
Compu ta t i ona l Comp lex i t y o f P lann ing and
A p p r o x i m a t e P lann ing in Presence o f Incompleteness

Ch i t t a Bara l , V lad ik Kre inov ich, and Raul Trejo
Department of Computer Science

University of Texas at El Paso
El Paso, TX 79968, USA

emails {chitta,vladik,rtrejo}@cs.utep.edu

Abstract

In the last several years the computational com­
plexity of classical planning and HTN planning
have been studied. But in both cases it is as­
sumed that the planner has complete knowl­
edge about the init ial state. Recently, there has
been proposal to use 'sensing' actions to plan
in presence of incompleteness. In this paper we
study the complexity of planning in such cases.
In our study we use the action description lan­
guage proposed in 1993 by M. Gelfond and
V. Lifschitz and its extensions.
The language allows planning in the situa­
tions with complete information. It is known
that, if we consider only plans of feasible
(polynomial) length, the planning problem for
such situations is NP-complete: even checking
whether a given objective is attainable from a
given init ial state is NP-complete. In this pa­
per, we show that the planning problem in pres­
ence of incompleteness is indeed harder: it be­
longs to the next level of complexity hierarchy
(in precise terms, it is complete). To over­
come the complexity of this problem, C. Baral
and T. Son have proposed several approxima­
tions. We show that under certain conditions,
one of these approximations - O-approximation
- makes the problem NP-complete (thus in­
deed reducing its complexity).

1 In t roduc t ion

The action description language proposed in 1993 by
M. Gelfond and V. Lifschitz [Gelfond and Lifschitz, 1993]
mid its successors have made it easier to understand the
fundamentals (such as inertia, ramification, qualifica­
tion, concurrency, sensing, etc.) involved in formalizing
actions and their effects on a world, without getting into
the details of particular logics. In this paper, we wil l
be analyzing the complexity of planning based on this
language and its extensions; let us, therefore, start with
a brief description of this language.

1.1 L a n g u a g e A : b r i e f r e m i n d e r
In the language we start with a finite list of proper­
ties (fluents) which describe possible proper­
ties of a state. A state is then defined as a finite set of
fluents, e.g., {} or We are assuming that we
have a complete knowledge about the init ial state: e.g.,

means that in the init ial state, properties and
are true, while all the other properties are

false. The properties of the init ial state are described by
formulas of the type

initially
where is a fluent literal, i.e., either a fluent or its
negation

To describe possible changes of states, we need a finite
set of actions. In the language the effect of each action
a can be described by formulas of the type

causes if

where are fluent literals. A reason­
ably straightforward semantics describes how the state
changes after an action:

• if before the action the literals were
true, and the domain description contains a rule ac­
cording to which causes if then this
rule is activated, and after the action becomes
true; thus, for some fluents we wi l l conclude
and for some other, that holds in the next state;

• if for some fluent no activated rule enables us to
conclude that is true or false, this means that the
action a does not change the truth of this fluent;
therefore, is true in a new state if and only if it
is true in the old state.

Formally, a domain description D is a finite set of value
propositions of the type initially (which describe the
init ial state), and a finite set of effect propositions of the
type "a causes F if (which describe results
of actions). A state s is a finite set of fluents. The
initial state SO consists of all the fluents for which the
corresponding value proposition initially is contained
in the domain description. We say that a fluent holds
in s if otherwise, we say that holds in The
transition function which describes the effect
of an action a on a state s is defined as follows:

948 PLANNING AND SCHEDULING

♦ we say that an effect proposition "a causes F if
is activated in a state s if all m fluent

literals hold in s;

we define as the set of all fluents fi for
which a rule "a causes if is activated
in s;

• similarly, we define as the set of all fluents
for which a rule "a causes if is

activated in s;

♦ if we say that the result of
the action a is undefined;

• if the result of the action a is not undefined in a
we define

A plan p is defined as a sequence of actions
The result ResrD(p, s) of applying a plan p to the initial
state so is defined as

The planning problem is: given a domain D and a de­
sired fluent literal F, to find a plan which leads to the
state in which F is true. (More complicated goals can
be reformulated in these terms.)

