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Abst rac t 
Many planning problems exhibit a high degree 
of symmetry that cannot yet be exploited suc­
cessfully by modern planning technology. For 
example, problems in the Gripper domain, in 
which a robot wi th two grippers must trans-
fer balls from one room to another, are tr iv­
ial to the human problem-solver because the 
high degree of symmetry in the domain means 
that the order in which pairs of balls are trans-
ported is irrelevant to the length of the shortest 
transportation plan. However, planners typi­
cally search all possible orderings giving rise to 
an exponential explosion of the search space. 
This paper describes a way of detecting and ex­
ploiting symmetry in the solution of problems 
that demonstrate these characteristics. We 
have implemented our techniques in STAN, a 
Graphplan-based planner that uses state anal­
ysis techniques in a number of ways to exploit 
the underlying structures of domains. We have 
achieved a dramatic improvement in perfor­
mance in solving problems exhibiting symme-
try. We present a range of results and indicate 
the further developments we are now pursuing. 

1 In t roduc t i on 
S T A N [Long and Fox, 1999] is a planner, based on the 
architecture of Graphplan [Blum and Furst, 1997], that 
uses a range of static state-analysis techniques to en­
hance its planning performance [Fox and Long, 1998]. 
These techniques work by giving the planner insights 
into the underlying structural features of the domain, 
and of problem instances in that domain, and making 
them accessible to exploitation by the planner. One of 
the characteristic features of problems in many domains 
is their underlying symmetry. A problem exhibits a high 
degree of symmetry if there are many functionally iden­
tical objects that cannot be usefully distinguished. For 
example in a construction world, in which there are hun­
dreds of nails in a box, planners would quickly become 
lost in the search between alternative nail permutations 
in the solution of a construction instance. This search is 

wasted since all nail permutations are effectively equiva­
lent. Where symmetry occurs in a problem it can be ex­
ploited in a very powerful way by treating all symmetric 
objects as indistinguishable. This allows the planner to 
avoid considering plans that differ, from those already 
considered, only in the specific symmetric objects re­
ferred to or in the order in which symmetric objects are 
manipulated. 

In this paper we describe an algorithm for exploiting 
object and action symmetries that have been automati­
cally extracted from a problem description. Symmetry is 
a feature of problems, rather than of domains, although 
some domains naturally give rise to highly symmetric 
problems. Our symmetry mechanism has been imple­
mented in S T A N and has yielded dramatic performance 
improvements across a variety of problems from standard 
benchmark domains. Despite the improvements that can 
be observed from our results we are not yet exploiting all 
of the symmetry that is available in a problem that dis­
plays symmetric structure. We explain why this is the 
case and discuss an extension to our current approach 
that wi l l overcome this l imitat ion. 

2 Stat ic Symmet r y Detec t ion 
Symmetry analysis is a static analysis process that is in­
dependent of the planning architecture that wi l l exploit 
the detected symmetries. Thus, although S T A N is a 
Graphplan-based planner and the algorithm for exploit­
ing symmetry is Graphplan-dependent, the processes by 
which symmetry is detected in a problem description are 
entirely Graphplan-independent. This is in keeping wi th 
our philosophy of providing planner-independent static 
analysis tools for extracting implicit structure from do­
main and problem descriptions which is then available, 
for exploitation by planners, to reduce search during plan 
construction. 

The static analysis is in two phases. In the first phase 
groups of symmetric objects are automatically extracted 
from a problem description given as the ini t ia l and goal 
states expressed in the language of STRIPS [Fikes and 
Nilsson, 1971]. For our purposes we define symmetric 
objects to be those which are indistinguishable from one 
another in terms of their ini t ial and final configurations. 
For example, in the Gripper domain, ball\ and ball2 can 
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be considered symmetric wi th one another if, in the ini­
t ia l state, balk and ball2 are both at rooma and, in the 
goal state, balk and ball2 are both at roomb. When con-
stants appear in operator schemas they are abstracted, 
generating additional in i t ia l conditions which can only 
be satisfied by those constants. For example, the ap­
pearance of the constant ball1 in an operator schema 
gives rise to the additional precondition ball1(x), which 
can only be satisfied by ball1 using a newly created init ial 
state condition balli (balli). This ensures that constants 
wi th special roles in operators cannot be mistakenly seen 
as symmetric to other objects in the domain. 

