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Abs t rac t 

Plan libraries are the most important knowl­
edge source of many plan recognition systems. 
The plan decompositions they contain provide 
information about how a plan has to be exe­
cuted to actually achieve its associated goals 
and be recognized by the system. This paper 
presents an approach to the automatic acquisi­
t ion of plan decompositions from sample action 
sequences. In particular a clustering algorithm 
is introduced that allows groups of "similar" se­
quences to be discovered and used for the gener­
ation of plan libraries. Empirical tests indicate 
that these libraries can indeed be successfully 
used for plan recognition purposes. 

1 In t roduc t i on 
Plan libraries are the most important knowledge source 
of many plan recognition systems. They not only contain 
all possible types of plans (or goals) to be recognized by 
such a system—thus delimiting the search space of pos­
sible plan hypotheses—, but also represent the details of 
how these plans have to be executed to actually achieve 
their associated goals. These "recipes"—the so-called 
plan decompositions—are necessary to map observed ac­
tions onto the plan hypotheses available which is one of 
the central steps within the plan recognition process. 

Although they are being widely used, the question of 
how to actually construct plan libraries that support the 
recognition process in an optimal way has only recently 
been investigated more thoroughly (e.g. [Lesh and Et-
zioni, 1996]). In [Bauer, 1998] a method was introduced 
that allows abstract plan decompositions to be gener­
ated from action sequences logged while observing test 
subjects interacting wi th an application system. What 
makes this approach attractive is the fact that it does 
not rely on the existence of formalized domain knowl­
edge, although it can use possibly available information 
to improve its results. 

* Supported by the German Ministry of Education, Sci­
ence, Research, and Technology under grant ITW 9703. 

This join procedure can be considered an instance 
of a supervised learning algorithm, that is, it requires 
its training instances to be labeled wi th their respec­
tive class memberships (the domain goals associated to 
the various action sequences in this case). Often, how­
ever, only unlabeled interaction data are available that 
are very tedious to classify by hand as they contain a 
huge number of irrelevant details like spurious actions. 
This paper extends the approach from [Bauer, 1998] for 
the acquisition of plan libraries by a clustering algorithm 
that determines sets of similar action sequences in un­
labeled training data that can be forwarded to the join 
algorithm to compute plans to be used in the library. 
Analyzing these library entries and labeling them with 
the domain goals they seem to achieve—such that they 
can actually be used for plan recognition purposes—is 
then relatively easy as the small number of plans gener­
ated represents the essential aspects of the original ac­
t ion sequences only. Furthermore the resulting libraries 
can be expected to support the plan recognition process 
particularly well as they contain abstractions of actual 
users' behaviors rather than idealized plans designed by 
a knowledge engineer. 

The rest of this paper is organized as follows. Sec­
t ion 2 reviews the basic notions introduced in [Bauer, 
1998]. Sections 3 and 4 introduce the new clustering al­
gorithm and present empirical findings, respectively. F i ­
nally, Section 5 discusses related work before Section 6 
summarizes the results. 

2 Jo in ing A c t i o n Sequences 
A plan decomposition—or simply, a plan—is a tuple 
(P, Ap,Cp) where P is a unique identifier, Ap is a set of 
actions—either concrete or abstract—, and Cp is a set 
of constraints representing additional details about the 
internal structure like temporal ordering of the elements 
of Ap. To optimally support plan recognition, a plan 
decomposition should not be too restrictive by contain­
ing irrelevant constraints that unnecessarily restrict the 
number of recognizable user interactions. On the other 
hand, being too "fuzzy" by leaving out too many de­
tails implies the danger of not being able to discriminate 
between competing hypotheses. A good compromise is 
to concentrate on those aspects of a plan—i.e. actions 
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and constraints describing its internal structure—that 
axe absolutely necessary to achieve the associated do­
main goal. Obviously a component of a plan is necessary 
just in case it occurs in all action sequences that form 
a valid instance of this plan. As it is hardly ever possi-
ble to enumerate all possible ways to actually carry out 
a plan, this notion of necessity has to be approximated 
by collecting a limited number of action sequences and 
determining what they have in common. These training 
data are obtained by fixing a set of domain goals to be 
covered by the plan library and observing a number of 
test subjects trying to achieve these goals. The action 
sequences executed are recorded, grouped according to 
common domain goals, and forwarded to the " jo in" algo­
r i thm as described in [Bauer, 1998]. That is, in contrast 
to the situation considered in Section 3, there exists a 
unique labeling of the input data wi th their associated 
domain goals. 

