
From Interaction Data to Plan Libraries: A Clustering Approach*

Math ias Bauer
German Research Center lor Artificial Intelligence (DFKI)

Stuhlsatzenhausweg 3
66123 Saarbrucken, GERMANY

bauer@dfki.de

Abs t rac t

Plan libraries are the most important knowl­
edge source of many plan recognition systems.
The plan decompositions they contain provide
information about how a plan has to be exe­
cuted to actually achieve its associated goals
and be recognized by the system. This paper
presents an approach to the automatic acquisi­
t ion of plan decompositions from sample action
sequences. In particular a clustering algorithm
is introduced that allows groups of "similar" se­
quences to be discovered and used for the gener­
ation of plan libraries. Empirical tests indicate
that these libraries can indeed be successfully
used for plan recognition purposes.

1 In t roduc t i on
Plan libraries are the most important knowledge source
of many plan recognition systems. They not only contain
all possible types of plans (or goals) to be recognized by
such a system—thus delimiting the search space of pos­
sible plan hypotheses—, but also represent the details of
how these plans have to be executed to actually achieve
their associated goals. These "recipes"—the so-called
plan decompositions—are necessary to map observed ac­
tions onto the plan hypotheses available which is one of
the central steps within the plan recognition process.

Although they are being widely used, the question of
how to actually construct plan libraries that support the
recognition process in an optimal way has only recently
been investigated more thoroughly (e.g. [Lesh and Et-
zioni, 1996]). In [Bauer, 1998] a method was introduced
that allows abstract plan decompositions to be gener­
ated from action sequences logged while observing test
subjects interacting wi th an application system. What
makes this approach attractive is the fact that it does
not rely on the existence of formalized domain knowl­
edge, although it can use possibly available information
to improve its results.

* Supported by the German Ministry of Education, Sci­
ence, Research, and Technology under grant ITW 9703.

This join procedure can be considered an instance
of a supervised learning algorithm, that is, it requires
its training instances to be labeled wi th their respec­
tive class memberships (the domain goals associated to
the various action sequences in this case). Often, how­
ever, only unlabeled interaction data are available that
are very tedious to classify by hand as they contain a
huge number of irrelevant details like spurious actions.
This paper extends the approach from [Bauer, 1998] for
the acquisition of plan libraries by a clustering algorithm
that determines sets of similar action sequences in un­
labeled training data that can be forwarded to the join
algorithm to compute plans to be used in the library.
Analyzing these library entries and labeling them with
the domain goals they seem to achieve—such that they
can actually be used for plan recognition purposes—is
then relatively easy as the small number of plans gener­
ated represents the essential aspects of the original ac­
t ion sequences only. Furthermore the resulting libraries
can be expected to support the plan recognition process
particularly well as they contain abstractions of actual
users' behaviors rather than idealized plans designed by
a knowledge engineer.

The rest of this paper is organized as follows. Sec­
t ion 2 reviews the basic notions introduced in [Bauer,
1998]. Sections 3 and 4 introduce the new clustering al­
gorithm and present empirical findings, respectively. F i ­
nally, Section 5 discusses related work before Section 6
summarizes the results.

2 Jo in ing A c t i o n Sequences
A plan decomposition—or simply, a plan—is a tuple
(P, Ap,Cp) where P is a unique identifier, Ap is a set of
actions—either concrete or abstract—, and Cp is a set
of constraints representing additional details about the
internal structure like temporal ordering of the elements
of Ap. To optimally support plan recognition, a plan
decomposition should not be too restrictive by contain­
ing irrelevant constraints that unnecessarily restrict the
number of recognizable user interactions. On the other
hand, being too "fuzzy" by leaving out too many de­
tails implies the danger of not being able to discriminate
between competing hypotheses. A good compromise is
to concentrate on those aspects of a plan—i.e. actions

SS2 PLANNING AND SCHEDULING

and constraints describing its internal structure—that
axe absolutely necessary to achieve the associated do­
main goal. Obviously a component of a plan is necessary
just in case it occurs in all action sequences that form
a valid instance of this plan. As it is hardly ever possi-
ble to enumerate all possible ways to actually carry out
a plan, this notion of necessity has to be approximated
by collecting a limited number of action sequences and
determining what they have in common. These training
data are obtained by fixing a set of domain goals to be
covered by the plan library and observing a number of
test subjects trying to achieve these goals. The action
sequences executed are recorded, grouped according to
common domain goals, and forwarded to the " jo in" algo­
r i thm as described in [Bauer, 1998]. That is, in contrast
to the situation considered in Section 3, there exists a
unique labeling of the input data wi th their associated
domain goals.