1.2 A n e x t e n s i o n o f l anguage w h i c h
desc r ibes sens ing a c t i o n s : b r i e f
r e m i n d e r

The language A describes planning in the situations with
complete information, when we know exactly which flu­
ents hold in the init ial state and which don't. In real life,
we often have only partial information about the init ial
state: about some fluents, we know that they are true
in the init ial state, about some other fluents, we know
that they are false in the init ial state; and it is also pos­
sible that about some fluents, we do not know whether
they are initially true or false. In such situations, the
required action depends on the state: e.g., if we want
the door closed, the required action depends on whether
the door was initially open (then we close i t) , or it was
already closed (then we do nothing). Therefore, for these
situations, we must include sensing actions - e.g., an ac­
tion checki which checks whether the fluent /, holds in a
given state - to our list of actions, and allow conditional
plans, i.e., plans in which the next action depends on the
result of the previous sensing action.

Some fluents may be difficult to detect, so we may
have sensing actions only for some fluents; some real-
life sensing actions may sense several fluents at a time.
In view of these possibilities, the precise formulation of
this language is as follows1. In the domain description
D, in addition to value propositions and effect proposi­
tions, we can also have sensing propositions, of the type
"a determines A k-state is defined as pair

1The formulation given here is based on earlier work
of formalizing sensing actions in [Moore, 1985; Scherl and
Levesqne, 1993].

where s is the actual state, and is the set of all possible
states which are consistent wi th our current knowledge.
Initially, the set consists of all the states s for which:

• a fluent is true if the domain description
D contains the proposition "initially

• a fluent fi is false if the domain description
D contains the proposition "initially

If neither the proposition "initially nor the proposi­
tion "initially are in the domain description, then

contains states with true and with false. The
actual init ial state can be any state from the set
The transition function is defined as follows:

• for proper (non-sensing) actions, is mapped
into

where:
- Reso(a, s) is defined as in the case of complete

information, and

• f o r a sensing action which senses fluents
for which sensing propositions

"a determines belong to the domain D ~ the
actual state s remains unchanged while is down
to only those states which have the same values of

In the presence of sensing, an action plan is no longer
a pre-determined sequence of actions: if one of these
actions is sensing, then the next action may depend on
the result of that sensing. In general, the choice of a next
action may depend on the results of all previous sensing
actions. Such an action plan is called conditional.

Examples have shown that adding sensing actions in-
creases the computational complexity of the problem.
In this paper, we show that the corresponding planning
problem is indeed harder: it belongs to the next level
of complexity hierarchy (in precise terms, it is
complete).

1.3 T h e n o t i o n o f a O - a p p r o x i m a t i o n
To overcome the complexity of this problem, C. Baral
and T. Son have proposed several approximations, whose
plans are always correct but which can miss a plan. The
first approximation - called O-approximation - is as fol­
lows: An a-state (approximate state) s is a finite set
of fluent literals (i.e., fluents and their negations). The
initial a-state so consists of all the fluent literals F for
which the corresponding value proposition "initially F"
is contained in the domain description. We say that:

• a fluent fi if true in s is
• a fluent fi if false in s is
• a fluent fi if unknown in s is neither not

The transition function Resi)(a,s) which describes the
effect of a proper action a on an a-state is defined as
follows:

BARAL, KREINOVICH, AND TREJO 949

• we say that an effect proposition "a causes if
is activated in an a-state s if all m fluent

literals hold in
• we say that an effect proposition "a causes F if

is possibly activated in an a-state s if
all m fluent literals possibly hold in s
(i.e., are either true, or unknown in s);

• we define as the set of all fluent literals F
for which a rule "a causes F if is acti­
vated in S, and no rule causes F if
is possibly activated in s;

• we then define ResrD(a,s) as

For sensing actions, the result of applying a to an a-state
s simply means adding, to the a-state, the fluent literals
which turned out to be true as a result of this sensing
action.