Our strategy is to begin by identifying pairs of sym­
metric objects to form the bases of symmetry groups, 
and then to extend these groups by adding other objects 
from the same types. Types are inferred automatically 
by the Type Inference Module ( T I M ) of S T A N [Fox 
and Long, 1998]. Type information reduces the search 
involved in building the object symmetry groups because 
objects of different types cannot be symmetric wi th one 
another and can be immediately excluded from compar­
ison. 

This analysis is sensitive to the specification of init ial 
and goal states. Symmetry can be unnecessarily lost if 
redundant information is included in the problem spec­
ification. For example if, in the ini t ial state, the left 
and right grippers are free and in the goal state nothing 
is specified regarding either gripper, then the grippers 
wi l l be determined to be symmetric objects. However 
if, in the goal state, it is specified that the left gripper 
is free, but nothing is specified about the right gripper, 
then the left gripper wi l l be assumed to have special 
properties that make it asymmetric to the right gripper 
even though, in fact, both grippers wi l l be free by the 
time all of the balls have been transferred. Although 
this might make the symmetry analysis seem fragile, its 
sensitivity is actually one of its strengths. Any diver­
gence in the states of objects is interpreted as evidence 
that they should not be treated as entirely indistinguish­
able. Except in the case where apparently distinguishing 
information is actually redundant this interpretation is 
correct. 

The second stage in the process is the identifi­
cation and grouping of symmetric actions: any ac­
tions whose parameters are drawn from the same 
collections of symmetric groups are themselves sym­
metric. For example, pickup(balli,rooma,right) is 
symmetric wi th pickup(hall2,rooma,left) but not with 
pickupfbalk,roomt,,left) because rooma and roomb are not 
symmetric. We produce action symmetry groups by 
pairwise comparisons of these action instances. 

3 The Use of S y m m e t r y by S T A N 
The exploitation of symmetry in S T A N is dependent 
upon the graph construction and search techniques com­
mon to planners based on the Graphplan architecture. 
Graphplan uses constraint satisfaction techniques to 
search a layered graph which represents a compressed 

reachability analysis of a domain. The layers correspond 
to snapshots of possible states at instants on a t ime line 
from the ini t ial to the goal state. Each layer in the graph 
comprises a set of facts that represents the union of states 
reachable from the preceding layer. This compression 
guarantees that the plan graph can be constructed in 
time polynomial in the number of action instances in 
the domain. The expansion of the graph, from which 
solutions can be extracted, is partially encoded in b i ­
nary mutex relations computed during the construction 
of each layer. STAN implements an efficient representa­
tion of the graph in which a wave front [Long and Fox, 
1999] further supports its compression. In Graphplan-
style planners the search for a plan, from layer k, involves 
the selection and exploration of a collection of action 
choices to see whether a plan can be constructed, using 
those actions at the kth time step. If no plan is found 
the planner backtracks over the action choices. 

The objective of the analysis and exploitation of sym­
metry is to reduce the number of action choices that are 
searched. Thus, when S T A N backtracks over an action 
choice it avoids considering symmetric alternatives since 
a symmetric alternative to a given action instance can 
never make more progress than that action instance. For 
example, in the Gripper domain, if no plan to transport 
n balls to rooma can be found, ending at layer k, by drop­
ping balln from the right gripper, then no plan wi l l be 
found, ending at layer i, by dropping balln f rom the left 
gripper. Handling symmetry correctly involves a num­
ber of subtleties. For example, when a specific object 
in a symmetry group has been selected for a particular 
role in the plan it is no longer symmetric wi th the other 
objects in the group because it can now be distinguished 
from those other objects on the basis of the particu­
lar roles it plays. In our mechanism the symmetry of 
an object is broken as soon as it can be distinguished 
from the others in its group. On backtracking over an 
action choice we reinstate the symmetry of the objects 
whose symmetry was broken on selection of that action. 
We need both layer-dependent and layer-independent in­
formation to support the correct maintenance of action 
symmetry in the plan graph. A pseudo-code description 
of the Graphplan-style search algorithm of S T A N , high­
lighting the modifications necessary to exploit object and 
action symmetries, is given in Figure 1. The basic algo-
r i thm should be familiar to readers conversant wi th the 
Graphplan algorithm. The bold typeface is used to indi­
cate the extensions to the basic algorithm necessary to 
support the use of symmetry. The mechanism is non-
heuristic and does not have to be manually selected or 
deselected when the planner is presented wi th specific 
domains, as is the case wi th some of the domain analysis 
techniques discussed in the literature [Nebel et al., 1997]. 
The effects of the symmetry machinery on search com­
pleteness, which are benign, are discussed below. The 
overhead associated wi th the symmetry mechanism is 
discussed along wi th the empirical results below. 