Let be the set of action sequences belong­
ing to some goal Each of these sequences consists
of a set of temporally ordered actions where

Here is the action type this in­
stance belongs to (like Is or cp in a UNIX context), and
the various are constants representing the domain
objects being manipulated (the action parameters).

Besides these action sequences the join procedure can
make use of various types of domain knowledge with­
out depending on their actual availability. As wi l l be­
come clear, a logical theory D containing general domain
knowledge can be used to infer structural relationships
among the elements of an action sequence. Furthermore,
an action type hierarchy and an object type hierar­
chy representing abstraction relations among action
and object types, respectively, wi l l play a central role in
the abstraction step of the join procedure. Given a set
X of concepts from either or the operation msa
computes the most specific non-trivial abstraction of all
members of X wi thin the corresponding abstraction hi­
erarchy. Note that the result is undefined if the root
concept is the only one subsuming all of X (in this case
the elements of X can be considered to have nothing in
common). For a precise definition of msa the reader is
referred to [Bauer, 1998].

In a first step, these action sequences are transformed
into labeled graphs making the interrelationships
among the constituents of explicit. While the action
instances contained in form the nodes, there are two
types of edges. An edge represents the tem­
poral order between both actions (in this case occurs
before while an edge

represents the fact that relation p holds between the ac­
tion arguments and The resulting action graph
then has the form wi th a set of
temporal edges and a set of

structural edges , If
D = i.e. if virtually nothing is known about the do-

Figure 1: Two sample action graphs.
main, only the equality of two objects can be recognized
and made explicit within

Given two action sequences in the form of action
graphs and their
common abstraction or " jo in" is computed as
follows. Then

where and
for all is a constant o r i s a
variable of type

That is, the abstract representation of the common
information contained in two action instances and
is a new action instance the type of which is the msa
of both action types—if defined—and the arguments of
which are either a concrete domain object represented
by a constant Oi (if both actions had the same object as
a parameter in the same place) or a newly introduced
variable the type of which is determined from the types
of the originally occurring domain action arguments. If

and can only be joined if
A temporal or structural edge is considered to be com­

mon to both and iff the corresponding action
nodes to which the edge is incident could be joined us­
ing the above criterion. That is,

if and and undefined
otherwise. The join of two structural edges wi th identical
labels is defined analogously.

Summarizing, the jo in of two action sequences repre­
sented as action graphs and is = (A, TuS)
where . =

T =
5 =

In many cases the above result does not yet rep­
resent a plan decomposition wi th the desired properties
as some actions may be used several times to create a
new action node. A maximum subgraph of in
which each action of and is joined at most once
wi th another action is called a valid join. The set of all
valid joins can be ordered using the measure

BAUER 963

Figure 2: The valid joins of and
called the degree of restrictiveness. is the set of
primitive actions contained in A, i.e. those that do not
abstract another domain action in the abstraction hier­
archy If PA and A are obviously identical.
The non-negative numerical weights and
assess the relative influence of the various components of
a plan decomposition. As the most restrictive valid jo in,
i.e. the one containing the maximum amount of details
regarding plan execution (and thus maximizing is
the one to be used in the experiments described in Sec­
tion 4, it wi l l be identified wi th throughout the
rest of this papa:. Obviously, the resulting action graph
can be easily retransformed into a plan decomposition
tuple of the form
Examp le : Consider the action graphs and
from the cooking domain as depicted in Figure 1. For
sake of simplicity, only structural and direct temporal
edges connecting subsequent actions are shown. That
is, temporal edges like the one between and
are left out. Action arguments like "spagJT refer
to particular domain objects. contains informa­
tion about the abstract actions make-pasta (subsum­
ing make .spaghetti and make Jettucini) and make jsauce
(subsuming make-pesto and mak_marinara). The ac­
t ion graphs and as depicted in Figure 2 repre­
sent the two valid joins contained in Both are
partially ordered plans (i.e. the temporal order among
the actions is only partially defined) made up of one con­
crete and two abstract actions each. They mainly differ
in the inclusion of either al b2 or al b4 (including
both of them simultaneously would violate the above-
mentioned "valid jo in" condition). The number of tem­
poral and structural edges is an immediate consequence
of this choice (cf. the rule on how to jo in edges). Using
the numerical weights and = 2—a
combination that proved to yield reasonable results in
experiments—, the degree of restrictiveness of be­
comes 6 while the value for is 9. As a consequence
the latter would be the representative for