2 Resu l t s
2.1 W h a t k i nd o f p lanning problems we

are interested in
Informally speaking, we are interested in the following
problem:

• given a domain description (i.e., the description of
the init ial state and of possible consequences of dif­
ferent actions) and a goal (i.e., a fluent which we
want to be true),

• determine whether it is possible to achieve this goal
(i.e., whether there exists a plan which achieves this
goal).

We are interested in analyzing the computational com-
plexity of the planning problem, i.e., analyzing the com­
putation time which is necessary to solve this problem.

Ideally, we want to find cases in which the planning
problem can be solved by a, feasible algorithm, i.e., by an
algorithm whose computational time on each in­
put is bounded by a polynomial of the length

of the input (this length can
be measured bit-wise or symbol-wise. Problems which
can be solved by such polynomial-time algorithms are
called problems from the class (where stands for
polynomial-time). If we cannot find a polynomial-time
algorithm, then at least we would like to have an algo­
r i thm which is as close to the class of feasible algorithms
as possible.

In short, we are interested in restricting the time which
it takes to check whether the planning problem is solv­
able. This interest is justified because in planning appli­
cations we often want the resulting plan to be produced
in real time, and if it is not possible to produce such
a plan, we would like to know about this impossibility
as early as possible, so that we wi l l be able to add new
actions (or simply give up). Since we are operating in
a time-bounded environment, we should worry not only
about the time for computing the plan, but we should

also worry about the time that it takes to actually im-
plement the plan. If an action plan consists of a sequence
of actions, then this plan is not feasible. It is there-
fore reasonable to restrict ourselves to feasible plans, i.e.,
by plans whose length (= number of actions in it)
is bounded by a polynomial of the input Wi th
this feasibility in mind, we can now formulate the above
planning problem in precise terms:

• given: a polynomial a domain descrip­
tion D (i.e., the description of the init ial state and
of possible consequences of different actions) and a
goal / (i.e., a fluent which we want to be true),

• determine whether it is possible to feasibly achieve
this goal, i.e., whether there exists a feasible plan u

which achieves this goal.
We are interested in analyzing the computational com-
plexity of this planning problem.

2.2 C o m p l e x i t y o f t h e p l a n n i n g p r o b l e m
f o r s i t u a t i o n s w i t h c o m p l e t e
i n f o r m a t i o n

For situations with complete information, the above
planning problem is

Theo rem 1. For situations with complete information,
the planning problem is -complete.

Comments.
• This result is similar to the result of Liberatore [Lib-

eratore, 1997]. The main difference is that Libera­
tore considers arbitrary queries from the language
A, while we only consider queries about the exis­
tence of a feasible action plan.

• The result of Liberatore is preceded by the results of
Erol et al [Erol et al., 1995] where they study com­
plexity of STRIPS. Here we use and its extensions
instead of STRIPS as to the best of our knowledge
there has not been any formal treatment of exten­
sions of STRIPS dealing with sensing actions.

• For lack of space we are not able to present all the
proofs in this paper.

• The problem remains NP-complete even if we con­
sider the planning problems with a fixed finite num­
ber of actions: even with two actions. If we only
allow a single action, then there is no planning any
more: the only possible plan is, in any state, to ap­
ply this only possible action and check whether we
have achieved our goal yet; the corresponding "plan­
ning" problem is, of course, solvable in polynomial
time.

2.3 U s e f u l c o m p l e x i t y n o t i o n s
For situations with incomplete information, the planning
problem is more complicated - actually, belongs to the
next levels of polynomial hierarchy; see the exact results
below. For precise definitions of the polynomial hierar­
chy, see, e.g., [Papadimitriou, 1994]. Crudely speaking,

950 PLANNING AND SCHEDULING

a decision problem is a problem of deciding whether a
given input satisfies a certain property (i.e., in set-
theoretic terms, whether it belongs to the corresponding
set

• A decision problem belongs to the class if there
is a feasible (polynomial-time) algorithm for solving
this problem.

