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Abstract 

In the last several years the computational com­
plexity of classical planning and HTN planning 
have been studied. But in both cases it is as­
sumed that the planner has complete knowl­
edge about the init ial state. Recently, there has 
been proposal to use 'sensing' actions to plan 
in presence of incompleteness. In this paper we 
study the complexity of planning in such cases. 
In our study we use the action description lan­
guage proposed in 1993 by M. Gelfond and 
V. Lifschitz and its extensions. 
The language allows planning in the situa­
tions with complete information. It is known 
that, if we consider only plans of feasible 
(polynomial) length, the planning problem for 
such situations is NP-complete: even checking 
whether a given objective is attainable from a 
given init ial state is NP-complete. In this pa­
per, we show that the planning problem in pres­
ence of incompleteness is indeed harder: it be­
longs to the next level of complexity hierarchy 
(in precise terms, it is complete). To over­
come the complexity of this problem, C. Baral 
and T. Son have proposed several approxima­
tions. We show that under certain conditions, 
one of these approximations - O-approximation 
- makes the problem NP-complete (thus in­
deed reducing its complexity). 

1 In t roduc t ion 

The action description language proposed in 1993 by 
M. Gelfond and V. Lifschitz [Gelfond and Lifschitz, 1993] 
mid its successors have made it easier to understand the 
fundamentals (such as inertia, ramification, qualifica­
tion, concurrency, sensing, etc.) involved in formalizing 
actions and their effects on a world, without getting into 
the details of particular logics. In this paper, we wil l 
be analyzing the complexity of planning based on this 
language and its extensions; let us, therefore, start with 
a brief description of this language. 

1.1 L a n g u a g e A : b r i e f r e m i n d e r 
In the language we start with a finite list of proper­
ties (fluents) which describe possible proper­
ties of a state. A state is then defined as a finite set of 
fluents, e.g., {} or We are assuming that we 
have a complete knowledge about the init ial state: e.g., 

means that in the init ial state, properties and 
are true, while all the other properties are 

false. The properties of the init ial state are described by 
formulas of the type 

initially  
where is a fluent literal, i.e., either a fluent or its 
negation  

To describe possible changes of states, we need a finite 
set of actions. In the language the effect of each action 
a can be described by formulas of the type 

causes if  

where are fluent literals. A reason­
ably straightforward semantics describes how the state 
changes after an action: 

• if before the action the literals were 
true, and the domain description contains a rule ac­
cording to which causes if then this 
rule is activated, and after the action becomes 
true; thus, for some fluents we wi l l conclude 
and for some other, that holds in the next state; 

• if for some fluent no activated rule enables us to 
conclude that is true or false, this means that the 
action a does not change the truth of this fluent; 
therefore, is true in a new state if and only if it 
is true in the old state. 

Formally, a domain description D is a finite set of value 
propositions of the type initially (which describe the 
init ial state), and a finite set of effect propositions of the 
type "a causes F if (which describe results 
of actions). A state s is a finite set of fluents. The 
initial state SO consists of all the fluents for which the 
corresponding value proposition initially is contained 
in the domain description. We say that a fluent holds 
in s if otherwise, we say that holds in The 
transition function which describes the effect 
of an action a on a state s is defined as follows: 
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♦ we say that an effect proposition "a causes F if 
is activated in a state s if all m fluent 

literals hold in s; 

# we define as the set of all fluents fi for 
which a rule "a causes if is activated 
in s; 

• similarly, we define as the set of all fluents 
for which a rule "a causes if is 

activated in s; 

♦ if we say that the result of 
the action a is undefined; 

• if the result of the action a is not undefined in a 
we define 

A plan p is defined as a sequence of actions  
The result ResrD(p, s) of applying a plan p to the initial 
state so is defined as 

The planning problem is: given a domain D and a de­
sired fluent literal F, to find a plan which leads to the 
state in which F is true. (More complicated goals can 
be reformulated in these terms.) 

1.2 A n e x t e n s i o n o f l anguage w h i c h 
desc r ibes sens ing a c t i o n s : b r i e f 
r e m i n d e r 

The language A describes planning in the situations with 
complete information, when we know exactly which flu­
ents hold in the init ial state and which don't. In real life, 
we often have only partial information about the init ial 
state: about some fluents, we know that they are true 
in the init ial state, about some other fluents, we know 
that they are false in the init ial state; and it is also pos­
sible that about some fluents, we do not know whether 
they are initially true or false. In such situations, the 
required action depends on the state: e.g., if we want 
the door closed, the required action depends on whether 
the door was initially open (then we close i t ) , or it was 
already closed (then we do nothing). Therefore, for these 
situations, we must include sensing actions - e.g., an ac­
tion checki which checks whether the fluent /, holds in a 
given state - to our list of actions, and allow conditional 
plans, i.e., plans in which the next action depends on the 
result of the previous sensing action. 

