
Improving Graphplan's search with EBL & DDB Techniques 

Subbarao Kambhampati* 
Department of Computer Science and Engineering 
Arizona State University, Tempe AZ 85287-5406 

email: rao@asu. edu URL: rakaposhi.eas.asu.edu/yochan.html 

Abstract 
I highlight some inefficiencies of Graphplan's 
backward search algorithm, and describe how these 
can be eliminated by adding explanation-based 
learning and dependency-directed backtracking ca­
pabilities to Graphplan. I will then demonstrate 
the effectiveness of these augmentations by de­
scribing results of empirical studies that show dra­
matic improvements in run-time (w lOOx speedups) 
as well as solvability-horizons on benchmark prob­
lems across seven different domains. 

1 Introduction 
Graphplan [Blum & Furst, 97] is currently one of the more 
efficient algorithms for solving classical planning problems. 
Four of the five competing systems in the recent AIPS-98 
planning competition were based on the Graphplan algorithm 
[McDermott, 98], Extending the efficiency of the Graphplan 
algorithm thus seems to be a worth-while activity. In this pa­
per, I describe my experience with adding explanation-based 
learning (EBL) and dependency-directed backtracking capa­
bilities (DDB) to Graphplan's backward search. Both EBL 
and DDB are based on explaining failures at the leaf-nodes 
of a search tree, and propagating those explanations upwards 
through the search tree [Kambhampati, 98]. DDB involves 
using the propagation of failure explanations to support intel­
ligent backtracking, while EBL involves storing interior-node 
failure explanations, for pruning future search nodes. Graph-
plan does use a rudimentary form of failure-driven learning 
that it calls "memoization." As we shall see in this paper, 
Graphplan's brand of learning is quite weak as there is no 
explicit analysis of the reasons for failure. Instead the expla­
nation of failure of a search node is taken to be all the con­
straints in that search node. As explained in [Kambhampati, 
98], this not only eliminates the opportunities for dependency 
directed backtracking, it also adversely affects the utility of 
the stored memos. 

*This research is supported in part by NSF young investigator 
award (NYI) IRI-9457634, ARPA/Rome Laboratory planning ini­
tiative grant F306G2-95-C-0247, Army AASERT grant DAAH04-
96-1-0247, AFOSR grant F20602-98-1-0182 and NSF grant IRI-
9801676.1 thank Maria Fox, Derek Long, Terry Zimmerman, Amol 
Mali and Biplav Srivastava for comments on this work. 

Adding full-fledged EBL and DDB capabilities in ef­
fect gives Graphplan both the ability to do intelligent back-
tracking, and the ability to learn generalized memos that 
are more likely to be applicable in other situations. Tech­
nically, this involves generalizing conflict-directed back-
jumping [Prosser, 93], a well-known technique in CSP, to 
work in the context of Graphplan's backward search. Empiri­
cally, the EBL/DDB capabilities improve Graphplan's search 
efficiency quite dramatically-allowing it to easily solve sev­
eral problems that have hither-to been hard or unsolvable. In 
particular, I will report on my experiments with the bench­
mark problems used in [Kautz & Selman, 96], as well as four 
other standard test domains. The experiments show up-to 100 
fold speedups on individual problems. 

This paper is organized as follows. In the next section, I 
provide some background on Graphplan's backward search. 
In Section 3,1 discuss some inefficiencies of the backtracking 
and learning methods used in normal Graphplan that motivate 
the need for EBL/DDB capabilities. Section 4 describes how 
EBL and DDB are added to Graphplan. Section 5 presents 
empirical studies demonstrating the usefulness of these aug­
mentations. Section 6 discusses related work and Section 7 
presents conclusions and some directions for further work. 

