Debugging Functional Programs™

Markus Stumptner and Franz \Wotawa
Technische Universitat Wien
Institut fur Informationssysteme
Panigigasse 16, A-1040 Wien, Austria,
Email: {mst,wotawa} @dbai.tuwien.ac.at

Abstract

In this paper, we use a logic-based system descrip-
tion for a simple (non-logic) functional language
to examine the ways in which a diagnosis system
can use its system description to improve debug-
ging performance. The key concept is that the no-
tion of expression replacement, which is the basis
for repairing a program, can also serve as a fun-
damental heuristic for searching the source of an
error. We formally define replacements in terms of
fault modes, explicitly define a replacement order,
and use the replacement heuristic for finding diag-
noses. Finally, we incorporate the use of multiple
test cases and discuss their use in discriminating be-
tween diagnoses.

1 Introduction

Although model-based diagnosis (MBD) [Reiter, 1987; de
Kleer and Williams, 1987] provides a general diagnosis
framework, most of its applications are within the hardware
domain or use models of the physical world. However, sev-
eral attempts have been made to extend the application of
diagnosis methods to software debugging. A model for di-
agnosing logic programs was introduced in [Console et al,
1993] and further studied in [Bond, 1994; 1996]; qualitative
models of recursive functions wer studied in [Missier et al. ,
1994]. In [Friedrich et a/., 1996], the modelbased diagnosis
of circuit designs written in the VHDL hardware specifica-
tion language used an abstract model that allows diagnosing
very large programs. A graph-based model for diagnosing a
functional language, EXP was presented in [Stumptner and
Wotawa, 1996].

All these approaches have in common that they use only a
model which can be directly derived from the given program
and the used programming language. No additional formal
specification must be available, so that the diagnosis system
can be directly integrated into a traditional software develop-
ment process. In this paper, we describe the underlying con-
cepts of replacement-based software diagnosis by defining a
concise logic-based model for a variant of EXP. The model

"This work wes partially supported by the Austrian Saence Fund

(FWF) project N Z29-INF.

1074 QUALITATIVE REASONING AND DIAGNOSIS

can be adapted to other functional, or sequential assignment
languages, and has the advantage of being executable over
the definition of [Stumptner and Wotawa, 1996]. We keep the
ability to introduce models for expression replacements that
explain a faulty behavior, and discuss the application of mul-
tiple test cases, which can reduce the number of diagnoses by
excluding certain replacements - a phenomenon that is dual
to the concept of physical impossibility. This helps to focus
on faulty program parts without using too sophisticated mod-
els. User interaction (the user as oracle) is replaced by sets of
prespecified test values.

To begin, we briefly recapitulate the basic MBD defini-
tions (see [Reiter, 1987; Struss and Dressier, 1989; Wotawa,
19906]). A diagnosis problem consists of a system description
(SD) describing the behavior of components (COMP) and
their interconnections. The component behavior is associated
with component modes. For every component at least the
correct behavior (-ab mode) must be specified. Let OBS be
a set of observations. A diagnosis for (SD, COMP, OBS)
is a set of mode assignments A, associating one mode with
every component, such thatS DUOBSU{m(C)m(C) € A}
does not lead to a contradiction.

This paper is organized as follows. First, syntax and se-
mantics of the language of expressions (EXP) is given, fol-
lowed by the introduction of the associated system descrip-
tion. Afterwards, replacements and the use of multiple test
cases are discussed. The final section concludes the paper
and gives future research directions.