• A problem belongs to the class if the checked
formula (e q u i v a l e n t l y , c a n be rep­
resented as where is a feasible
property, and the quantifier runs over words of fea­
sible length (i.e., of length limited by some given
polynomial of the length of the input). The class

is also denoted by to indicate that formu­
las from this class can be defined by adding 1 exis­
tential quantifier (hence and 1) to a polynomial
predicate

• A problem belongs to the class if the checked
formula S (equivalently, can be rep­
resented as where is a feasible
property, and the quantifier runs over words of fea­
sible length (i.e., of length limited by some given
polynomial of the length of the input). The class

is also denoted by to indicate that for­
mulas from this class can be defined by adding 1
universal quantifier (hence and 1) to a polyno­
mial predicate (hence

• For every positive integer a problem be­
longs to the class i f t h e checked for­
mula (equivalently, can be rep­
resented as where

is a feasible property, and all
quantifiers run over words of feasible length (i.e.,
of length limited by some given polynomial of the
length of the input).

• Similarly, for every positiveinteger a prob­
lem belongs to the class if the checked for­
mula (equivalently, can be rep­
resented as where

is a feasible property, and all
quantifiers run over words of feasible length (i.e.,
of length limited by some given polynomial of the
length of the input).

• A l l these classes and are subclasses of a
larger class formed by problems which
can be solved by a polynomial-space algorithm. It
is known (see, e.g., [Papadimitriou, 1994]) that
this class can be equivalently reformulated as a
class of problems for which the checked formula

(equivalently, can be represented as
where the number

of quantifiers is bounded by a polynomial of the
length of the input, J) is a feasible
property, and all quantifiers run over words of
feasible length (i.e., of length limited by some given
polynomial of the length of the input).

A problem is called complete in a certain class if.
crudely speaking, this, is the toughest problem in this
class (so that any other general problem from this class
can be reduced to it by a feasible-time reduction). It is
stil l not known (1998) whether we can solve any prob­
lem from the class in polynomial time (i.e., in precise
terms, whether However, it is widely believed
that we cannot, i.e., that It is also believed that
to solve a complete or a c o m p l e t e problem,
we need exponential time and that solving a com­
plete problem from one of the second-level classes or

requires more computation time than solving N P -
complete problems (and solving complete problems from
the class takes even longer).

2.4 C o m p l e x i t y o f t h e p l a n n i n g p r o b l e m
f o r s i t u a t i o n s w i t h i n c o m p l e t e
i n f o r m a t i o n : s i t u a t i o n s w i t h n o
sens ing ac t i ons

Let us start our analysis with the case of no sensing.
Theorem 2. For situations with incomplete informa­
tion and without sensing, the planning problem is
complete.
Proof . The problem is to check the existence of a
feasible-length action plan for which, for every set
of values of the unknown fluents, is successful,
i.e., we check whether Once we
know and (i.e., once we know the init ial state and
the actions), we can determine, step-by-step, all follow­
ing states, and thus check, in polynomial time, whether
in the final state, the desired predicate is true. So,

To show that is complete, we reduce, to
a known complete propositional problem of checking

are propositional vari­
ables, is a propositional formula). To reduce it to

we first parse F, i.e., we represent computing F as
a sequence of elementary steps, on each of which we
apply &, V, or to compute the intermediate results

to compute we
compute etc. In our planning problem,
we take two actions a and and fluents

(meaning: is true iff time = i) . Initially,
is true, all other s, are false; is false, all other

are unknown; goal: In the first moments
of time, we select variables a selects
selects "a causes i f (s a m e f o r a l s o , ev­
ery action increases time by one: e.g., a causes if
and causes In moments
we "compute" then causes
if causes and causes
if (+ rules which increase time by 1). A plan
exists iff there exist values for which, for all

is true. The reduction proves that is
complete.
The problem remains even if we consider
the planning problems with a fixed finite number of ac­
tions: even with two actions.

BARAL, KREINOVICH, AND TREJO SSI

T h e o r e m 3. For situations with incomplete informa­
tion and without sensing, the 0-approximation to the
planning problem is NP-complete.

In other words, the use of O-approximation cuts off one
level from the complexity. So, for this problem, 0-
approximation is indeed computationally very efficient.