2 Review of Graphplan algorithm 
Graphplan algorithm [Blum & Furst, 97] can be seen as 
a "disjunctive" version of the forward state space planners 
[Kambhampati et. al., 97a]. It consists of two interleaved 
phases - a forward phase, where a data structure called 
"planning-graph" is incrementally extended, and a backward 
phase where the planning-graph is searched to extract a valid 
plan. The planning-graph (see Figure 1) consists of two alter­
nating structures, called "proposition lists" and "action lists." 
Figure 1 shows a partial planning-graph structure. We start 
with the initial state as the zeroth level proposition list. Given 
a k level planning graph, the extension of structure to level 
k + 1 involves introducing all actions whose preconditions 
are present in the kth level proposition list. In addition to 
the actions given in the domain model, we consider a set of 
dummy "persist" actions, one for each condition in the kth 

level proposition list. A "persist-C" action has C as its pre­
condition and C as its effect. Once the actions are introduced, 
the proposition list at level k + 1 is constructed as just the 
union of the effects of all the introduced actions. Planning-
graph maintains the dependency links between the actions at 

982 PLANNING AND SCHEDULING 

http://rakaposhi.eas.asu.edu/yochan.html


Figure 1: The running example used to illustrate EBL/DDB 
in Graphplan 

level k +1 and their preconditions in level k proposition list 
and their effects in level k +1 proposition list. The planning-
graph construction also involves computation and propaga­
tion of "mutex" constraints. The propagation starts at level 
1, with the actions that are statically interfering with each 
other (i.e., their preconditions and effects are inconsistent) la­
beled mutex. Mutexes are then propagated from this level 
forward by using two simple propagation rules. In Figure 1, 
the curved lines with x-marks denote the mutex relations. 

The search phase on a A: level planning-graph involves 
checking to see if there is a sub-graph of the planning-graph 
that corresponds to a valid solution to the problem. This in­
volves starting with the propositions corresponding to goals 
at level k (if all the goals are not present, or if they are present 
but a pair of them are marked mutually exclusive, the search 
is abandoned right away, and planning-graph is grown an­
other level). For each of the goal propositions, we then se­
lect an action from the level k action list that supports it, such 
that no two actions selected for supporting two different goals 
are mutually exclusive (if they are, we backtrack and try to 
change the selection of actions). At this point, we recursively 
call the same search process on the k—1 level planning-graph, 
with the preconditions of the actions selected at level k as the 
goals for the k — 1 level search. The search succeeds when 
we reach level 0 (corresponding to the initial state). 

Previous work [Kambhampati et. al., 97a] had expli­
cated the connections between this backward search phase of 
Graphplan algorithm and the constraint satisfaction problems 
(specifically, the dynamic constraint satisfaction problems, as 
introduced in [Mittal & Falkenhainer, 90]). 

3 Some inefficiencies in Graphplan's 
backward search 

To motivate the need for EBL and DDB, we shall first re­
view the details of Graphplan's backward search, and pin­
point some of its inefficiencies. We shall base our discussion 
on the example planning graph from Figure 1. Assuming that 
G1 - • • G4 are the top level goals of the problem we are inter­
ested in solving, we start at level k, and select actions to sup­
port the goals G1 • • • G4. To keep matters simple, we shall 
assume that the search assigns the conditions (variables) at 
each level from top to bottom (i.e., G1 first, then G2 and so 