2 Modeling Programs for Diagnosis

Programs can be viewed as static and dynamic objects. The

program'’s static part is limited by the syntax given by the used
programming language, while the dynamic part is related to

the semantics. Executing a program causes the evaluation

of constants, variables, functions, etc. using environments

(which map variables to their actual values and function iden-
tifiers to their definition or body) which can be changed dur-

ing evaluation. In this paper, we introduce a model for a

simple functional programming language EXP with the fol-

lowing instruction syntax (declaration constructs omitted for

brevity):

expression ;=
if expression then expression else expression end 1if
| (expression)

| expression bin_op expression

| funct_id (expression_list)

| var_id | const
expression_list ::=

¢ | expression expression_list.rest
expression_list_rest ::=

€|, expression expression_list_rest

It is assumed that VS contains all variable symbols, FS
all built-in functions, FV all user-defined functions, and A
all constants. Built-in functions (including predicates) rep-
resent the basic functionality of the language. They include
functions such as + or * depending on the implemented data
types. While constants evaluate to the same value every time,
variables evaluate to values depending on the current state of
the environment that stores the values. Likewise, the bod-
ies of user-defined functions are stored in a function environ-

ment. Formally, we define a variable environment as a func-
VS = VALUE anda function environmentas a

tion / :
function é : F'V — £AP' associating expressions with func-
tion symbols. We denote the set of all variable environments
by VENYV., the set of all function environments by FENYV.

In addition to the function environment we introduce the
function variables which retums all variables used in the
body of a user-defined function.

The semantics of EXP, given in a declarative manner, de-
scribe how EXP expressions are evaluated. We use a call-by
value semantics for this paper. The semantics are given by
an evaluation function T : EXP x VENV x FENV
VALUES which maps expressions (programs) together with
the given environments to a set of result values.

VevVvsS=TI(V,.b)=uV)
CeA=T(C16)=C
[((E),.,8) =T(E,L6)
FeFS=>
I'(F(ei,...,en),t,8) = F(I'(e1,¢,8),...,T'(en,t,8))
Fe FS=T(e;Fezt,8) =T(e1,t,0)FT(ez,t,0)
I'(if e) then e; else e3 end if,:,d)=
_ { I'(ez,¢,8) ifT(e1,¢,0) = true
— | I'(es,t,8) otherwise
FeFV aT(F(er,...,en),t,08) =T(6(F),1,6)
where v; € variables(F) : ' (v,) = I'(ei,t,d) and
v € variables(F) : o/ (v) = (v).

We demonstrate the usage of the semantics on a

small EXP example implementing the user-defined function

twodimln:
if (X > 0) and (Y > ()

d(twodimlin) = {then In(X * Y)
else 0 end if

The variables used are variables(twodimin) = {X,Y}
which is a subset of V'S. FS includes the functions (predi-
cates) '>', 'and', '1n', ' *'. The constant 0 is contained in
A

The following shows the initial steps of the evaluation of
twodimin assuming a given ¢ and d:

I'(twodimln(1, 2),¢,46)
[(X) =T(1,¢,8) =1,/(Y) =T(2,¢,8) = 2]
['(6{twodimln),:’,d)
['(if (X > 0) and (Y > 0) then
In(X * Y) else 0 end if,i,d)

0693

To use MBD for software debugging we must identify di-
agnosis components and build a system description. Because
EXP allows building programs out of expressions, we use ex-
pressions (or, put differently, nodes in the syntax tree) as di-
agnosis components. To differentiate between separate occur-
rences of textually identical expressions we introduce a func-
tion K which assigns an unique number to every expression.
A system description for EXP must have the same properties
as the semantics. Results obtained by the semantics must be
also derivable by the system description.

The diagnosis components for twodimln example are:
Cy = if (X > 0) and (Y > 0) then 1ln(X*Y) else
0 end if,C;=(X > 0) and (Y > 0),Cy = (X > 0),
Cz =X, Cy =0,Cy=(Y > 0),Ce=Y,C7 =0,

Cg = In(X*Y), Cy = X*Y, Cio=X,Ci1 =Y,Ci2=0

If we examine the data flow between the components, we
find that they form a tree-structured system with C, as top
component. Such a system can be diagnosed very effec-
tively [Stumptner and Wotawa, 1997]. In the next step, we
define a system description EXPSD for EXP programs.