There are two key data structures involved in the cor­
rect exploitation of symmetry in S T A N . One of these is 
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lb search from layer In w i th goal set gs: 

If gs is empty 
then search from layer In — 1 wi th the goal set constructed from 

all preconditions of actions selected at layer In 
If no plan is found 
then reset t r i e d g roups at layer In — 1; 

backtrack to last choice point; 
else return completed plan; 

else Consider first goal, g, goal set, gs: 
If g is sti l l unachieved at layer In 
then For each action, a, which can achieve g at 

layer In: 
I f s y m m e t r y g r o u p f o r a a l ready 

t r i e d 
t h e n con t i nue t o n e x t a c t i o n ; 
Choose action a to achieve g; 
I n c r e m e n t brokenSym en t r ies f o r 

s y m m e t r i c pa ramete rs ; 
if searching from In w i th gs \ {g} 

yields a plan 
then return the completed plan 
else retract action a; 

decrement brokenSym en t r ies f o r 
s y m m e t r i c pa ramete rs ; 

m a r k a c t i o n s y m m e t r y g r o u p 
as t r i e d ; 

continue to next action; 
When all actions have been tr ied, fail at this 

point in search and backtrack; 
else search at In w i th gs \ { g } ; 

If a plan is found 
then return the plan 
else fai l at this point and backtrack. 

F i g u r e 1: Core Graphplan-style Search Algor i thm Indicating Modi­
fications for Symmetry-Exploitation 

layer-independent and one layer-dependent. The layer-
independent structure, brokenSym, is a vector of inte­
gers, one entry for each domain object in a symmetry 
group of more than one object. Every time an action is 
applied the entries corresponding to the objects in the 
action instance are incremented. A non-zero entry indi­
cates that the corresponding object is no longer symmet­
ric. When an action is retracted the appropriate entries 
are decremented. The entries are not binary because a 
sequence of actions might need to be retracted in order to 
restore the symmetry of an object. The layer-dependent 
data structure is an array of matrices, triedGroups, one 
matr ix for each group of symmetric actions, recording 
which action symmetry groups have been tried at that 
layer. The number of dimensions of a matr ix is equal to 
the number of symmetric parameters referred to by ac­
tions in that symmetry group. The matrices can be allo­
cated during graph construction. Their sizes are known 
at action instantiation, but they cannot be allocated at 
that time because it cannot be known how many layers 
there wi l l be or which symmetric groups wi l l be repre­
sented at each layer. The size of each dimension is one 
more than the number of objects in the corresponding 
collection of symmetric objects. The extra entry plays 
an important role in recognising symmetric actions as 
the following example shows. 

Suppose that drop(balli,roomb, left) is applied at some 
layer n + 1. If pickup (ball2,rooma,left) is consid­

ered at layer n we would like to avoid considering 
pickup(ballsfrooma,left)' since balk 2 and 3 are symmet­
ric so the two pickups should be considered as sym-
metric even though the symmetry of the left gripper 
has been broken. On the other hand, we want to 
t ry pickup(ball2,rooma,right), because the use of the 
left gripper at layer n + 1 might have been the cause 
of the failure of the first pickup. If we simply mark 
pickups at rooma as having been tried we wi l l not 
try pickup(ball2frooma,right), which would lose com-
pleteness. If we don't mark pickups then we wi l l t ry 
pickup(ball3,rooma,left) as well, which we do not want 
to do since this would lose the advantages of symme-
try. The matr ix allows us to identify the remaining 
symmetry in an action instance. In the above sit­
uation we mark pickup(*,rooma,left) as tr ied, where 
• stands for an arbitrary argument to the pickup in­
stance, so we wi l l not try pickup(balls,rooma,left), but 
wi l l try pickup(ball2,rooma,right). Because the sym­
metry of ball\ was broken at layer n+1, so that 
pickup(balli,roomafleft) is not symmetric wi th the other 
pickups, this action instance wi l l also be tried. The • 
argument represents the collection of objects wi th un­
broken symmetry in the appropriate object symmetry 
group. The extra entry in the matr ix is used to record 
the status of the action symmetry group wi th the corre-
sponding argument set to *. 