on). Further, when there is a choice in the actions (values) 
that can support a condition, we will consider the top actions 
first Since there is only one choice for each of the conditions 
at level k, and none of the actions are mutually exclusive with 
each other, we select the actions A1, A2, A3 and A4 for sup­
porting the conditions at level k. We now have to make sure 
that the preconditions of A1, A2, A3, A4 are satisfied at level 
k - 1. We thus subgoal on the conditions P1 • • P6 at level 
k - 1, and recursively start the action selection for them. We 
select the action A5 for P1. For P2, we have two supporting 
actions, and using our convention, we select A6 first/For P3, 
A7 is the only choice. When we get down to selecting a sup­
port for P4, we again have a choice. Suppose we select A8 
first. We find that this choice is infeasible as As is mutually 
exclusive with A6 that is already chosen. So, we backtrack 
and choose A9, and find that it too is mutually exclusive with 
a previously selected action, A5. We now are stymied as there 
are no other choices for P4. So, we have to backtrack and 
undo choices for the previous conditions. Graphplan uses a 
chronological backtracking approach, whereby, it first tries to 
see if P3 can be re-assigned, and then P2 and so on. Notice 
the first indication of inefficiency here - the failure to as­
sign P4 had nothing to do with the assignment for P3, and yet, 
chronological backtracking will try to re-assign P3 in the vain 
hope of averting the failure. This can lead to a large amount 
of wasted effort had it been the case that P3 did indeed have 
other choices. 

As it turns out, we find that P3 has no other choices and 
backtrack over it. P2 does have another choice - A11. We try 
to continue the search forward with this value for P2, but hit 
an impasse at P3-since the only value of P3, A7 is mutex with 
A11 • At this point, we backtrack over P3, and continue back­
tracking over P2 and P1, as they too have no other remaining 
choices. When we backtrack over P1, we need to go back 
to level k and try to re-assign the goals at that level. Before 
this is done, the Graphplan search algorithm makes a "memo" 
signifying the fact that it failed to satisfy the goals P1 • • P6 
at this level, with the hope that if the search ever subgoals 
on these same set of goals in future, we can scuttle it right 
away with the help of the remembered memo. Here is the 
second indication of inefficiency- we are remembering all 
the subgoals P1 • • • P6 even though we can see that the prob-
lem lies in trying to assign P1, P2, P3 and P4 simultaneously, 
and has nothing to do with the other subgoals. If we remem­
ber {P1, P2, P3, P4} as the memo as against {P1 • • • P6}, the 
remembered memo would be more general, and would have 
a much better chance of being useful in the future. 

After the memo is stored, the backtracking continues into 
level k - once again in a chronological fashion, trying to 
reassign G4,G3,(G2 and G1 in that order. Here we see 
the third indication of inefficiency caused by chronological 
backtracking - G3 really has no role in the failure we en­
countered in assigning P3 and P4 - since it only spawns the 
condition P5 at level k - 1. Yet, the backtracking scheme of 
Graphplan considers reassigning G3. A somewhat more sub­
tle point is that reassigning G4 is not going to avert the failure 
either. Although G4 requires P1 one of the conditions taking 
part in the failure, P1 is also required by G1 and unless G1 

' gets reassigned, considering further assignments to G4 is not 
going to avert the failure. 

For this example, we continue backtracking over G2 and 

KAMBHAMPATI 983 



G1 too, since they too have no alternative supports, and fi­
nally memoize {G1, G2, G3,G4} at this level. At this point 
the backward search fails, and Graphplan extends the plan­
ning graph by another level before re-initiating the backward 
search on the extended graph. 

4 Improving backward search with EBL and 
DDB 

I will now describe how Graphplan's backward search can 
be augmented with full fledged EBL and DDB capabilities to 
eliminate the inefficiencies pointed out in the previous sec­
tion. Informally, EBL/DDB strategies involve explanation 
of failures at leaf nodes, and regression and propagation of 
leaf node failure explanations to compute interior node fail­
ure explanations, along the lines described in [Kambhampati, 
98]. The specific extensions I propose to the backward search 
can essentially be seen as adapting conflict-directed back-
jumping strategy [Prosser, 93], and generalizing it to work 
with Graphplan's backward search (which can be seen as a 
form of dynamic constraint satisfaction problem). The de­
velopment here parallels the framework described in [Kamb­
hampati, 98]. 