The semantics definition in [Stumptner and Wotawa, 19961
turned out to be somewhat unwieldy. The formal definitions
where complex, and required another step to be mapped to a
logical representation for a diagnosis system. Therefore we
use a PROLOG-like description, which also has the advan-
tage of being executable. The evaluation is defined using a
predicate eval (Expr, VarEnv, Val, Step) where
Expr denotes the expression to be evaluated, VarEnv a list
of variable value pairs, Val the value returned by the eval-
uation, and Step the number of iteration steps. The vari-
able environment of our running example is expressed by

[[X,1], [Y,1]]. Note: To handle unknown values, i.e.,
values that cannot be derived from the description and obser-
vations, we introduce the distinguished value c.

The function environment is represented by the predi-
cates body/2 and variables/2. To evaluate a call to
twodimln, the facts body (twodimin, if (X > 0)
and (Y > 0) then In(X*Y) else 0 end if)
and variables (twodimln, [X,Y]) are added to the
system description.

o Constants are evaluated to themselves.

eval (Expr,vVarEnv, Expr, Step) :- not.ab(EXpr)
e Variables are evaluated to the associated value in the cur-
rent variable environment.
eval (Expr,Vargknv,V, Step) :-

not_ab(Expr), value(VarEnv, Expr,V).
where value is defined as follows:
value([[X,V]|Rest}, X, V).
value([], X, €).
value([[Y,V]|Rest], X, V') :-

Y # X, value(Rest, X, V').

Built-in functions

The following rule belongs to the system description for

every built-in function (or predicate) used in the program

(e.g..'+,0r"'-").

eval (F(E;,...,E,),VarEnv,V, Step) :~
not.ab(F(Ey,...,Ea),

eval (E;,VarEnv,V;, Step),

STUMPTNER AND WOTAWA 1075

eval (E,,VarEnv,V,, Step) ,
F(Vi,...,V,,V).
The behavior of the function is given by the F/n + 1 pred-
icate. As an example, for the logical and function the be-
havior could be described by:
and (true, true, true).
and (X, false, false).
and (e, true,e) .
e Conditional expression E
Ez end if
eval (E,VarEnv,V, Step) :-
not.ab(E), eval(E;,VarEnv, true, Step),
eval (E;,VarEnv,V, Step) .
eval (E,VarEnv,V,Step) :-
not_ab(E), eval(E;,VarEnv, false, Step),
eval (E3, Vargknv, V, Step) .
eval (E,VarEnv, ¢, Step) :~
not_ab(E), eval (E;,VarEnv,e¢, Step).
o User-defined functions are evaluated by changing the en-
vironment and executing the body using it.
eval (F(E,,...,En),VarEnv,V, Step) :-
body(F,B), variables(F,Vars),
-maximumSteps (Step),
changeEnv (VarEnv, [E;, ..
Step),
eval (B,VE,V,Step+1).
changeEnv(VarEnv, (], [}, [].,Step).
changeEnv (VarEnv, [E|Rest], [Var|VRest],
[(Var,V] |ERest], Step) :-
eval (E,VarEnv,V, Step) ,
changeEnv (VarEnv, Rest,VRest, ERest, Step) .
maximumSteps (Step) :- Step >= maxStep.
» Undefined Behavior
If a component is assumed to behave incorrectly, the unde-
fined value is returned as result.
eval (E,varEnv,e¢, Step) :- ab{(E)
It can be shown that this system description produces an
evaluation that corresponds exactly to the semantics of EXP.
To complete the system description for model-based di-
agnosis we must introduce the concept of observations.
Therefore we introduce the predicate observe/3 using
the expression, the environment, and the expected value
as arguments. An observation for our example can be
observe(twodimln(1,1)/Env,0).

In this case no environment ist specified because the func-
tion call does not make use of variables. We say that an obser-
vation contradicts the system description if the value derived
from SD is not equal to the observation. This rule is added to
our system description.

and(false, X, false).
and(true,e€,€) .

