: this is equivalent 
to select the most probable diagnosis among all the ele­
mentary diagnoses represented by a final scenario. This 
preference criterion has usually the effect of preferring 
the diagnoses wi th min imum cardinality of faults4. 

A further advantage of the proposed coding length is 
that it can be computed without determining all the ele-
mentary assignments of a given scenario. Given a b i tmap 
B let as before Bi be the sub-bitrnaps relative to the 
single variables xi,: let us define a,- to be a coefficient 
associated with B i and representing the number of Is in 
Bi. The following property is tr iv ial ly verified. 

It is worth noting that the evaluation of the T function is 
not expensive since the number of operations involved in 
the evaluation is , where n is the number of compo­
nents (or the number of variables in the VAP problem). 

4 This follows from the fact that normal behavioral mode 
has usually much higher probability than faulty modes. 

In the next section we wi l l show how the coding length 
of a scenario can be exploited to guide the search for the 
solutions of a given VAP. 

3.3 Heur i s t i c Search 

One obvious way for addressing the problem of solving 
a VAP is to search in the space of all the scenarios gen­
erated by the findings. The assumption we made in this 
work is that findings are processed in a pipeline fashion 
following a specified order . This assump­
tion is made for two main reasons: first it simpli fy the 
description of the search strategies without loosing gen­
erality (the approach can be generalized if this assump­
tion is relaxed), second in many applications this corre­
sponds to a real constraint on the problem (thus findings 
are only available in such a way or it is necessary to pro­
cess them in such a way as in many real-time diagnostic 
applications). 

Given a scenario S, the current finding to be con­
sidered plays the role of a state-space operator in state-
space search: it generates all the scenarios constraining 
the current one wi th respect to the rules related to 
The ini t ial state can then be defined as the t r iv ia l sce­
nario ) corresponding to a b i tmap having 
all bits set to 1. 

E x a m p l e 3. Let us consider a VAP slightly more 
complex that the one of example 2 in section 3.1: 

involving three ternary 
variables having values and 
with the following theory: 

The search process starts from the (tr ivial) in i t ia l sce­
nario, 
where all the assignments are possible since no finding 
has been taken into consideration. 

By processing the first finding f\ we obtain two suc-

is unconstrained since there is no relation in theory 
DT between x3 and f1. The search process now consider 

and starting from S\, only one scenario accounts for 

consistent wi th the constraints put on x\ in scenario S1. 
If we process finding by taking into consideration sce­
nario S2 , we get just one successor: the scenario it-
self. It is worth noting that the explanation of in 
terms of is inconsistent wi th the constraints 
put by scenario S2 on x2. The final step concerns the 
explanation of ; start ing from we got two solu­
tions to VAP represented by scenarios where 

Starting from S2 we get a single solution represented by 
the scenario In conclusion we have 
three different solutions (i.e. scenarios 
to the VAP; together the three scenarios represents 9 
different elementary assignments. Each scenario men-
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tioned before can be represented by the corresponding 
bitmap; for instance = (111 • 111 • 111) since 
each of the three ternary variables can assume any value; 

, , since there is some constraints 
on variable x i , whereas the solution S4 is represented 
by the b i tmap = (110 • 110 • 100) where all the 
variables have to satisfy some constraints put by 
and 

We can notice that , because we process one finding at 
the t ime, there is a one-to-one correspondence between 
a finding and a search graph, level, being the j t h finding 

be processed at level j (assuming the in i t ia l node at 
level 0). 

Since the coding length function T defined in sec­
tion 3.2 allows for a ranking of the solutions, the most 
natural way of searching through the space of possible 
scenarios is to define a heuristic search strategy guided 
by the principle of getting solutions with minimal coding 
length. In particular, it is possible to devise an adrnissi-
ble search strategy based on a Best-First Search (BFS). 
We can define as evaluation function for a generated sce­
nario 5 (wi th b i tmap B(S)) at search level j the function 

where is the minimal coding length bi tmap 
that may be obtained from B(S) by processing findings 
from . This function is easily computed by 
considering the set of variables influenced by each finding 

fj 

E x a m p l e 4. Consider a problem with 4 binary vari­
ables findings processed in the order 
and r corresponding to Tl transform. Let the assign­
ments of each variable be equiprobable, but those for X2, 
where 

Let us assume that the scenario produced after the 
processing of f\ is 

wi th findings sti l l to be processed and influencing 
only X2 and X3 respectively; the best (minimal coding 
length) scenario that may be generated from S\ at level 
1 is then: 

since X4 wi l l not be changed by f2, f3 and x2 wi l l be set 
to at the best. Considering a bi tmap of length 8 where 
the i th pair of bits corresponds to respectively, 
then B(S1) = (10* 11*01 *11) and = ( 1 0 * 0 U 
01 • 11), 