The algorithm is shown in pseudo-code form in Figure 2. 
It contains two mutually recursive procedures f i n d - p l a n 
and ass ign -goa ls . The former is called once for each 
level of the planning-graph. It then calls ass ign -goa ls 
to assign values to all the required conditions at that level, 
ass ign -goa l s picks a condition, selects a value for it, and 
recursively calls itself with the remaining conditions. When 
it is invoked with an empty set of conditions to be assigned, it 
calls f i n d - p l a n to initiate the search at the next (previous) 
level. 

In order to illustrate how EBL/DDB capabilities are added, 
let's retrace the previous example, and pick up at the point 
where we are about to assign P4 at level k — 1, having as­
signed P1, P2 and P3. When we try to assign the value As to 
P4, we violate the mutex constraint between A6 and A8. An 
explanation of failure for a search node is a set of constraints 
from which False can be derived. The complete explanation 
for this failure can thus be stated as: 

Of this, the part can be stripped 
from the explanation since the mutual exclusion relation will 
hold as long as we are solving this particular problem with 
these particular actions. Further, we can take a cue from the 
conflict directed back-jumping algorithm [Prosser, 93], and 
represent the remaining explanation compactly in terms of 
"conflict sets." Specifically, whenever the search reaches a 
condition c (and is about to find an assignment for it), its con­
flict set is initialized as {c}. Whenever one of the possible 
assignments to c is inconsistent (mutually exclusive) with the 
current assignment of a previous variable c', we add c' to the 
conflict set of c. In the current example, we start with {P4} 
as the conflict set of P4, and expand it by adding P2 after we 
find that As cannot be assigned to P4 because of the choice of 
A6 to support P2. Informally, the conflict set representation 
can be seen as an incrementally maintained (partial) expla­
nation of failure, indicating that there is a conflict between 
the current value of P2 and one of the possible values of P4 
[Kambhampati, 98]. 

Figure 2: A pseudo-code description of Graphplan backward 
search enhanced with EBL/DDB capabilities. 

We now consider the second possible value of P4, viz., 
A9, and find that it is mutually exclusive with A5 which is 
currently supporting P1. Following our practice, we add P1 
to the conflict set of P4. At this point, there are no further 
choices for P4, and so we backtrack from P4, passing the 
conflict set of as the reason for its fail­
ure. In essence, the conflict set is a shorthand notation for the 
following complete failure explanation [Kambhampati, 98] r1 

It is worth noting at this point that when P4 is revisited in 
the future (with different assignments to the preceding vari­
ables), its conflict set will be re-initialized to {P4} before 

1We strip the first (disjunctive) clause since it is present in the 
graph structure, and the next two implicative clauses since they are 
part of the mutual exclusion relations that will not change for this 
problem. The conflict set representation just keeps the condition 
(variable) names of the last two clauses - denoting, in essence, that it 
is the current assignments of the variables P1 and P2 that are causing 
the failure to assign P4. 

984 PLANNING AND SCHEDULING 



considering any assignments to it 

Dependency directed backtracking: The first advantage of 
maintaining the conflict set is that it allows a transparent way 
of dependency directed backtracking [Kambhampati, 98]. In 
the current example, having failed to assign , we have to 
start backtracking. We do not need to do this in a chronologi­
cal fashion however. Instead, we jump back to the most recent 
variable (condition) taking part in the conflict set of _ - in 
this case . By doing so, we are avoiding considering other 
alternatives at and thus avoiding one of the inefficiencies 
of the standard backward search. It is easy to see that such 
back-jumping is sound since is not causing the failure at 

_ and thus re-assigning it won't avert the failure. 
Continuing along, whenever the search backtracks to a 

condition c, the backtrack conflict is absorbed into the cur­
rent conflict set of c. In our example, we absorb 
into the conflict set of _, which is currently {P 2 } (making 

the new conflict set of. 1. We now assign A11, 
the only remaining value, to - , Next we try to assign P3 and 
find that its only value A7 is mutex with A11. Thus, we set 
conflict set of to be and backtrack with this con­
flict set. When the backtracking reaches P2, this conflict set 
is absorbed into the current conflict set of P2 (as described 
earlier), giving rise to as the current com­
bined failure reason for P2. This step illustrates how the con­
flict set of a condition is incrementally expanded to collect 
the reasons for failure of the various possible values of the 
condition. 