1f E; then E; else

i

.,En},Vars,VE,

contradiction :-~
eval (E,Env,V, Step), observe(E,Envl,Vl)
equalEnv(Env,Envl), V #e¢, V1 # V.

Observations are facts and cannot contain the undefined
value e. The predicate equalEnv/2 is true if both envi-
ronments contain the same elements.

With the system description EXPSD we can compute
(minimal) diagnoses as described by Reiter [Reiter, 1987].
For example assume that instead of (Y > 0) the program-
mer has written (Y > 1) as subcondition. Using the test
case twodimlIn (2,1) we can compute the following six
single diagnoses:

1076 QUALITATIVE REASONING AND DIAGNOSIS

{Co} = {if (X > 0) and (Y > 1) then 1n(X*Y)
else 0 end if},{Ci1}={(x > 0) and (Y > 1)},
{Cs}={(y > 1)}, {Cs} ={¥}, {C7} = {1}, {C12} = {0}

Among 13 diagnosis components, the diagnosis engine has
found 6 diagnosis candidates. In the rest of the paper, we
discuss how to further reduce the number of suspected com-
ponents. First, by using replacements to attempt to correct a
program, as described in [Stumptner and Wotawa, 1996]. The
second idea is to use multiple test cases and the information
related to them. Finally, we can introduce fault modes and
their corresponding behavior. \We can easily prove whether
a condition within a conditional statement is a single bug or
not by inverting the conditional statement's behavior. Unfor-
tunately, applying this fault mode has a significant drawback.
If we are diagnosing a recursive function, inverting the con-
dition may lead to an infinite loop. In the example we can
use this mode effectively - if the condition is be inverted, cor-
rect behavior will result. Therefore, only the diagnoses {C'; }
{Cs}, {Ce} and {C7} remain. We refer to the variant of EX-
PSD with the wrong condition fault mode as EXPSD+. We
assume this variant is used below whenever the function to be
diagnosed is not recursive.

3 Software Debugging as Search for
Replacements

As argued in [Console et al., 1993], applying model-based di-
agnosis to software debugging reduces the number of diagno-
sis candidates compared to classical program debugging tech-
niques such as [Shapiro, 1983; Fritzson and Nilsson, 19941,
and this is already the case with a straightforward applica-
tion of the standard diagnosis approach to debugging. On
the other hand, we are normally not only interested in finding
an expression explaining the wrong behavior, we also want
to give a correction that will produce the expected behav-
jor instead. In the hardware domain this correction is sim-
ple. Only the defective component of one type must be re-
placed by a working component of the type specified in the
hardware design1. In this case, the search space for replace-
ment is of size 1. In the software domain (or design domain),
a replacement can be every buildable function, and in this
case, the search space is infinite. However, attempting to cor-
rect a program also has the benefit that diagnoses that cannot
be combined with a meaningful correction of the error can
be excluded from consideration. This was the main reason
for the introduction of expression replacements in (Stumpt-
ner and Wotawa, 19961. Every replacement represents a pos-
sible correction for the program, and to handle the infinite
search space, we need to define an effective ordering on re-
placements. Note that even in simple cases, it is not always
clear what criteria should be applied to produce this order.
For example, is replacing the variable X by the constant XC a
smaller change than replacing it by the variable Y?

We define replacements as expressions, i.e., a replacement
is an element of EXP. We introduce an ordering on the re-
placements that are used instead of a given original expres-
sion. This ordering is specified by defining a function replace

"This formulation indudes the possibility that a component of a
wrong type has been used.

that, for a given expression and specified term depth (called
size below since other measures are possible) defines a set of
possible replacements of that depth.