Let be the set of action sequences belong­
ing to some goal Each of these sequences consists 
of a set of temporally ordered actions where 

Here is the action type this in­
stance belongs to (like Is or cp in a UNIX context), and 
the various are constants representing the domain 
objects being manipulated (the action parameters). 

Besides these action sequences the join procedure can 
make use of various types of domain knowledge with­
out depending on their actual availability. As wi l l be­
come clear, a logical theory D containing general domain 
knowledge can be used to infer structural relationships 
among the elements of an action sequence. Furthermore, 
an action type hierarchy and an object type hierar­
chy representing abstraction relations among action 
and object types, respectively, wi l l play a central role in 
the abstraction step of the join procedure. Given a set 
X of concepts from either or the operation msa 
computes the most specific non-trivial abstraction of all 
members of X wi thin the corresponding abstraction hi­
erarchy. Note that the result is undefined if the root 
concept is the only one subsuming all of X (in this case 
the elements of X can be considered to have nothing in 
common). For a precise definition of msa the reader is 
referred to [Bauer, 1998]. 

In a first step, these action sequences are transformed 
into labeled graphs making the interrelationships 
among the constituents of explicit. While the action 
instances contained in form the nodes, there are two 
types of edges. An edge represents the tem­
poral order between both actions (in this case occurs 
before while an edge 

represents the fact that relation p holds between the ac­
tion arguments and The resulting action graph 
then has the form wi th a set of 
temporal edges and a set of 

structural edges , If 
D = i.e. if virtually nothing is known about the do-

Figure 1: Two sample action graphs. 
main, only the equality of two objects can be recognized 
and made explicit within  

Given two action sequences in the form of action 
graphs and their 
common abstraction or " jo in" is computed as 
follows. Then 

where and 
for all is a constant o r i s a 
variable of type  

That is, the abstract representation of the common 
information contained in two action instances and 
is a new action instance the type of which is the msa 
of both action types—if defined—and the arguments of 
which are either a concrete domain object represented 
by a constant Oi (if both actions had the same object as 
a parameter in the same place) or a newly introduced 
variable the type of which is determined from the types 
of the originally occurring domain action arguments. If 

and can only be joined if  
A temporal or structural edge is considered to be com­

mon to both and iff the corresponding action 
nodes to which the edge is incident could be joined us­
ing the above criterion. That is, 

if and and undefined 
otherwise. The join of two structural edges wi th identical 
labels is defined analogously. 

Summarizing, the jo in of two action sequences repre­
sented as action graphs and is = (A, TuS) 
where . = 