At this point, P2 has no further choices, so we backtrack 
over P2 with its current conflict set, . At P1, 
we first absorb the conflict set into P1's cur­
rent conflict set, and then re-initiate backtracking since P1 has 
no further choices. 

Now, we have reached the end of the current level (k - 1). 
Any backtracking over P1 must involve undoing assignments 
of the conditions at the kth level. Before we do that however, 
we carry out two steps: memoization and regression. 

Memoization: Before we backtrack over the first assigned 
variable at a given level, we store the conflict set of that vari­
able as a memo at that level. In the current example, we store 
the conflict set of P1 as a memo at this level. 
Notice that the memo we store is shorter (and thus more gen­
eral) than the one stored by the normal Graphplan, as we do 
not include and. , which did not have anything to do with 
the failure.2 

Regression: Before we backtrack out of level k - 1 to level 
k, we need to convert the conflict set of (the first assigned 
variable in) level k-1 so that it refers to the conditions in level 
k. This conversion process involves regressing the conflict set 
over the actions selected at the kth level [Kambhampati, 98]. 
In essence, the regression step computes the (smallest) set 
of conditions (variables) at the kth level whose supporting 
actions spawned (activated, in DCSP terms) the conditions 
(variables) in the conflict set at level k - 1. In the current 
case, our conflict set is . We can see that P2, 

2 While in the current example, the memo includes all the condi­
tions up to P4 (which is the farthest we have gone in this level), even ' 
this is not always necessary. We can verify that would not have 
been in the memo set if were not one of the supporters of. . 

P3 are required because of the condition at level k, and 
the condition P4 is required because of the condition 

In the case of condition P1, both and are responsible 
for it, as both their supporting actions need P1. In such cases 
we have two heuristics for computing the regression: (1) Pre­
fer choices that help the conflict set to regress to a smaller 
set of conditions (2) If we still have a choice between multi­
ple conditions at level k, pick the one that has been assigned1 

earlier. The motivation for the first rule is to keep the fail­
ure explanations as compact (and thus as general) as possible, 
and the motivation for the second rule is to support deeper de­
pendency directed backtracking. It is important to note that 
these heuristics are aimed at improving the performance of 
the EBL/DDB and do not affect the soundness and complete­
ness of the approach. 

In the current example, the first of these heuristics applies, 
since _ is already required by , which is also requiring P2 
and . . Even if this was not the case (i.e., G1 only required 
P1), we still would have selected over as the regression 
of , since was assigned earlier in the search. 

The result of regressing over the actions 
at kth level is thus . We start backtracking at level k 
with this as the conflict set. We jump back to right away, 
since it is the most recent variable named in the conflict set. 
This avoids the inefficiency of re-considering the choices at 

and , as done by the normal backward search. At G2, 
the backtrack conflict set is absorbed, and the backtracking 
continues since there are no other choices. Same procedure 
is repeated at . At this point, we are once again at the end 
of a level-and we memoize as the memo at level k. 
Since there are no other levels to backtrack to, Graphplan is 
called on to extend the planning-graph by one more level. 