Variables: A variable can be replaced by another variable,
constant, and function.
replace(V,0) = {V}
replace(V,1) = VS\ {V}
replace(V,2) = AU {f|f € FSU FV,arity(f) = 0}
replace(V,n) = {ele € EXP, size(e) = n,n > 2}

Constants: Replacements for constants are similar to vari-
able replacements.
replace(C,0) = {C}
replace(C,1) = A\ {C}
replace(C,2) = VS U {fIf € FSUFV,arity(f) = 0}
replace(C,n) = {e|le € EXP, size(c) =n,n > 2}

Others: Function Calls, Predicates, and Conditionals can
be replaced by any other expression.

replace(F(ey, ... en),J) =
replaceSub{F(er,...,en), j)U
replace Add(F(ei1,...,en), 7)U
replaceSel(F(e1, ..., en),J)

where the subfunctions are given by:

~ Change the function and use a subset of the original
arguments. The arguments are not modified.
replaceSub(F(ey,...,e.),k+(n—-m)) =

{G(fl, o Je)lG € FSU FV arity(G) = m < n,

(fi,- ., fm)is a subsequence of (er, ..., en)}
. [1 WF#G
where k = { 0 otherwise
— Changc the function and add new arguments.
replace Add(F(ey, . .., e5),
k: + (Tﬂ- - ‘?1) + Zi::n...m

{G(el, €y gl .., em)|G € FSUFV,

arity(G) = m > n,Vizn me, € EXP}
1 fF#G
where k = { 0 otherwise
~ Select an argument. The function 1s discarded and the
argument is not changed.
replaceSel(Fex,...,en),n) = {ele € {e1,...,en}}

For simplicity, we do not allow argument permutation in
the definitions here and do not include any in our examples.
Replacements for the expression Y < 1 of our example are:

size(ei)) =

Order Replacements

0 Y < 1

I Y <= 1,Y > 1,Y = 1,...
2 -Y, -1,...

3 min(Y,1,2),...

Note that for diagnosis purposes we can ignore replace-
ments of subexpressions, as the need for replacement of only
a subexpression would be directly expressed by that subex-
pression becoming a diagnosis candidate of its own.

Figure 1 illustrates the application of replacements to the
syntactical representation of a program as a tree. In case (1)
the constant O is replaced by the constant /. (2) gives the case

Figure 1: Three Ways of Applying Replacements

where an argument has been selected from a function, case (3)
shows a constant replaced by a function with two arguments.

The set of possible replacements can be further reduced by
considering type compatibility. E.g., a multiplication func-
tion should be only replaced by another function returning a
number. The same holds for variables and constants.

To use the replacements in our system description we must
add a fault mode replace. We represent it by the predicate
replaces/2 that can be constructed from the computed re-
placements. Let E be an expression, and n be the order of
the replacements. For every replacement used for diagnosis
we have to add the (ground) fact replaces (E, R) to the
system description, wherer € | J,..,, replaces(E, t). The be-
havior for the fault mode is specified in a natural way by:

eval (E,Env,V, Step) :-
replaces(E,R), eval(R,Env,V, Step)

where it is assumed that the expression R and all of its subex-
pressions behave correctly, i.e., -ab. in principle, given these
definitions, the system description is equivalent to EXPSD
combined with the explicit enumeration of all possible re-
placements for a given program. While the latter set is infinite
in general, the subsets corresponding to a maximum expres-
sion depth of replacements (referred to as EXPSD' from here
on) are finite for given i.

The DEBUG algorithm (from [Stumptner and Wolawa,
1996]) computes diagnoses using replacements. Diagnoses
are searched for incrementally, starting with replacements of
order O and stopping after reaching a specified size limit. Af-
ter a replacement is generated, it is tested for outcome. Note
that only replacements of minimal order are taken into ac-
count, e.g., if a replacement of order i explains the fault, no
replacements of order 5 > = must be considered.