3 The Cluster ing A l g o r i t h m
The approach to the acquisition of abstract plan descrip­
tions presented in the previous section relies on the train­
ing data being labeled wi th their respective classes, i.e.
their associated domain goals. Often, however, all we
can get is an unlabeled collection of interaction data. In
such a situation it is necessary to first identify groups of
"similar" action sequences that can be forwarded to the

964 PLANNING AND SCHEDULING

join algorithm. The members of such a group are ex­
pected to also achieve similar domain goals. The result­
ing abstract plans—that are reduced to their essential
components—can then be classified by a domain expert,
thus providing the basis for plan recognition. This sec­
t ion introduces a clustering method based on a frequent
set analysis of the action types occurring in the training
data.

Assume a set of action sequences S=
are given. The crucial idea is to identify sets of action
types that co-occur frequently and jo in only those action
sequences containing all of them. The approach taken
here is similar to the cluster mining algorithm introduced
in [Perkowitz and Etzioni, 1998] that is used to detect
groups of Web sites that are frequently visited in the
same session. The algorithm works as follows.
1. Let A = be the set of all action types oc­
curring in S. Construct a complete graph (i.e. each pair
of nodes is connected by an edge) wi th nodes
and label each edge connecting two nodes and with
the numerical value which rep-
resents the minimum co-occurrence probability of ai and
a, in the sequences currently in S.
2. Determine all maximum size cliques within this graph
containing only edges the label of which is The
effect of the parameter the "clustering fac­
tor" , wi l l be discussed below.
3. For each clique C—which represents a set of action
types all of which co-occur frequently in the training
data—determine the set S(C) of action sequences con­
taining each of its members.
4. Compute the jo in of each maximum size cluster
S(C)—it wi l l be used as one library entry—, remove
the members of S(C) from S, and repeat this procedure
starting from step 1 unt i l
The higher the value of cf, the smaller the size of the
cliques of action types co-occurring wi th probability cf
becomes. Consequently the size of clusters of action se­
quences containing these cliques grows (the smaller a
set of action types, the higher the probability to find
an action sequence containing i t) , and the number of
clusters—and thus, plans in the library—decreases. Si­
multaneously, the plans become less complex, i.e. the
degr values go down as each plan represents the aspects
common to a larger set of action sequences. A small
value for cf has the opposite effect of producing many
clusters each of which consists of few action sequences
only and yields a plan wi th high value.
E x a m p l e : Assume the training set contains the fol­
lowing action sequences (for sake of simplicity, only
the action types contained are listed and both ac­
t ion parameters and constraints are omitted); =

Wi th the
value cf = 1.0 the tr iv ial clique { a i } is identified that

1A clique is a complete subgraph of a graph, i.e. every two
nodes must be connected by an edge in a clique. While this
problem is known to be NP-complete, the removal of ail edges
with label cf usually reduces the graph to a tractable size.

leads to the cluster For cf = 0.6, the
algorithm successively detects the cliques and

wi th associated clusters and
The results of joining the members of these clusters are

These results correspond to what could be expected after
the above discussion.