Notice that the memos based on EBL analysis capture fail­
ures that may require a significant amount of search to redis­
cover. In our example, we are able to discover that 
is a failing goal set despite the fact that there are no mutex 
relations between the choices of the goals and 
Using the Memos (EBL): Before we end this section, there 
are a couple of observations regarding the use of the stored 
memos. In the standard Graphplan, memos at each level 
are stored in a level-specific hash table. Whenever backward 
search reaches a level k with a set of conditions to be satisfied, 
it consults the hash table to see if this exact set of conditions is 
stored as a memo. Search is terminated only if an exact hit oc­
curs. Since EBL analysis allows us to store compact memos, 
it is not likely that a complete goal set at some level k is going 
to exactly match a stored memo. What is more likely is that 
a stored memo is a subset of the goal set at level k (which is 
sufficient to declare that goal set a failure). In other words, the 
memo checking routine in Graphplan needs to be modified so 
that it checks to see if some subset of the current goal set is 
stored as a memo. The naive way of doing it - which involves 
enumerating all the subsets of the current goal set and check­
ing if any of them are in the hash table- turns out to be very 
costly. One needs more efficient data structures, such as the 
set-enumeration trees [Rymon, 92]. Indeed, Koehler and her 
co-workers [Koehler et. al., 97] have developed a (seeming 
variation of set-enumeration tree) data structure called UB-
Trees for storing the memos. The UB-Tree structures can 
efficiently check if any subset of the current goal set has been 
stored as a memo. 

KAMBHAMPATI 985 



Table 1: Empirical performance of EBL/DDB. Unless otherwise noted, times are in cpu minutes on a spare ultra 1 with 128 
meg RAM, running allegro common lisp compiled for speed. "Tt" is total time, "Mt" is the time used in checking memos and 
"Btks" is the number of backtracks done during search. The numbers in parentheses next to the problem names list the number 
of time steps and number of actions respectively in the solution. AvLn and AvFM denote the average memo length and average 
number of failures detected per stored memo respectively. 

The second observation regarding memos is that they can 
often serve as a failure explanation in themselves. Suppose 
we are at some level k, and find that the goal set at this level 
subsumes some stored memo M. We can then use M as the 
failure explanation for this level, and regress it back to the 
previous level. Such a process can provide us with valuable 
opportunities for further back jumping at levels above k. It 
also allows us to learn new compact memos at those levels. 
Note that none of this would have been possible with normal 
memos stored by Graphplan, as the only way a memo can 
declare a goal set at level k as failing is if the memo is exactly 
equal to the goal set. In such a case regression will just get 
us all the goals at level k 4- 1, and does not buy us any back-
jumping or learning power [Kambhampati, 98]. 

5 Empirical Evaluation 
We have now seen the way EBL and DDB capabilities are 
added to the backward search by maintaining and updating 
conflict-sets. We also noted that EBL and DDB capabilities 
avoid a variety of inefficiencies in the standard Graphplan 
backward search. That these augmentations are soundness 
and completeness preserving follows from the corresponding 
properties of conflict-directed back-jumping [Kambhampati, 
98]. The remaining (million-dollar) question is whether these 
capabilities make a difference in practice. I now present a set 
of empirical results to answer this question. 

I implemented the EBL/DDB approach described in the 
previous section cm top of a Graphplan implementation in 
lisp.3 The changes needed to the code to add EBL/DDB capa­
bility were minor - only two functions As sign-goals and 
f ind-plannneeded non-trivial changes. I also added the 
UB-Tree subset memo checking code described in [Koehler 
et. al., 97]. I then ran several comparative experiments on 
the "benchmark" problems from [Kautz & Selman, 96], as 

3The original lisp implementation of Graphplan was done by 
Marie Peot The implementation was subsequently improved by 
David Smith. 

well as from four other domains. The specific domains in­
cluded blocks world, rocket world, logistics domain, grip-
per domain, ferry domain, traveling salesperson domain, and 
towers of hanoi. The specifications of the problems as well as 
domains are publicly available. Table 1 shows the statistics 
on the times taken and number of backtracks made by normal 
Graphplan, and Graphplan with EBL/DDB capabilities. 
Runtime Reductions & Solvability improvements: The 
first thing we note is that EBL/DDB techniques can offer 
quite dramatic speedups - upto 100x in the seven domains 
I tested. We also note that the number of backtracks re­
duces significantly and consistently with EBL/DDB. More­
over, EBL/DDB techniques push the solvability horizon as 
many problems were unsolvable without EBL even after 3-4 
hours of cpu time!4 