Assuming that consistency checks take linear time, the
time complexity of diagnosis is of order o(21¢CMFh
where COMP denotes the set of diagnosis components.
Adding as set of fault modes MODE, e.g., as done
by introducing replacements, increases time complexity to
o(| MODE|I“CMFPYy - The time for computing single diag-
noses is of order o(\MODE\ « \COMP)\), limiting the ap-
plicability of this approach to small programs. However, use
of focusing techniques or incrementing the replacement size
during debugging increases practicability. Focusing can be
achieved through a more abstract model, exploiting structural
properties of the program (e.g., using only those expressions
evaluated for a testcase as diagnosis components), or (static)
program slicing (see [Weiser, 1984]). In this paper we will

STUMPTNER AND WOTAWA 1077

instead focus on the use of multiple testcases as described in
the next section.

4 Using Multiple Test Cases

In this section, we show the use of (multiple) test cases for
debugging, with two ways of filtering diagnoses. First, the
goal is simply to find replacements at all - diagnoses that can-
not be repaired are discarded. Second, multiple testcases can
be combined for finding common diagnoses.

Consider for example the following (buggy) functional
program implementing the equality predicate
d(equal(A,B)) = (A >= B) and (B > A)

The program can be corrected by replacing the > by >=. As-
sume further the existence of the following test cases:

A~ B [Output Expected Output
I 2 | false false

2 1 | talse false

1 1 | false true

Only the third input vector (A=1 ,B = 1) leads to a wrong
output value (false instead of true). Using the MBD approach
leads to the four single diagnoses:

1. The and function is faulty.
2. The condition B > A contains the fault.
374. The variable occurrences A or B are faulty.

By using the following argument, we can show that the
function and cannot be the source of the bug.

First, assume that the statement explains the fault, e.g.,
ab(and). Then there must exist a replacement, e.g., another
function, repairing the program. Since all other expressions
are assumed to behave correctly, we can calculate the inputs
and output of the and function.

A BTl 12 | Expected Output
[2 | false true | false

2 1 | true false | false

] 1 | true false | true

Such a replacement function must deliver true and false
using the same input vector! Therefore no replacement can
be found, contradicting our initial assumption. As final result
we get that ab(and) cannot be a (single) diagnosis.

A limitation to this use of test cases is that the argument
used to eliminate a diagnosis can only be applied if no faults
in structure are assumed. This assumption is avoided by the
second way of using test cases.

A collection of test cases can help to focus on the right fault
in a more traditional way as well. Consider for example the
recursive function myMult implementing the multiplication
on natural numbers (including zero).
if (A <=1) then O
else B+myMult(A-1,B) end if

This implementation contains a (single) bug, namely (A
<= 1), which should be (A <= 0). Applying five test
cases to the implementation results in the following:

d(myMult (A,B)) =

Testcase A B | Expected Output myMult(A B)
Ic | 0 2 0 0
ey 1 2 {2 0
th3 2 2 4 2
tcy 2 010 0
tCr, 2 1 2 l

1078 QUALITATIVE REASONING AND DIAGNOSIS

Using program debugging based on program traces (one of
the approaches described in [Stumptner and Wotawa, 1996])
leads only to the unsatisfactory result that all subexpressions
can explain the faulty behavior. This holds especially for the
third test (2c3). For tca, only the subexpressions leading
to the expression O are diagnoses. By computing the inter-
section of all minimal (non-empty) diagnoses, we obtain the
diagnoses explaining all test cases. The prerequisite for using
the intersection is of course the assumption that all test cases
only exhibit one fault in the program. In the general case, the
following definition can be used instead together with a gen-
eral diagnosis algorithm, e.g., Reiter's Hitting Set algorithm.