BFS using h is admissible, since the evaluation func­
t ion h never over-estimates the actual minimal coding 
length scenario that may be generated from a given 
search node. If we force the diagnostic system to find 
not only the single best solution, but several solutions 
through backtracking, we are guaranteed that the di­
agnostic system produces solutions (in terms of scenar­
ios) in order of preference (according to the chosen crite­
rion). Since h is optimistic in foreseeing the discrimina­
t ion power of the findings not yet examined, it is common 

that the coding length of final scenarios (i.e. the solu­
tions) is larger than the one foreseen by expanding inter­
mediate scenarios by using h. This means that in some 
cases h is not as informative as we would like and con­
sequently the search space explored by h could be large. 
In order to check the actual applicability of BFS to real-
word diagnostic problems, we have performed some tests 
on a reduced general experimental framework, where 
general VAPs have been randomly generated and solved 
by BFS. We have then implemented a random VAP gen­
erator, able to produce test sets of problems by setting 
the following parameters: the number and the cardinal­
ity of the variables, the probability distr ibution on the 
variable values, the number and the order of examination 
of findings, the maximum number of scenarios (MAXS) 
generated by each finding and some random seeds for 
having different random scenario generations for each 
finding. Using this VAP generator we have produced 
five batches of 20 test problems each (for a total of 100 
test problems), characterized by 10 variables having car­
dinality varying from a minimum of 2 to a maximum of 4 
values and wi th a probability distr ibution over such val­
ues ranging from uniforms to very extreme. Each batch 
was characterized by parameter MAXS varying from 10 
to 15 and by a fixed number of findings that in the 5 
batches, has been varied from 10 to 20. Average results 
for each batch are reported on table 1. For each batch we 
report: the number of findings (NF), the average expan­
sion factor (EF) representing the percentage of the whole 
search space (in terms of expanded nodes) that has been 
visited to find the opt imum, the average solution factor 
(SF) representing the percentage of solutions that BFS 
has been able to find within a time-out of 30 seconds on 
CPU time, the percentage of time-outs (TO) occurred 
in the batch and the percentage of cases in the batch for 
which no solution has been provided wi th in the time- out 
(NS). The last row reports on the global average. As we 
can see in more than 20% of the cases BFS is not able 
to produce a solution wi th in the time-out and in more 
than 40% of cases it cannot produce ail the solutions. 
Moreover, we also experimented that as the complexity 
of the problem increases (essentially in terms of NF and 
MAXS), BFS is likely to run out of memory without 
giving any answer. For these reasons, we consider BFS 
suitable just for relatively simple domains and we focus 
our attention on alternative strategies based on Greedy 
Search (GS) with backtracking, where the scenario to be 
expanded is locally chosen among those generated at the 

Table 1: Average results for BFS. 
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previous step. By resorting to GS we have two general 
alternatives: still using h but in a local way, or directly 
using the coding length of a scenario as evaluation func­
tion. Because of the lack of space, we cannot describe in 
detail the experiments with GS using the random VAP 
generator. However, it is worth noting that the analysis 
with the VAP generator showed more benefits in directly 
using the coding length T as evaluation function. In the 
next section, we report on experimental results on the 
performance of GS on a real-world diagnostic problem. 

4 The SPIDER Case Study 
In this section we report on a recent work done inside 
the project SISRAS (Italian acronym for "An Intelli­
gent System for Supervising Autonomous Spatial Robot­
s'') sponsored by ASI (the Italian Space Agency) aimed 
at demonstrating the feasibility of interactive autonomy 
for controlling and supervising a complex system in the 
space. The test-bed of the project is the space robot 
arm SPIDER (Space Inspection Device for Extravehic­
ular Repairs) IMugnuolo et a/., 1998]. SPIDER is a 7 
degrees of freedom (i.e. a 7 joints) space robot arm devel­
oped inside the JERICO (Joint European Robot In-orbit 
Calibration and Operations) project. In the multi-agent 
architecture devoted to supervising SPIDER, one diag­
nostic agent is responsible to identify failures and mal­
functions during SPIDER activity, by analyzing symp­
toms obtained via monitoring of the arm and to provide 
the human operator with a concise and comprehensible 
description of the possible faults. 

We have devised a behavioral model for SPIDER char­
acterized by 33 components with an average number of 
5 behavioral modes each (ranging from a minimum of 
2 to a maximum of 9) and 45 observable parameters 
(among which 16 not equipped with a sensor for direct 
observation) by taking into consideration the FMECA 
documents developed during the design and test of the 
SPIDER arm. Such documents list all the faults for each 
component and provides a short characterization of each 
fault in terms of observables. In this way the model 
we have developed is complete in terms of faults and is 
reasonably complete in terms of relations between be­
havioral modes and observations. Since several faults 
share the same set of symptoms with no possibility of 
discrimination through monitoring parameters, a very 
large number of diagnoses may be produced, even when 
all observable parameters are available and actually ob­
served. We have then approached this problem by con­
sidering the diagnostic problem as a VAP; this allowed 
us to take into account all the considerations we made 
in previous sections and in particular: 

• the processing of observations in the order provided 
by the monitoring unit; 

• an abductive characterization of the diagnostic pro­
cess, because of the possibility of obtaining a (al­
most) complete model of both the normal and ab­
normal behavior of the arm; 

Table 2: Results for GS in the SPIDER domain. 