This reduction is in good accordance wi th our intuit ive
understanding of this problem and its O-approximation:

• In the case oi complete information, to represent
a state, we must know which fluents are true and
which are false. Therefore, a state can be uniquely
described by a subset of the set of all the fluents -
namely, the subset consisting of those fluents which
are true in this state. The total number of states is
therefore equal to the total number of such subsets,
i.e., to 2F (where F is the total number of fluents).

• In the case of incomplete information, we, in gen­
eral, do not know which states the system is. So, a
state of our knowledge (called a k-state in [Son and
Baral, 1998]) can be represented by a set of possible
complete-information states. Therefore, the num­
ber of all possible k-states is equal to the number
of all possible subsets of the set of all complete-
information states, i.e., to

• In O-approximation, an a-state is represented by
stating which fluents are true, which are false, and
which are unknown. For each of F fluents, there
are three different possibilities, so totally, in this
approximation, we have possible a-states.

So, going from a ful l problem to its O-approximation
decreases the number of possible "states" from doubly
exponential to singly exponential Since plan­
ning involves analyzing different possible states, it is no
wonder that for O-approximation, the computation time
should also be smaller. Again, this argument is not a
proof of Theorem 3, but this argument makes the result
of Theorem 3 intuitively reasonable.

2.5 Comp lex i t y of the p lanning prob lem
for si tuat ions w i t h incomplete
i n fo rma t ion : si tuat ions w i t h sensing

Let us now consider what wi l l happen if we allow sens­
ing actions. If we allow unlimited sensing, then the situ­
ation changes radically-, the planning problem becomes
so much more complicated that O-approximation is not
helping anymore:

Theorem 4. For situations with incomplete in­
formation and with sensing, the planning problem is
PSPACE-complete.

Theorem 5. For situations with incomplete informa-
tion and with sensing, the O-approximation to the plan­
ning problem is PSPACE-complete.

The proofs are similar to [Lit tman, 1997]. Both the
planning problem itself and its O-approximation remain
PSPACE-complete even if we consider the planning

problems wi th a fixed finite number of actions: even wi th
two proper actions and a single sensing action which re­
veals the t ru th value of only one fluent - but we are al­
lowed to repeat this sensing action at different moments
of t ime.

In many real life control and planning situations, it is
desirable to monitor the environment continuously, and
to make sensing actions all the t ime. However, this ne-
cessity is caused by the fact that in many real-life sit-
uations, the consequences of each action are only sta­
tistically known, so we need to constantly monitor the
situation to f ind out the actual state. In this paper, we
consider the situations in which the result of each action
is uniquely determined by this action and by the init ial
state. In such idealized situations, there is no such need
for a constant monitoring. It therefore makes sense to
allow only a l imited repetition of sensing actions in an
action plan. Wi th such a l imitat ion, the complexity of
planning drops back, and O-approximation starts helping
again:

D e f i n i t i o n 1. Let k be a positive integer.
• We say that a sensing action is k-limited if it reveals

the values of no more than k fluents.
• We say that an action plan is k-bounded if it has no

more than k sensing actions.
T h e o r e m 6. For any given k, for situations with incom­
plete information and with k-limited sensing actions, the
problem of checking the existence of a k-bounded action
plan is

Theo rem 7. For any given k, for situations with in­
complete information and with k-limited sensing actions,
the problem of checking the existence of a k-bounded 0-
approximation action plan is NP-complete.

Comments.
• The same result holds if instead of assuming that k

is a constant, we allow to grow as
as a square root of the logarithm of the length of
the input).

• A difficulty wi th the general situation with incom­
plete information comes from the fact that we do
not know the exact states, i.e., we do not know
the values of all the fluents. It is therefore reason­
able to analyze the situations with full sensing, i.e.,
situations In which, for every fluent f i , we have a
sensing action checki which reveals the value of this
fluent. Full sensing does make the planning prob-
lem simpler, although not that simpler so that 0-
approximation wi l l help:

Theo rem 8. For situations with incomplete informa­
tion and with full sensing, the planning problem is
complete.