Formally, a diagnosis A for a diagnosis system
(SD,COMP) using multiple test cases OS is a subset of
CO MP such that

SDUOBS U {ab(C)|C € A}U
Vosseos (U{-ab(C)|C € COMP\ A} L

Similarly, a conflict CO is a subset of COMP such that
Jopsecos (SDUVOBS U {-ab(C)|C € CO} E 1)

A conflict contradicts at least one observation. The above
definitions can now be used for computing diagnoses as de-
scribed in [Reiter, 1987]. The filter criterion previously de-
scribed in this section, which avoids replacements that are
impossible due to contradictory input-output vectors, must
then be incorporated into the system description SD, e.g., by
introducing meta rules of the form

contradiction :- -repairable (Diagnosis) .

In [Stumptner and Wotawa, 1996], we have presented as
one of the main differences between software and hardware
diagnosis the property that in the software domain the system
description is of necessity derived from the program code it
self, and therefore describes the incorrect behavior of the sys-
tem. This is the reason why fault modes are represented by
replacements, i.e., actually removing components instead of
altering their behavior.

The same duality can be found here, with the non-
replacability described above being the dual concept to the
notion of physical impossibility in hardware diagnosis. The
major difference is the infinite nature of the replacement
search space as opposed to the fact that physical impossibil-
ity is a fixed restriction that always holds. The reduction in
the search space does not result from properties of the original
expression (diagnosis component), but of the specific replace-
ment expression chosen.

5 Conclusion

In this paper we have introduced a logic model for the de-
bugging of the functional language EXP. The model includes
the handling of recursive functions. Infinite loops are simply
avoided by specifying a maximum recursion level (which is

just what programmers do to stop computation of a program

that exceeds its expected runtime). We use this representa-
tion for the diagnosing EXP programs via replacements for
expressions [Stumptner and Wotawa, 1996], which yields the
following principal advantages: (1) the number of diagno-
sis candidates can be reduced (EXPSD plus appropriate filter

criteria), and (2) the program can be automatically repaired

up to a given level of "damage" (EXPSD'). Since diagno-

sis time increases with the number of component modes, re-

placements should be only used when necessary, i.e., if too

many diagnoses are derived and measurement selection is dif-
ficult or not possible. Therefore we prefer simpler explana-

tions when conducting replacements and incorporate multiple
test cases. We have given an example that shows how differ-

ent tests can help to improve diagnosis results by eliminating

diagnosis candidates.

In this context the questions becomes relevant how test-
cases are actually generated. Test generation is still an open
problem in software engineering research. One current re-
search approach in this field uses path analyses techniques
combined with constraint satisfaction techniques to reduce
the search space [Gotlieb et al, 1998]. A different technique
is the so-called mutation testing which attempts to produce
testcases for correct behavior of a certain program part by
making local alterations, or mutations to the program. Note
that there is a certain similarity to the replacement approach.
However, mutation testing works by applying alterations to
a correct program in the hope of creating a representative
set of incorrect ones fOffutt and Lee, 1994]. Those testcase
generation techniques are intended to find a faulty behavior
rather than locating a specific bug. In our case an incremen-
tal test generation algorithm using previous results, i.e., test-
cases and diagnoses, to find a testcase helping to distinguish
between diagnoses should have an improved performance. A
classification of testcases from a model-based diagnosis point
of view with a rough outline of testcase generation has been
given in [Mcllraith, 1993].

Future research along the track described in this paper in-
cludes an empirical evaluation of the proposed methods to-
gether with the development of a heuristics for controlling
the debugging process. Overall control consists of selecting
an appropriate sequence of actions leading to a bug free pro-
gram within a minimum amount of time. Actions are observe,

use'replacement, and use-other-testcase (with test cases au-

tomatically chosen from a library). It is interesting to note
that the relative costs for these actions can be (depending
on program size and complexity) significantly different from
the usual relationships in the hardware domain. [Friedrich
and Nejdl, 1992; Williams and Nayak, 1997] provide a basic
framework for integrating planning in model-based diagnosis
and can be adapted to be used in the software domain.

References

[Bond, 1994] Gregory W. Bond. Logic Programs for
Consistency-Based Diagnosis. PhD thesis, Carleton Uni-
versity, Faculty of Engineering, Ottawa, Canada, 1994.