4 Exper iments
A total of 53 action sequences from the UNIX domain
containing up to 24 steps and belonging to 6 different
domain goals formed the basis of the experiments re­
ported about in this section. Typical goals were the
search for files wi th certain properties or status checks
for printers. For unbiased results, no additional domain
knowledge was used, i.e. The ob-
jective of the experiments was to determine the impact
of varying clustering factors on the clusters of action se­
quences computed and the feasibility of plan libraries
created from them for plan recognition purposes. To
this end the following experiments were performed using
a 10-fold cross validation strategy2 wi th the value of the
clustering factor ranging from 0.1 to 1.0 in steps of 0.1.
1. Compute a clustering of the training data as described
in Section 3.
2. For each resulting cluster compute the jo in of all its
elements as described in Section 2.
3. TVy to recognize the test action sequences using the
plan library containing all plans created in step 2.
Remarks : 1. The plan computed in the second step
is labeled to belong to the prevailing class among the
action sequences contained in the cluster. In case of a
tie—i.e. two or more classes occur wi th the same (high­
est) frequency—a corresponding number of copies of this
plan is included in the plan library, each marked with
one of these classes.3 Labeling the plan library entries—
usually the task of a domain expert—is an important
prerequisite for the plan recognition process. The plan
recognizer's task consists in identifying all plans within
the library that are completely instantiated by the cur­
rent action sequence—i.e. the sequence contains all of the
plan's actions and satisfies all of its constraints—and as­
signing their respective classes (as plan hypotheses) to
this sequence.
2. Note that a plan l ibrary does not necessarily contain
just one plan for each class (goal).
3. To produce unbiased results in the th i rd step, a purely
consistency-based, incremental plan recognizer was used
that applied no focusing heuristic to discard unwanted
plan hypotheses. Instead, consistency of observed ac-

2That is, the set of action sequences was randomly parti­
tioned into 10 subsets of about equal size. In each of the 10
repetitions of the experiments, 9 of these subsets were used as
training data whereas the respective remaining subset formed
the set of test data.

3 Of course the class memberships of the training data were
not used during the clustering process.

tions wi th the plan decompositions was the only criterion
to decide whether or not to maintain a hypothesis.

As a comparison, alternative clusterings ware com-
puted using Cobweb [Fisher, 1987]. Cobweb incremen­
tally constructs a hierarchy of clusters containing "sim­
ilar" instances. Finally each node of the tree represents
a concept, i.e. an intensional description of the class of
instances subsumed in terms of the attribute values oc­
curring within this class. While the leaves of this hierar­
chy contain the various instances, the root represents the
most general class containing all instances encountered
during the learning process. As Cobweb expects its input
to be described in terms of attribute values, each action
sequence was encoded as a vector of 39 Boolean values,
each indicating the (non-) occurrence of one particular
command within the sequence. To enable a fair compari­
son wi th the clustering procedure described in Section 3,
a particular class of concepts was selected from the Cob­
web hierarchies the subsumed instances of which form a
part i t ion of the training set while containing a "reason­
able" number of elements.
R e m a r k : The leaf concepts would have been inappro­
priate as they only contain one instance each, while very
abstract concepts (i.e. those being close to the root of the
hierarchy) increase the danger of producing "bad" clus­
ters containing instances from many different classes.

A class C (represented as a node in the tree) is said
to be "appropriate" iff

• C is not a leaf,
• none of the siblings of C is a leaf, and

• none of the descendants of C (as a node in the tree)
is appropriate.

The clustering used in the experiments then corresponds
to the collection of sets of instances subsumed by the
appropriate classes.

The analysis of the empirical findings has to take into
account several different aspects the first of which con­
cerns the clusters detected.
How "good" are the clusters? Obviously, an optimal clus­
ter contains only elements belonging to the same class,
i.e. action sequences achieving the same domain goal.
The degree of "disorder" within a cluster C can be mea­
sured by the entropy e(C) defined as

(1)

where c ranges over the possible classes (goals) an in­
stance (sequence) can belong to and pc is the relative
frequency of instances belonging to class c among all in­
stances contained in C. This numerical value can be used
to quantitatively assess how well a cluster is "sorted"
(note that e(C) assumes its minimal value of zero when
all instances contained in C belong to the same class).
In order to allow the results of experiments with vary­
ing numbers of classes to be compared, we use a relative
measure of entropy by dividing the values obtained by
(1) by the entropy of the original set of instances (action
sequences) such that a value close to 1.0 corresponds to

BAUER 965

Figure 3: Relative degr and cluster entropy.

a random selection of sequences from the training data.
Figure 3 depicts the average values of this relative en­
tropy measure along wi th the average values of the rela-
tive degree of restrictiveness. The latter corresponds to
the degr values of the plan l ibrary entries created divided
by the average degr value of the original action sequences
contained in the training data.4 As could be expected,
an increasing value of cf yields clusters wi th high entropy
values (the larger the cluster, the higher the probability
to include sequences from more than one class) and the
complexity of the plans produced—measured by degr—
decreases. It can be seen that the cf values between
0.4 and 0.7 offered the best compromise between reduc­
ing the complexity of plan descriptions—without being
over-restrictive or tr ivial—and maintaining a relatively
low cluster entropy.