Reduction in Memo Length: The results also show that 
as expected the length of memos stored by Graphplan de­
creased substantially when EBL/DDB strategies are em­
ployed. For example, the average memo length (the column 
named "AvLn" in Table 1) goes down from 32 to 8 in logis­
tics, and 24 to 8 in the ferry domain. Furthermore, the relative 
reductions in memo length in different domains are well cor­
related with the speedups seen in those domains. Specifically, 
we note that blocks world domain, which shows a some­
what lower (~2x) speedup also has lower memo-length re­
duction (from 11.8 to 10). Similarly, the fact that the average 
length of memos for rocket-ext-a problem is 8.5 with EBL, 
and 24 without EBL, shows in essence that normal Graph-
plan is re-discovering an 8-sized failure embedded in many 
many possible ways in a 24 sized goal set - storing a new 
memo each time (incurring both increased backtracking and 
matching costs)! It is thus no wonder that normal Graphplan 
performs badly compared to Graphplan with EBL/DDB. 
Utility of stored memos: Since EBL/DDB store more gen-

4For our lisp system configuration, this amounted to about 12-20 
hours of real time including garbage collection time. 

986 PLANNING AND SCHEDULING 



eral (smaller) memos than normal Graphplan, they should, in 
theory, generate fewer memos and use them more often. The 
columns labeled "AvFM" give the ratio of the number of fail­
ures discovered through the use of memos to the number of 
memos generated in the first place. This can be seen as a 
rough measure of the average "utility" of the stored memos. 
We note that the utility is consistently higher with EBL/DDB 
in all the solved problems. As an example, in rocket-ext-b, we 
see that on the average an EBL/DDB generated memo was 
used to discover failures 101 times, while the number was 
only 3.2 for the memos generated by the normal Graphplan. 

The C vs. Lisp question: Given that most existing imple­
mentations of Graphplan are done in C with many optimiza­
tions, one nagging doubt is whether the dramatic speedups 
due to EBL/DDB are somehow dependent on the moderately 
optimized l isp implementation I have used in my experi­
ments. Thankfully, the EBL/DDB techniques described in 
this paper have also been (re)implemented by Maria Fox and 
Derek Long on their STAN system. STAN is a highly op­
timized implementation of Graphplan that fared well in the 
recent AIFS planning competition. They have found that 
EBL/DDB resulted in the same dramatic speedups on their 
system too [Fox, 98]. 

6 Related Work 

In their original implementation of Graphplan, Blum and 
Furst experimented with a variation of the memoization strat­
egy called "subset memoization". In this strategy, they keep 
the memo generation techniques the same, but change the 
way memos are used, declaring a failure when a stored memo 
is found to be a subset of the current goal set. Since complete 
subset checking is costly, they experimented with a "partial" 
subset memoization where only subsets of length n and n - 1 
are considered for an n sized goal set. 

As we mentioned earlier, Koehler and her co-workers 
[Koehler et. al., 97] have re-visited the subset memoization 
strategy, and developed a more effective solution to complete 
subset checking that involves storing the memos in a data 
structure called UB-Tree, instead of in hash tables. The re­
sults from their own experiments with subset memoization, as 
well as my replication of those experiments [Kambhampati, 
98b], are mixed at best, and indicate that the improvements 
are nowhere near those achievable through DDB and EBL. 
The reason for this is quite easy to understand - while they 
improved the memo checking time with the UB-Tree data 
structure, they are still generating and storing the same old 
long memos. In contrast, the EBL/DDB extension described 
here supports dependency directed backtracking, and by re­
ducing the average length of stored memos, increases their 
utility significantly, thus offering dramatic speedups. 