The way these two data structures are used is as fol­
lows. On the point of choice of an action we check to see 
whether the symmetry group, to which the action being 
considered belongs, has been tried. If it has, we reject 
the action wi th no further search. Otherwise we mark 
all of its symmetric arguments as broken by increment­
ing the appropriate entries in brokenSym. During action 
instantiation the indices of these arguments in the bro-
kenSym vector are recorded within the action instances, 
making access to the vector very efficient. 

On backtracking through an action choice following 
failure, we decrement the appropriate entries in broken­
Sym and mark the action symmetry group as tried at the 
current layer. This is done by indexing into the appropri­
ate matr ix at the entry corresponding to the particular 
configuration of broken and unbroken symmetric argu­
ments in the instance. If an argument is unbroken the 
index 0 is used on that dimension, representing the mark­
ing of the whole object symmetry group corresponding 
to the • argument discussed above. Otherwise the num­
ber of that object within its symmetry group (starting 
from 1) is used as the index. Since the arguments of 
an action are fixed when the action is instantiated, and 
the positions of the symmetric arguments, within their 
respective symmetry groups, are fixed during ini t ial sym­
metry analysis, much of the work involved in identifying 
the correct indices is done once and for all during con­
struction. This makes access to the matrices very effi­
cient so that the marking and unmarking of symmetry 
groups represents a negligible overhead. 

When backtracking through a layer the entire collec­
t ion of matrices at that layer is reset to enable subse-
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quent exploitation of symmetry to be unaffected by ear­
lier search. No-ops do not break the symmetry of their 
arguments (because they do not cause the states of their 
arguments to change) and we treat each no-op as sym­
metric only wi th itself. 

The symmetry machinery described in this paper does 
not yet deal w i th all of the symmetry that is there to be 
exploited in a problem. When search begins, all objects 
that can be identified as symmetric wi l l be available for 
exploitation as symmetric objects. However, as search 
progresses, from the goal state towards the init ial state, 
object symmetry is broken for increasing numbers of ob­
jects so that there is l i t t le, or no, symmetry left to ex­
ploit in the final search layers. This happens because 
we cannot yet recognise intermediate domain states at 
which the symmetry of objects could, in principle, be re­
freshed. In the Gripper domain, as more balls are moved 
into their final state, more alternative action instances 
become asymmetric and hence available for (useless) con­
sideration during search. In this domain balls can be in 
any one of four states: at rooma> at roomb or held in 
the left or right gripper. Each of these alternatives po­
tentially represents a symmetry state for balls. Only the 
first two of these symmetry states are interesting since 
only one ball can be held by any gripper at any time. We 
would like to be able to fully exploit these two symmetry 
states for balls. At present the mechanism only identifies 
the balls as symmetric whilst they are in their goal room 
because Graphplan planners search backwards from the 
goal state. If we could recognise being in the start room 
as a symmetry state for the balls we could refresh their 
symmetry as we progressed towards the init ial state. In 
other domains there may be multi-state symmetries to 
exploit, involving many different symmetry states. 

Despite the fact that we only exploit part of the sym­
metry in a problem we sti l l obtain huge improvements 
in performance in the solution of inherently symmetric 
problems. In domains, such as Gripper, in which there 
is exponential growth in the search amongst symmetric 
choices, and in which objects have more than one sym­
metry state, we only obtain benefit from one of these 
symmetric states. In Gripper we obtain roughly a 50 
per cent speed up. We have designed a modified Grip­
per domain to demonstrate the kinds of performance en­
hancement we obtain in a single symmetry state, and to 
indicate what improvements can be expected from ful l 
exploitation of symmetry. Our experiments in this, and 
other domains, are described later in this paper. 