T = 
5 =  

In many cases the above result does not yet rep­
resent a plan decomposition wi th the desired properties 
as some actions may be used several times to create a 
new action node. A maximum subgraph of in 
which each action of and is joined at most once 
wi th another action is called a valid join. The set of all 
valid joins can be ordered using the measure 
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Figure 2: The valid joins of and 
called the degree of restrictiveness. is the set of 
primitive actions contained in A, i.e. those that do not 
abstract another domain action in the abstraction hier­
archy If PA and A are obviously identical. 
The non-negative numerical weights and 
assess the relative influence of the various components of 
a plan decomposition. As the most restrictive valid jo in, 
i.e. the one containing the maximum amount of details 
regarding plan execution (and thus maximizing is 
the one to be used in the experiments described in Sec­
tion 4, it wi l l be identified wi th throughout the 
rest of this papa:. Obviously, the resulting action graph 
can be easily retransformed into a plan decomposition 
tuple of the form  
Examp le : Consider the action graphs and  
from the cooking domain as depicted in Figure 1. For 
sake of simplicity, only structural and direct temporal 
edges connecting subsequent actions are shown. That 
is, temporal edges like the one between and 
are left out. Action arguments like "spagJT refer 
to particular domain objects. contains informa­
tion about the abstract actions make-pasta (subsum­
ing make .spaghetti and make Jettucini) and make jsauce 
(subsuming make-pesto and mak_marinara). The ac­
t ion graphs and as depicted in Figure 2 repre­
sent the two valid joins contained in Both are 
partially ordered plans (i.e. the temporal order among 
the actions is only partially defined) made up of one con­
crete and two abstract actions each. They mainly differ 
in the inclusion of either al b2 or al b4 (including 
both of them simultaneously would violate the above-
mentioned "valid jo in" condition). The number of tem­
poral and structural edges is an immediate consequence 
of this choice (cf. the rule on how to jo in edges). Using 
the numerical weights and = 2—a 
combination that proved to yield reasonable results in 
experiments—, the degree of restrictiveness of be­
comes 6 while the value for is 9. As a consequence 
the latter would be the representative for  

3 The Cluster ing A l g o r i t h m 
The approach to the acquisition of abstract plan descrip­
tions presented in the previous section relies on the train­
ing data being labeled wi th their respective classes, i.e. 
their associated domain goals. Often, however, all we 
can get is an unlabeled collection of interaction data. In 
such a situation it is necessary to first identify groups of 
"similar" action sequences that can be forwarded to the 
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join algorithm. The members of such a group are ex­
pected to also achieve similar domain goals. The result­
ing abstract plans—that are reduced to their essential 
components—can then be classified by a domain expert, 
thus providing the basis for plan recognition. This sec­
t ion introduces a clustering method based on a frequent 
set analysis of the action types occurring in the training 
data. 

Assume a set of action sequences S= 
are given. The crucial idea is to identify sets of action 
types that co-occur frequently and jo in only those action 
sequences containing all of them. The approach taken 
here is similar to the cluster mining algorithm introduced 
in [Perkowitz and Etzioni, 1998] that is used to detect 
groups of Web sites that are frequently visited in the 
same session. The algorithm works as follows. 
1. Let A = be the set of all action types oc­
curring in S. Construct a complete graph (i.e. each pair 
of nodes is connected by an edge) wi th nodes 
and label each edge connecting two nodes and with 
the numerical value which rep-
resents the minimum co-occurrence probability of ai and 
a, in the sequences currently in S. 
2. Determine all maximum size cliques within this graph 
containing only edges the label of which is The 
effect of the parameter the "clustering fac­
tor" , wi l l be discussed below. 
3. For each clique C—which represents a set of action 
types all of which co-occur frequently in the training 
data—determine the set S(C) of action sequences con­
taining each of its members. 
4. Compute the jo in of each maximum size cluster 
S(C)—it wi l l be used as one library entry—, remove 
the members of S(C) from S, and repeat this procedure 
starting from step 1 unt i l 
The higher the value of cf, the smaller the size of the 
cliques of action types co-occurring wi th probability cf 
becomes. Consequently the size of clusters of action se­
quences containing these cliques grows (the smaller a 
set of action types, the higher the probability to find 
an action sequence containing i t ) , and the number of 
clusters—and thus, plans in the library—decreases. Si­
multaneously, the plans become less complex, i.e. the 
degr values go down as each plan represents the aspects 
common to a larger set of action sequences. A small 
value for cf has the opposite effect of producing many 
clusters each of which consists of few action sequences 
only and yields a plan wi th high value. 
E x a m p l e : Assume the training set contains the fol­
lowing action sequences (for sake of simplicity, only 
the action types contained are listed and both ac­
t ion parameters and constraints are omitted); = 

Wi th the 
value cf = 1.0 the tr iv ial clique { a i } is identified that 

1A clique is a complete subgraph of a graph, i.e. every two 
nodes must be connected by an edge in a clique. While this 
problem is known to be NP-complete, the removal of ail edges 
with label cf usually reduces the graph to a tractable size. 



leads to the cluster For cf = 0.6, the 
algorithm successively detects the cliques and 

wi th associated clusters and  
The results of joining the members of these clusters are 

These results correspond to what could be expected after 
the above discussion. 