The results for Cobweb indicate that even the small
clusters used in this comparison (most of them contained
only 2 or 3 action sequences) have a relatively high en­
tropy, i.e. these clusters are not "well sorted". As a
consequence, joining the action sequences contained in
these clusters produced an average of 4 "void" plans
containing no actions or constraints in each repetition
of the experiment, i.e. the sequences wi th in such a clus­
ter were highly incompatible wi th each other. 5 These
plans were removed from the l ibrary before starting the
plan recognition process. The relative degr and entropy
values when ignoring void plans are 0.175 and 0.22, re-
spectively. The high degr values result from the small
number of elements per cluster.

The second—and in this context even more import­
ant—question is how good are the plan libraries pro­
duced? To answer this question, the abovementioned
plan recognition experiment was conducted the results
of which are depicted in Figures 4 and 5. Here coverage
stands for the percentage of action sequences for which
the plan recognizer produced a non-empty result, cor­
rect (unique) is the percentage of sequences recognized
correctly (correctly and uniquely6). Plan hypotheses as-

4 All values computed with wa = wp = wt = 1 and ws = 2.
5Note that the clustering method introduced in Section 3

never lead to void plans.
6Note that in many cases more than one plan hypothesis

from the library proved compatible with the current action

Figure 4: Results of plan recognition experiment - I.
signed measures the average number of plans "recog­
nized" by the system (that is, assigned to a single action
sequence in the test data), while library entries measures
the number of plans within the library.

To summarize the results, a clustering factor of about
0.6 yielded the best results for this domain (other do­
mains may require different values for cf). Here almost
90% of all action sequences where covered, more than
77% were correctly recognized, and for more than 28%
this result was even unique. The results for the libraries
generated using the Cobweb clustering (78%, 68%, and
11%) are similar to those for the clustering factor 0.4.
Note, however, that the degree of ambiguity measured
by the number of plan hypotheses assigned is signifi­
cantly higher for the Cobweb-based libraries than for all
other competitors. W i t h cf = 0.6, for example, each ac­
t ion sequence is assigned at most two hypotheses while
the average in the Cobweb case is almost 2.5 (out of 6
different classes). Additionally, for ef = 0.6 the plan rec­
ognizer worked about ten times as fast as for cf = 0.1 or
cf = 0.2 which is a direct consequence of the large num­
ber of l ibrary entries of high complexity (degr values)
in these cases, while the Cobweb-based libraries slowed
down recognition even more. The smaller libraries ob­
tained for very high cf values speed up this process even
more, but the recognition results are relatively poor.

Figure 5: Results of plan recognition experiment - I I .

5 Related Work
Abstracted versions of previous problem solutions have
been studied both in the fields of AI planning (e.g.

sequence—cf. Figure 5.

966 PLANNING AND SCHEDULING

[Minion, 1985]) and programming by demonstration
(e.g. [Cypher, 19933). In the former case they are reused
for efficient planning from second principles, in the latter
they enable a system to autonomously perform certain
tasks on behalf of their users. As in both cases the aim
is to generate an executable procedure, exact character­
izations of actions (including preconditions and effects)
as well as general domain laws are required. In contrast
to this, the joining of action sequences as presented in
this paper aims at producing recognizable structures and
does not presuppose any domain knowledge.

In the plan recognition context, the explanation-based
learning (EBL) procedure described in [Mooney, 1988]
and the machine-learning inspired approach presented
in [Lesh and Etzioni, 1996] have to be mentioned. In the
first case the objective is to detect the general plan un­
derlying a short narrative. As EBL is a very knowledge-
intensive method, rich domain knowledge has to be avail­
able in order to produce generic structures that can be
used to analyze similar, unknown stories. In the latter
case the goal and plan libraries are only implicitly defined
by a set of goal predicates and actions and corresponding
biases that allow the search space to be enumerated. As
a consequence, only certain classes of domain goals can
be handled and the system requires complete planning
knowledge.