4 S y m m e t r y and Search Completeness 
Given a set of goals at layer k in the plan graph, S T A N 
wil l t ry alternative non-symmetric action combinations 
in the search for a plan. If a combination fails to lead to 
a plan then the symmetry group of the action choice that 
caused the failure wi l l be marked as tried and no sub­
sequent combinations considered wi l l contain any action 
in the tried symmetry group, even though some other 
combination containing that action choice might actu­

ally lead to a plan. The desired action wi l l be success­
fully selected at laycfr in combination wi th no-ops 
to achieve the goals that were successfully achieved at 
layer k. For example, suppose that actions 
have been tried at layer fc, and that o,- belongs to sym­
metry group 5. Then 5 wi l l be marked as tried at layer 
k. If fails the desired combination, suppose it is 

wi l l not be found at layer k because it contains 
an action in a tried symmetry group. This combination 
wi l l be found across layers k and k + 1, since wi l l be 
tried at layer 4+1 and no-ops used to achieve the remain­
ing goals achieved at layer 4. We therefore lose parallel 
optimal plan completeness but retain sequential optimal 
plan completeness. It is possible to construct problem 
instances in which the number of additional layers that 
have to be constructed outweighs the advantages of ex­
ploiting symmetry. We are therefore working on an ex­
tension to the symmetry mechanism to enable actions to 
be retried at a level if the search context in which they 
were last tried has changed. 

5 Exper imenta l Results 
We have two objectives in presenting the following data: 
to show the advantage that the symmetry mechanism 
gives in solving symmetric problems and to demonstrate 
that no significant overhead is paid when there is l i t t le, 
or no, symmetry to exploit in a problem. 

STAN is implemented in C + + and the following re­
sults were computed on a Sparc-10 under Unix. The re­
sults demonstrate the advantages obtained by the use of 
our symmetry machinery in solving a selection of prob­
lems from the Gripper domain, the simple TSP domain 
(a Travelling Salesman Problem on complete graphs), 
the Ferry domain and a modified Gripper domain. A l l 
but the last of these are standard benchmark domains. 
The modified Gripper domain is used to demonstrate ev­
idence supporting our hypothesis that failure to exploit 
more than one symmetry state reduces our advantage 
proportionally wi th the number of symmetry states in 
the domain. We produced the modified Gripper domain 
by forcing pickups to be done in rooma (the start room) 
and drops to be done in roomb (the destination room). 
As can be observed, the exploitation of ball and grip-
per symmetry in this domain yields an exponential ad­
vantage over that obtained in the unmodified Gripper 
domain. 

The data for the Ferry domain, shown in Figure 2, 
illustrates the benefits to be obtained from the exploita­
t ion of the symmetry of cars that must be transported 
from a single source to a single destination. The Ferry 
domain is similar to the Gripper domain in having two 
symmetry states for the cars, only one of which is cur­
rently being exploited by our machinery. Because of the 
unexploited symmetry state the performance of STAN 
with symmetry is sti l l deteriorating exponentially, al­
though the exponent is so much smaller than in STAN 
without symmetry that it does not become a problem 
unti l the instances are very large. Our analysis leads 
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F i g u r e 2: Comparison between STAN wi th Symmetry and STAN 
without Symmetry in the University of Washington Ferry Domain 

F i g u r e 3: Comparison between STAN wi th Symmetry and STAN 
without Symmetry in the Carnegie Mellon University TSP Domain 

us to conclude that exploitation of the remaining sym­
metry state wi l l give us an exponential improvement in 
performance. This conclusion is supported by the Grip-
per experiments detailed below. 

The simple TSP domain, involving traversal of a fully 
connected graph, gives rise to problems that are, in prin­
ciple, t r iv ia l but that are beyond the capabilities of most 
Graphplan-style planners because of the n factorial per­
mutations of the n cities to be visited. These permuta­
tions are all symmetric and Figure 3 shows that S T A N 
wi th symmetry is able to exploit this feature and solve 
instances in linear t ime. In this domain S T A N exploits 
an additional form of symmetry not yet discussed in this 
paper. This is goal symmetry, which arises when two 
or more goals are expressed using the same predicate 
and arguments from the same object symmetry groups. 
When two goals are symmetric and can only be achieved 
at the rate of one per layer, because of observed interac­
tions between their potential achievers, S T A N imposes 
an arbitrary ordering between them and does not search 
alternative orderings. This feature of certain domains 
is automatically detected by S T A N using the invariant 
inference machinery discussed in [Fox and Long, 1998]. 
Putt ing the two ways of exploiting symmetry together 
yields substantial benefits in domains that feature this 
particular invariant. 