[Bond, 1996] Gregory W. Bond. Top-down consistency
based diagnosis. In Proc. DX'96 Workshop, Val Morin,
Canada, 1996.

[Consoles a/., 1993] Luca Console, Gerhard Friedrich, and
Daniele Theseider Dupre Model-based diagnosis meets
error diagnosis in logic programs. In Proceedings of the
International Joint Conference on Attificial Intelligence,

pages 1494-1499, Chambery, August 1993. Morgan Kauf-
mann.

[de Kleer and Williams, 1987] Johan de Kleer and Brian C.
Williams. Diagnosing multiple faults. Artificial Intelli-
gence, 32(1):91-\30, 1987.

[Friedrich and Nejdl, 1992] Gerhard Friedrich and Wolfgang
Nejdl. Choosing observations and actions in model-based

diagnosis-repair systems. In Proc. KR Conf, pages 489-
498, Cambridge, MA, October 1992. Morgan Kaufmann.

[Friedrich et al., 1996] Gerhard Friedrich, Markus Stumpt-
ner, and Franz Wotawa. Model-based diagnosis of hard-

ware designs. In Proceedings ofthe European Conference

on Artificial Intelligence (ECAI), Budapest, August 1996.

[Fritzson and Nilsson, 1994] Peter Fritzson and Henrik Nils-
son. Algorithmic debugging for lazy functional languages.
Journal of Functional Programming, 4(3), 1994.

[Gotlieb et al, 1998] Arnaud Gotlieb, Bernard Botella, and
Michel Rueher. Automatic test data generation using con-

straint solving techniques. In Proc. ACM 1SSTA, pages
53-62, March 1998.

[Mcllraith, 1993] Sheila Mcliraith. Generating tests using
abduction. In Proc. DX'93 Workshop, September 1993.

[Missier et al, 1994] Antoine Missier, Spyros Xanthakis,
and Louise Trave-Massuy6s. Qualitative Algorithmics us-
ing Order of Growth Reasoning. In Proc. ECAI 94, pages
750-754,1994.

[Offutt and Lee, 1994] Jefferson A. Offutt and Stephen D.
Lee. An empirical evaluation of weak mutation. I[EEE

Transactions on Software Engineering, 20(5):337-344,
1994.

[Reiter, 1987] Raymond Reiter. A theory of diagnosis from
first principles. Artificial Intelligence, 32(1).57—95,1987.

[Shapiro, 1983] Ehud Shapiro. Algorithmic Program Debug-
ging. MIT Press, Cambridge, Massachusetts, 1983.

[Struss and Dressier, 1989] Peter Struss and Oskar Dressier.
Physical negation — Integrating fault models into the gen-
eral diagnostic engine. In Proc. I IJCAI, pages 1318-
1323, Detroit, August 1989.

[Stumptner and Wotawa, 1996] Markus Stumptner and
Franz Wotawa. A model-based approach to software de-
bugging. In Proc. DX'96 Workshop, Val Morin, Canada,
1996.

(Stumptner and Wotawa, 1997] Markus Stumptner and
Franz Wotawa. Diagnosing tree-structured systems. In
Proc. 16" IJCAI, Nagoya, Japan, 1997.

[Weiser, 1984] Mark Weiser. Program slicing. IEEE Trans-
actions on Software Engineering, 10(4):352-357, July
1984.

[Williams and Nayak, 1997] Brian C. Williams and P. Pan-
durang Nayak. A reactive planner for a model-based exec-
utive. In Proc. 16" IJCAI, pages 1178-1185, 1997.

[Wotawa, 1996] Franz Wotawa. Applying Model-Based Di-
agnosis to Software Debugging of Concurrent and Se-

quential Imperative Programming Languages. PhD thesis,

Technische Universitat Wien, 1996.

STUMPTNER AND WOTAWA 1079