The IPAM algorithm presented in [Davison and Hirsh,
1998] is a knowledge-free method to construct a proba­
bilistic model of action patterns contained in action se­
quences that is used to predict future actions. This is
in contrast to [Yoshida and Motoda, 1995] where infor­
mation about 10 relationships among UNIX commands
is exploited to produce a probabilistic predictive model.
Unlike IPAM, this graph induction method needs rela­
tively few training data to successfully make predictions.
Both approaches do not explicitly mention plans, but t ry
to detect regularities in user behaviors.

Clustering algorithms on the basis of shared subse-
quences (e.g. [Zaki et al., 1998]) are not able to abstract
from the observed temporal relations among the actions
in the training sequences. As a consequence they are not
feasible for the task of generating abstract plans for plan
recognition libraries.

6 Conclusion and Future W o r k
This paper introduced a clustering method that allows
groups of similar action sequences to be detected that
can be used to generate plan library entries, even in the
complete absence of domain knowledge. The empirical
findings indicate that the libraries produced by this clus­
tering algorithm in combination wi th the join algorithm
can indeed be successfully used for plan recognition pur­
poses. At least for certain values of the clustering factor
the results were better than those produced by using
Cobweb to compute a clustering of the training data. It
is important to note that the library entries generated
are not necessarily executable "recipes", but structures
that can be used to recognize the underlying domain

goal. The recognition process is particularly well sup­
ported as these planrreflect the actual user behavior rep-
resented by the interaction samples used in the training
data (including suboptimal and faulty behavior) while
hand-coded libraries often concentrate on optimal or at
least correct plans. Another application of the cluster­
ing/joining procedure is the generation of alternative de-
compositions for one single class in situations where the
training data are already labeled wi th their respective
class memberships, but contain strongly diverging ways
of achieving the same goal.

Future work wi l l include the application of the meth­
ods presented to additional domains and the investiga­
t ion of the impact of various degrees of domain knowl­
edge that could be used to improve the quality of plans
and support the domain expert labeling the library en­
tries. Furthermore, comparisons wi th other clustering
algorithms wi l l be performed.

References
[AAAI , 1998] Proc. of the 15th National Conference of

the American Assoc, for Artificial Intelligence, 1998.
[Bauer, 1998] M. Bauer. Acquisition of Abstract Plan

Descriptions for Plan Recognition. In A A A I [1998],
pages 936-941.

[Cypher, 1993] A. Cypher, editor. Watch what I do:
programming by demonstration. M I T Press, 1993.

[Davison and Hirsh, 1998] B. Davison and H. Hirsh.
Probabilistic Online Action Prediction. In Proc. of
the 1998 AAAI Spring Symposium on Intelligent En-
vironments, 1998.

[Fisher, 1987] D. Fisher. Knowledge Acquisition Via In­
cremental Conceptual Clustering. Machine Learning,
2:139-172, 1987.

[Lesh and Etzioni, 1996] N. Lesh and O. Etzioni. Scal­
ing up goal recognition. In J. Doyle et al., editors,
5th Conference on Principles of Knowledge Represen-
tation and Reasoning, pages 178-189, 1996.

[Minton, 1985] S. Minton. Selectively Generalizing
Plans for Problem-Solving. In Proc. of the 9th Inter­
national Joint Conference on Artificial Intelligence,
pages 596-599,1985.

[Mooney, 1988] R.J. Mooney. Explanation-Based Learn­
ing of Plans for Plan Recognition. In D. McDermott et
al., editors, Proc. of the AAAI-88 Workshop on Plan
Recognition, 1988.

[Perkowitz and Etzioni, 1998] M. Perkowitz and O. Et­
zioni. Adaptive Web Sites: Automatically Synthesiz­
ing Web Pages. In A A A I [1998], pages 727-732.

[Yoshida and Motoda, 1995] K. Yoshida and H. Mo­
toda. CLIP: concept learning from inference patterns.
Artificial Intelligence, 75:63-92, 1995.

[Zaki et al., 1998] M Zaki, N. Lesh, and M. Ogihara.
PlanMine: Sequence Mining for Plan Failures. In
R. Agrawal et al., editors, Proc. of the 4th Interna­
tional Conference on Knowledge Discovery and Data
Mining, pages 369-374,1998. A A A I Press.

BAUER 967