The unmodified Gripper domain is the standard ver­
sion designed by the IPP team and used in the AIPS-98 
planning competit ion1. There are two symmetry states 
to exploit but we currently exploit only one of them. 
By modifying the domain, so that balls can only be 
picked up in the source room and dropped in the destina­
t ion room, we dramatically reduce the significance of the 
symmetry state in which the balls are in the source room. 
This allows us to focus on the benefit obtained by ex­
ploiting the one symmetry state without being swamped 
by the cost of not exploiting the remaining one. Look­
ing at Figures 4 and 5, we can observe an exponential 
speed up obtained by suppressing the significance of the 

1 h t t p : / / f t p . cs. yale.edu/pub/mcdermott /aipacomp-results. fatal 

F i g u r e 4: Comparison between STAN wi th Symmetry and STAN 
without Symmetry in the IPP Team's Gripper Domain 

second symmetry state. This strongly supports our hy­
pothesis that a ful l exploitation of all of the symmetry 
available within a family of problems can yield an expo­
nential improvement in the performance of the planner. 

Finally, we present evidence using the Logistics do­
main to demonstrate that the overhead of the symmetry 
machinery is negligible when there is no symmetry in 
a problem or when the symmetry cannot be effectively 
exploited. In the first case the data structures needed 
to support symmetry are not gven constructed so the 
overhead during search amounts to a single comparison 
confirming that there is no symmetry available for use at 
the points of action selection, retraction and backtrack­
ing over layers. In the second case the data structures 
are bui l t , initialised and maintained to no positive effect. 
To explore problems wi th this character we constructed 
a family of Logistics problems involving the transporta-
tion of a number of packages from a single source city 
to a single destination city using a single airplane. We 
call this version of Logistics the one-dimensional Logis­
tics domain. The packages are symmetric and the indi­
vidual operator schemas yield separate action symmetry 
groups. However, in this family of problems there is no 
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F i g u r e 5: Companion between STAN wi th Symmetry and STAN 
without Symmetry in the Modified Gripper Domain. STAN without 
symmetry was terminated after 2.5 hours on the 12 ball problem. 

F i g u r e 6: Comparison between STAN wi th Symmetry and STAN 
without Symmetry in the One-Dimensional Logistics Domain 

interesting search involved in solving them so the main­
tained data structures play no useful role. As can be seen 
from Figure 6 the overhead in building and maintaining 
these structures is insignificantly low. 

6 Fur ther Developments 
There are two important lines of further development 
under investigation. The first concerns the need to dis­
tinguish different search contexts in which symmetric ac­
t ion combinations can be considered. As discussed in 
Section 4, failure to manage contexts leads to the loss of 
parallel optimal plan completeness and the loss of any 
efficiency advantages in certain carefully constructed ex­
amples. We are experimenting wi th un-marking tried 
symmetry groups when backtracking over earlier action-
selection choices. In the example considered in Section 4, 
the group S would be un-marked when backtracking over 
the choice of o1, on the grounds that the selection of an 
alternative to o1 creates a different context in which o, 
might be usefully reconsidered. 

The second line of development concerns the identifi­
cation of symmetry states which would enable a fuller 
exploitation of both object and action symmetries. In 

order to pursue this we are examining the object state-
transition networks which are generated automatically 
by T I M as part of the type inference process. Exam­
ination of these networks indicates the possible states 
that objects of the associated type can inhabit. The 
brokenSym structure, in our current implementation, is 
replaced by a data structure which records, for each ob­
ject and for each symmetry state that object can in­
habit, whether the symmetry of the object is currently 
broken in that state. Thus, the symmetry of objects can 
be restored as they traverse their state-transition net­
works. The information stored in the new data structure 
is level-dependent, reflecting the fact that state transi­
tions are made by applications of actions. We expect the 
added overhead of init iat ing and maintaining the new 
data structures to be far outweighed, in problems where 
symmetry is significant, by the advantages obtained from 
being able to refresh symmetry as search progresses back 
from the goal state. 

7 Conclusion 
In this paper we discuss a way of exploiting the sym­
metry that is inherent in many planning problems to 
circumvent much of the search that makes these prob­
lems intractable using current planning technology. We 
have described the algorithm in terms of the modifica­
tions made to the basic Graphplan-style search proce-
dure of S T A N . Our results demonstrate the significant 
improvements obtained by detecting and using symme-
try during the planning process. S T A N wi th symmetry, 
S T A N version 3, is available for experimental purposes 
from the S T A N web page2. 
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