Theorem 9. For situations with incomplete informa­
tion and with full sensing, the O-approximation to the
planning problem is

These results can be represented by the following table:

952 PLANNING AND SCHEDULING

unlimited number
of sensing actions

PSPACE-complete

ful l sensing limited sensing

O-approximation or
complete information

NP-complete

2.6 A u x i l i a r y resul t : 1-approximat ion is
coNP-comple te

In addition to O-approximation, the authors of [Baral
and Son, 1997; Son and Baral, 1998] considered other
types of approximations, including the so-called 1-
approximation. In 1-approximation, partial states are
defined in the same manner as for O-approximation: i.e.,
as lists of fluents and their negations. However, the re­
sult of a (proper) action a on an a-state s is defined
differently: in this new approximation, a fluent literal F
(fluent or its negation) is true after applying a to s if and
only if F is true in all possible complete states comple­
menting s. Then, as a new a-state ResrD(a,s), we take
the set of all fluent literals which are true after applying
a.

In this section, we wil l show that this new definition
increases the computational complexity of an approxi­
mation. Namely, while for O-approximation, computing
the next a-state ResD(a,s) was a polynomial-time pro­
cedure, for 1-approximation, computing the next state is
already a coNP-complete problem:

Theo rem 10. (1-approximation) The problem of check­
ing, for a given a-state s, for a given action a, and for a
given fluent f, whether f is true in ResD{a, s)} is coNP-
complete.

Comments.
♦ An is defined in a similar man-

ner, except that in an the result
ResD(a, s) is defined not after a single action a, but
after a sequence of proper actions between two sens­
ing actions. In the particular case when there is ex-
actly one proper action between the two sensing ac­
tions, -approximation reduces to 1-approximation.
Therefore, -approximation is also at least as com­
plicated as coNP-complete problems.

• These results show that if we want an approx-
imation to decrease the computational complex-
ity of the planning problem, then (at least from
the viewpoint of the worst-case complexity) 0-
approximation is preferable to 1-approximation and
w-approximation.

References
[Baral and Son, 1997] C. Baral and T. Son, "Approxi­

mate reasoning about actions in presence of sensing
and incomplete information", In : Proc. of Inter­
national Logic Programming Symposium (ILPS^l),
1997, pp. 387-401.

[Erol et al., 1995] K. Erol, D. S. Nau, and V. S. Subrah-
manian, "Complexity, decidability and undecidabil-
i ty results for domain-independent planning", Arti­
ficial Intelligence, 1995, Vol. 76, pp. 75-88 (detailed
proofs are given in the University of Maryland Tech­
nical Report CS-TR-2797 (also listed as UMIACS-
TR-91-154 and SRC-91-96).

[Gelfond and Lifschitz, 1993] M. Gelfond and V. Life-
chitz, "Representing actions and change by logic
programs", /. of Logic Programming, 1993, Vol. 17,
pp. 301-322.

[Liberatore, 1997] P. Liberatore, "The complexity of
the language A", Electronic Transactions on Ar­
tificial Intelligence, 1997, Vol. 1, pp. 13-28
(http://www.ep.iiu.se/ej/etai/1997/02).

[Littman, 1997] M. L i t tman, "Probabilistic proposi-
tional planning: representation and complexity",
AAAI'97, pp. 748-754.

[Moore, 1985] R. Moore, "A formal theory of knowledge
and action." In J. Hobbs and R. Moore, editors,
Formal theories of the commonsense world. Ablex,
Norwood, NJ, 1985.

[Papadimitriou, 1994] C. H. Papadimitriou, Computa­
tional Complexity, Addison-Wesley, Reading, MA,
1994.

[Scherl and Levesque, 1993] R. Scherl and H. Levesque,
"The frame problem and knowledge producing ac­
tions." In KR 93, pages 689-695, 1993.

[Son and Baral, 1998] T. Son, and C. Baral, Formaliz­
ing sensing actions - a transition function based
approach, University of Texas at El Paso, Depart­
ment of Computer Science, Technical Report, 1998
(http://cs.utep.edu/chitta/chitta.html).

BARAL, KREINOVICH, AND TREJ0 953