[Kambhampati, 98] describes the general principles un­
derlying the EBL/DDB techniques and sketches how they 
can be extended to dynamic constraint satisfaction problems. 
[Kambhampati, 97a] discusses the relations between Graph-
plan and dynamic CSP problems. The development in this 
paper can be seen as an application of the ideas from these 
two papers. 

7 Conclusion and Future work 
In this paper, I motivated the need for adding EBL/DDB ca­
pabilities to Graphplan's backward search, and described the 
changes needed to support these capabilities in Graphplan. 
I also presented and analyzed empirical results to demon­
strate that EBL/DDB capabilities significantly enhance the 
efficiency of Graphplan on benchmark problems in seven dif­
ferent domains. Based on these results, and the fact that I 
have not encountered any problems where EBL/DDB turned 
out to be a significant net drain on efficiency, I conclude that 
EBL/DDB extensions are very useful for Graphplan. 

There are several ways in which this work can be (and is 
being) extended. Recently, I have added forward checking 
and dynamic variable ordering capabilities on top of EBL & 
DDB in Graphplan, and initial results show further improve­
ments (up to a factor of 4) in run time [Kambhampati, 98b]. 
The success of EBL/DDB approaches in Graphplan is in part 
due to the high degree of redundancy in the planning graph 
structure. In [Zimmerman & Kambhampati, 99], we inves­
tigate techniques that are even more aggressive in exploiting 
this redundancy to improve planning performance. Finally, 
we are also studying the utility of memo-forgetting strategies 
such as relevance based learning [Bayardo & Schrag, 97], as 
well as inter-problem memo transfer. 

References 
Blum, A. and Furst, M. 1997. Fast planning through planning 

graph analysis. Artificial Intelligence, 90(1-2). 
Bayardo, R. and Schrag, R. 1997. Using CSP look-back tech­

niques to solve real-word SAT instances. In Proc. AAAI-97. 
Fox, M, 1998 Private correspondence. Fall 1998. 
Kambhampati, S., Parker, E., and Lambrecht, E., 1997a 

Understanding and Extending Graphplan. In Proceedings of 
4th European Conference on Planning. 

Kambhampati, S., Katukam, S. and Qu, Y, 1997b 
Failure driven Dynamic Search Control for Partial Order Plan­
ners: An Explanation-based approach", Artificial Intelligence. 
88(l-2):253-315. 1997. 

Kambhampati, S. 1998. On the relations between intelligent back­
tracking and explanation-based learning in planning and con­
straint satisfaction. Artificial Intelligence. Vol. 105, No. 1-2. 

Kambhampati, S., 1998b EBL and DDB for Graphplan. ASU-
CSE-TR 98-008. rakaposhLeas.asu.edu/gp-ebl'tr.ps 

Koehler, J., Nebel, B., Hoffmann, J., and Dimopoulos, Y. 1997 
Extending planning graphs to an ADL Subset. Technical Re­
port No. 88. Albert Ludwigs University. 

Kautz, H. & Selman, B. 1996. Pushing the envelope: Planning 
Proposirional Logic and Stochastic Search. In Proceedings of 
National Conference on Artificial Intelligence. 

McDermott, D. 1998 AIPS-98 Planning Competition Results. 
URL: ftp.cs.yale.edu puh/mcdennc^dpscomp-results.html. 

Mittal, S. & Falkenhainer, B. 1990. Dynamic Constraint Satisfac­
tion Problems. In Proc. AAAI-90. 

Prosser, P. 1993 . Domain filtering can degrade intelligent back­
tracking search. In Proc. UCAI, 1993. 

Tsang, E. 1993 Constraint Satisfaction. Academic Press. 1993. 
Rymon, 1992 Set Enumeration Trees. In Proc. KR-92. 
Zimmerman, T. & Kambhampati, S., 1999 Exploiting symmetry 

in the planning-graph via explanation-guided search. In Proc. 
AAAI-99. 

KAMBHAMPATI 987 