4 Exper iments 
A total of 53 action sequences from the UNIX domain 
containing up to 24 steps and belonging to 6 different 
domain goals formed the basis of the experiments re­
ported about in this section. Typical goals were the 
search for files wi th certain properties or status checks 
for printers. For unbiased results, no additional domain 
knowledge was used, i.e. The ob-
jective of the experiments was to determine the impact 
of varying clustering factors on the clusters of action se­
quences computed and the feasibility of plan libraries 
created from them for plan recognition purposes. To 
this end the following experiments were performed using 
a 10-fold cross validation strategy2 wi th the value of the 
clustering factor ranging from 0.1 to 1.0 in steps of 0.1. 
1. Compute a clustering of the training data as described 
in Section 3. 
2. For each resulting cluster compute the jo in of all its 
elements as described in Section 2. 
3. TVy to recognize the test action sequences using the 
plan library containing all plans created in step 2. 
Remarks : 1. The plan computed in the second step 
is labeled to belong to the prevailing class among the 
action sequences contained in the cluster. In case of a 
tie—i.e. two or more classes occur wi th the same (high­
est) frequency—a corresponding number of copies of this 
plan is included in the plan library, each marked with 
one of these classes.3 Labeling the plan library entries— 
usually the task of a domain expert—is an important 
prerequisite for the plan recognition process. The plan 
recognizer's task consists in identifying all plans within 
the library that are completely instantiated by the cur­
rent action sequence—i.e. the sequence contains all of the 
plan's actions and satisfies all of its constraints—and as­
signing their respective classes (as plan hypotheses) to 
this sequence. 
2. Note that a plan l ibrary does not necessarily contain 
just one plan for each class (goal). 
3. To produce unbiased results in the th i rd step, a purely 
consistency-based, incremental plan recognizer was used 
that applied no focusing heuristic to discard unwanted 
plan hypotheses. Instead, consistency of observed ac-

2That is, the set of action sequences was randomly parti­
tioned into 10 subsets of about equal size. In each of the 10 
repetitions of the experiments, 9 of these subsets were used as 
training data whereas the respective remaining subset formed 
the set of test data. 

3 Of course the class memberships of the training data were 
not used during the clustering process. 

tions wi th the plan decompositions was the only criterion 
to decide whether or not to maintain a hypothesis. 

As a comparison, alternative clusterings ware com-
puted using Cobweb [Fisher, 1987]. Cobweb incremen­
tally constructs a hierarchy of clusters containing "sim­
ilar" instances. Finally each node of the tree represents 
a concept, i.e. an intensional description of the class of 
instances subsumed in terms of the attribute values oc­
curring within this class. While the leaves of this hierar­
chy contain the various instances, the root represents the 
most general class containing all instances encountered 
during the learning process. As Cobweb expects its input 
to be described in terms of attribute values, each action 
sequence was encoded as a vector of 39 Boolean values, 
each indicating the (non-) occurrence of one particular 
command within the sequence. To enable a fair compari­
son wi th the clustering procedure described in Section 3, 
a particular class of concepts was selected from the Cob­
web hierarchies the subsumed instances of which form a 
part i t ion of the training set while containing a "reason­
able" number of elements. 
R e m a r k : The leaf concepts would have been inappro­
priate as they only contain one instance each, while very 
abstract concepts (i.e. those being close to the root of the 
hierarchy) increase the danger of producing "bad" clus­
ters containing instances from many different classes. 

A class C (represented as a node in the tree) is said 
to be "appropriate" iff 

• C is not a leaf, 
• none of the siblings of C is a leaf, and 

• none of the descendants of C (as a node in the tree) 
is appropriate. 