• the compact representation of a set of elementary 
diagnoses through the notion of scenario; 

• the definition of diagnostic strategies viewed as 
heuristic search in the space of possible scenarios; 

• the definition of preference criteria for diagnoses ob­
tained as final scenarios at the end of the process. 

Actually the diagnostic system we have developed is 
more complex than the characterization of diagnosis we 
have described in previous paragraphs: in particular, the 
system has to deal with input parameters representing 
the predicted status of the arm joints (e.g. whether the 
current command executed by the robot control involves 
a movement of the joint). As mentioned before, input 
parameters are dealt with as external constraints on the 
possible behavioral modes of components; a more de­
tailed description of the modeling issues involved in di­
agnosing SPIDER (including the exploitation of the de­
pendencies among findings) is reported in [Portinale et 
a/., 1999]. 

As pointed out in section 3.3, we adopted a GS ap­
proach guided by the coding length function defined in 
section 3.2, also used to address the problem of prefer-
ence among diagnoses. We have implemented a simula­
tor on the behavioral model of SPIDER able to gener­
ate diagnostic cases by injecting faults in the model. In 
the present paper we report on some of the experiments 
performed so far: if particular we considered two test 
sets of 100 cases each, by injecting one and two faults 
respectively. Each test set has then been tested by run­
ning a GS algorithm guided by T under T l , T2 and T3 
transform. The average number of observations to be ex­
plained in each case was about 19 and a time-out of a 1 
minute CPU time has been set. Table 2 summarizes the 
results in terms of number of injected faults (IF), average 
expansion factor (EF), number of times where optimum 
is the first solution (01), number of times where opti­
mum is in the first 4 solutions (04), average distance 
of the coding length of first solution with respect to the 
optimum (DO) normalized in [0,1] with respect to the 
maximum value, number of time-outs (TO). First two 
lines of table 2 refer to transform T l , next two lines to 
transform T2, while the last two to transform T3. As 
we can see, more complex problems (i.e. those involving 
two faults) are more likely to be timed-out under the 
time constraint we set up5; however, the performance of 

5 Notice that the time-out refers to the algorithm searching 
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the algorithm appears to be very good, both in quanti­
tative (e.g. EF) and in qualitative terms ( e.g. 0 1 , 04 
and DO). In particular, it is worth noting that very often 
GS is able to get the optimum as a first solution (or at 
least in the first 4); moreover even when the optimum 
is not obtained as a first solution, the quality of such a 
first solution is very high as suggested by reported val­
ues on DO. This is particularly true for both transform 
T2 and T3 (with T3 being slightly better). The use of 
a greedy strategy guided by T seems then to be a very 
effective approach for domains, like SPIDER, where the 
complexity of the model and the large number of possible 
solutions have to be properly addressed. 

5 Discussion 
In the present paper, we have discussed an approach 
to diagnosis based on viewing a diagnostic problem 
as a variable assignment problem, where variables (i.e. 
system components) are indirectly constrained through 
other observable entities (i.e. system observations). In 
particular, we addressed the problem of searching for 
solutions (i.e. diagnoses) in a large solution space, by 
proposing heuristic search in the space of scenarios (i.e. 
CNF formulae representing multiple elementary diag­
noses). Such a characterization seems to be quite promis­
ing in domains where observable parameters do not allow 
in general a precise discrimination between diagnostic 
hypotheses (so, we have a large number of competing 
diagnoses) and it is not possible to get additional mea­
surements. These characteristics are present in the SPI­
DER domain, but are not exclusive of such a domain: 
several other real-world applications can have the same 
problems. Experimental results show that even the use 
of non-admissible search algorithms based on a. greedy 
strategy can provide interesting results, especially con­
cerning the production of the best scenario with respect 
to the given preference criterion. 

Characterization of diagnosis as variable assignment 
has some similarities with work on diagnosis as con­
straint propagation as discussed in [ElFattah and 
Dechter, 1995]. The main differences concern the 
fact that we are focusing on abductive diagnosis on 
causal/behavioral models rather than on consistency-
based diagnosis on structural/behavioral models; more­
over, modeling the type of diagnostic problems we dis­
cussed here with the dual graph technique proposed in 
[ElFattah and Dechter, 1995] is likely to produce com­
plex cycles in the graph, making the problem computa­
tionally hard in general. 

Strategies based on heuristic search (in particu­
lar BFS) have also been proposed both in logical 
(consistency-based) [de Kleer, 1991] and in probabilis­
tic characterizations [Biswas et al, 1997; Peng and R.eg-
gia, 1991]; in both cases (even when more sophisticated 
bayesian methods are applied), search is performed on 

for all the solutions; in the examples we tested the algorithm 
is always able to find at least one solution within the time-
out. 

the space of elementary assignments of behavioral modes 
to components, potentially producing an explosion of the 
number of possibilities to be examined; our approach 
aims at avoiding this by means of scenarios. 
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