The clustering used in the experiments then corresponds 
to the collection of sets of instances subsumed by the 
appropriate classes. 

The analysis of the empirical findings has to take into 
account several different aspects the first of which con­
cerns the clusters detected. 
How "good" are the clusters? Obviously, an optimal clus­
ter contains only elements belonging to the same class, 
i.e. action sequences achieving the same domain goal. 
The degree of "disorder" within a cluster C can be mea­
sured by the entropy e(C) defined as 

(1) 

where c ranges over the possible classes (goals) an in­
stance (sequence) can belong to and pc is the relative 
frequency of instances belonging to class c among all in­
stances contained in C. This numerical value can be used 
to quantitatively assess how well a cluster is "sorted" 
(note that e(C) assumes its minimal value of zero when 
all instances contained in C belong to the same class). 
In order to allow the results of experiments with vary­
ing numbers of classes to be compared, we use a relative 
measure of entropy by dividing the values obtained by 
(1) by the entropy of the original set of instances (action 
sequences) such that a value close to 1.0 corresponds to 
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Figure 3: Relative degr and cluster entropy. 

a random selection of sequences from the training data. 
Figure 3 depicts the average values of this relative en­
tropy measure along wi th the average values of the rela-
tive degree of restrictiveness. The latter corresponds to 
the degr values of the plan l ibrary entries created divided 
by the average degr value of the original action sequences 
contained in the training data.4 As could be expected, 
an increasing value of cf yields clusters wi th high entropy 
values (the larger the cluster, the higher the probability 
to include sequences from more than one class) and the 
complexity of the plans produced—measured by degr— 
decreases. It can be seen that the cf values between 
0.4 and 0.7 offered the best compromise between reduc­
ing the complexity of plan descriptions—without being 
over-restrictive or tr ivial—and maintaining a relatively 
low cluster entropy. 

The results for Cobweb indicate that even the small 
clusters used in this comparison (most of them contained 
only 2 or 3 action sequences) have a relatively high en­
tropy, i.e. these clusters are not "well sorted". As a 
consequence, joining the action sequences contained in 
these clusters produced an average of 4 "void" plans 
containing no actions or constraints in each repetition 
of the experiment, i.e. the sequences wi th in such a clus­
ter were highly incompatible wi th each other. 5 These 
plans were removed from the l ibrary before starting the 
plan recognition process. The relative degr and entropy 
values when ignoring void plans are 0.175 and 0.22, re-
spectively. The high degr values result from the small 
number of elements per cluster. 

The second—and in this context even more import­
ant—question is how good are the plan libraries pro­
duced? To answer this question, the abovementioned 
plan recognition experiment was conducted the results 
of which are depicted in Figures 4 and 5. Here coverage 
stands for the percentage of action sequences for which 
the plan recognizer produced a non-empty result, cor­
rect (unique) is the percentage of sequences recognized 
correctly (correctly and uniquely6). Plan hypotheses as-

4 All values computed with wa = wp = wt = 1 and ws = 2. 
5Note that the clustering method introduced in Section 3 

never lead to void plans. 
6Note that in many cases more than one plan hypothesis 

from the library proved compatible with the current action 

Figure 4: Results of plan recognition experiment - I. 
signed measures the average number of plans "recog­
nized" by the system (that is, assigned to a single action 
sequence in the test data), while library entries measures 
the number of plans within the library. 

To summarize the results, a clustering factor of about 
0.6 yielded the best results for this domain (other do­
mains may require different values for cf). Here almost 
90% of all action sequences where covered, more than 
77% were correctly recognized, and for more than 28% 
this result was even unique. The results for the libraries 
generated using the Cobweb clustering (78%, 68%, and 
11%) are similar to those for the clustering factor 0.4. 
Note, however, that the degree of ambiguity measured 
by the number of plan hypotheses assigned is signifi­
cantly higher for the Cobweb-based libraries than for all 
other competitors. W i t h cf = 0.6, for example, each ac­
t ion sequence is assigned at most two hypotheses while 
the average in the Cobweb case is almost 2.5 (out of 6 
different classes). Additionally, for ef = 0.6 the plan rec­
ognizer worked about ten times as fast as for cf = 0.1 or 
cf = 0.2 which is a direct consequence of the large num­
ber of l ibrary entries of high complexity (degr values) 
in these cases, while the Cobweb-based libraries slowed 
down recognition even more. The smaller libraries ob­
tained for very high cf values speed up this process even 
more, but the recognition results are relatively poor. 

Figure 5: Results of plan recognition experiment - I I . 

5 Related Work 
Abstracted versions of previous problem solutions have 
been studied both in the fields of AI planning (e.g. 

sequence—cf. Figure 5. 
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[Minion, 1985]) and programming by demonstration 
(e.g. [Cypher, 19933). In the former case they are reused 
for efficient planning from second principles, in the latter 
they enable a system to autonomously perform certain 
tasks on behalf of their users. As in both cases the aim 
is to generate an executable procedure, exact character­
izations of actions (including preconditions and effects) 
as well as general domain laws are required. In contrast 
to this, the joining of action sequences as presented in 
this paper aims at producing recognizable structures and 
does not presuppose any domain knowledge. 

In the plan recognition context, the explanation-based 
learning (EBL) procedure described in [Mooney, 1988] 
and the machine-learning inspired approach presented 
in [Lesh and Etzioni, 1996] have to be mentioned. In the 
first case the objective is to detect the general plan un­
derlying a short narrative. As EBL is a very knowledge-
intensive method, rich domain knowledge has to be avail­
able in order to produce generic structures that can be 
used to analyze similar, unknown stories. In the latter 
case the goal and plan libraries are only implicitly defined 
by a set of goal predicates and actions and corresponding 
biases that allow the search space to be enumerated. As 
a consequence, only certain classes of domain goals can 
be handled and the system requires complete planning 
knowledge. 

The IPAM algorithm presented in [Davison and Hirsh, 
1998] is a knowledge-free method to construct a proba­
bilistic model of action patterns contained in action se­
quences that is used to predict future actions. This is 
in contrast to [Yoshida and Motoda, 1995] where infor­
mation about 10 relationships among UNIX commands 
is exploited to produce a probabilistic predictive model. 
Unlike IPAM, this graph induction method needs rela­
tively few training data to successfully make predictions. 
Both approaches do not explicitly mention plans, but t ry 
to detect regularities in user behaviors. 

Clustering algorithms on the basis of shared subse-
quences (e.g. [Zaki et al., 1998]) are not able to abstract 
from the observed temporal relations among the actions 
in the training sequences. As a consequence they are not 
feasible for the task of generating abstract plans for plan 
recognition libraries. 

6 Conclusion and Future W o r k 
This paper introduced a clustering method that allows 
groups of similar action sequences to be detected that 
can be used to generate plan library entries, even in the 
complete absence of domain knowledge. The empirical 
findings indicate that the libraries produced by this clus­
tering algorithm in combination wi th the join algorithm 
can indeed be successfully used for plan recognition pur­
poses. At least for certain values of the clustering factor 
the results were better than those produced by using 
Cobweb to compute a clustering of the training data. It 
is important to note that the library entries generated 
are not necessarily executable "recipes", but structures 
that can be used to recognize the underlying domain 

goal. The recognition process is particularly well sup­
ported as these planrreflect the actual user behavior rep-
resented by the interaction samples used in the training 
data (including suboptimal and faulty behavior) while 
hand-coded libraries often concentrate on optimal or at 
least correct plans. Another application of the cluster­
ing/joining procedure is the generation of alternative de-
compositions for one single class in situations where the 
training data are already labeled wi th their respective 
class memberships, but contain strongly diverging ways 
of achieving the same goal. 

Future work wi l l include the application of the meth­
ods presented to additional domains and the investiga­
t ion of the impact of various degrees of domain knowl­
edge that could be used to improve the quality of plans 
and support the domain expert labeling the library en­
tries. Furthermore, comparisons wi th other clustering 
algorithms wi l l be performed. 
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