Some fluents may be difficult to detect, so we may 
have sensing actions only for some fluents; some real-
life sensing actions may sense several fluents at a time. 
In view of these possibilities, the precise formulation of 
this language is as follows1. In the domain description 
D, in addition to value propositions and effect proposi­
tions, we can also have sensing propositions, of the type 
"a determines A k-state is defined as pair  

1The formulation given here is based on earlier work 
of formalizing sensing actions in [Moore, 1985; Scherl and 
Levesqne, 1993]. 

where s is the actual state, and is the set of all possible 
states which are consistent wi th our current knowledge. 
Initially, the set consists of all the states s for which: 

• a fluent is true if the domain description 
D contains the proposition "initially  

• a fluent fi is false if the domain description 
D contains the proposition "initially  

If neither the proposition "initially nor the proposi­
tion "initially are in the domain description, then 

contains states with true and with false. The 
actual init ial state can be any state from the set 
The transition function is defined as follows: 

• for proper (non-sensing) actions, is mapped 
into 

where: 
- Reso(a, s) is defined as in the case of complete 

information, and 

• f o r a sensing action which senses fluents 
for which sensing propositions 

"a determines belong to the domain D ~ the 
actual state s remains unchanged while is down 
to only those states which have the same values of 

In the presence of sensing, an action plan is no longer 
a pre-determined sequence of actions: if one of these 
actions is sensing, then the next action may depend on 
the result of that sensing. In general, the choice of a next 
action may depend on the results of all previous sensing 
actions. Such an action plan is called conditional. 

Examples have shown that adding sensing actions in-
creases the computational complexity of the problem. 
In this paper, we show that the corresponding planning 
problem is indeed harder: it belongs to the next level 
of complexity hierarchy (in precise terms, it is 
complete). 

1.3 T h e n o t i o n o f a O - a p p r o x i m a t i o n 
To overcome the complexity of this problem, C. Baral 
and T. Son have proposed several approximations, whose 
plans are always correct but which can miss a plan. The 
first approximation - called O-approximation - is as fol­
lows: An a-state (approximate state) s is a finite set 
of fluent literals (i.e., fluents and their negations). The 
initial a-state so consists of all the fluent literals F for 
which the corresponding value proposition "initially F" 
is contained in the domain description. We say that: 

• a fluent fi if true in s is  
• a fluent fi if false in s is  
• a fluent fi if unknown in s is neither not 

The transition function Resi)(a,s) which describes the 
effect of a proper action a on an a-state is defined as 
follows: 
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• we say that an effect proposition "a causes if 
is activated in an a-state s if all m fluent 

literals hold in  
• we say that an effect proposition "a causes F if 

is possibly activated in an a-state s if 
all m fluent literals possibly hold in s 
(i.e., are either true, or unknown in s); 

• we define as the set of all fluent literals F 
for which a rule "a causes F if is acti­
vated in S, and no rule causes F if 
is possibly activated in s; 

• we then define ResrD(a,s) as 

For sensing actions, the result of applying a to an a-state 
s simply means adding, to the a-state, the fluent literals 
which turned out to be true as a result of this sensing 
action. 

2 Resu l t s 
2.1 W h a t k i nd o f p lanning problems we 

are interested in 
Informally speaking, we are interested in the following 
problem: 

• given a domain description (i.e., the description of 
the init ial state and of possible consequences of dif­
ferent actions) and a goal (i.e., a fluent which we 
want to be true), 

• determine whether it is possible to achieve this goal 
(i.e., whether there exists a plan which achieves this 
goal). 

We are interested in analyzing the computational com-
plexity of the planning problem, i.e., analyzing the com­
putation time which is necessary to solve this problem. 

Ideally, we want to find cases in which the planning 
problem can be solved by a, feasible algorithm, i.e., by an 
algorithm whose computational time on each in­
put is bounded by a polynomial of the length 

of the input (this length can 
be measured bit-wise or symbol-wise. Problems which 
can be solved by such polynomial-time algorithms are 
called problems from the class (where stands for 
polynomial-time). If we cannot find a polynomial-time 
algorithm, then at least we would like to have an algo­
r i thm which is as close to the class of feasible algorithms 
as possible. 

In short, we are interested in restricting the time which 
it takes to check whether the planning problem is solv­
able. This interest is justified because in planning appli­
cations we often want the resulting plan to be produced 
in real time, and if it is not possible to produce such 
a plan, we would like to know about this impossibility 
as early as possible, so that we wi l l be able to add new 
actions (or simply give up). Since we are operating in 
a time-bounded environment, we should worry not only 
about the time for computing the plan, but we should 

also worry about the time that it takes to actually im-
plement the plan. If an action plan consists of a sequence 
of actions, then this plan is not feasible. It is there-
fore reasonable to restrict ourselves to feasible plans, i.e., 
by plans whose length (= number of actions in it) 
is bounded by a polynomial of the input Wi th 
this feasibility in mind, we can now formulate the above 
planning problem in precise terms: 

• given: a polynomial a domain descrip­
tion D (i.e., the description of the init ial state and 
of possible consequences of different actions) and a 
goal / (i.e., a fluent which we want to be true), 

• determine whether it is possible to feasibly achieve 
this goal, i.e., whether there exists a feasible plan u 

which achieves this goal. 
We are interested in analyzing the computational com-
plexity of this planning problem. 

2.2 C o m p l e x i t y o f t h e p l a n n i n g p r o b l e m 
f o r s i t u a t i o n s w i t h c o m p l e t e 
i n f o r m a t i o n 

For situations with complete information, the above 
planning problem is  

Theo rem 1. For situations with complete information, 
the planning problem is -complete. 

Comments. 
• This result is similar to the result of Liberatore [Lib-

eratore, 1997]. The main difference is that Libera­
tore considers arbitrary queries from the language 
A, while we only consider queries about the exis­
tence of a feasible action plan. 

• The result of Liberatore is preceded by the results of 
Erol et al [Erol et al., 1995] where they study com­
plexity of STRIPS. Here we use and its extensions 
instead of STRIPS as to the best of our knowledge 
there has not been any formal treatment of exten­
sions of STRIPS dealing with sensing actions. 

• For lack of space we are not able to present all the 
proofs in this paper. 

• The problem remains NP-complete even if we con­
sider the planning problems with a fixed finite num­
ber of actions: even with two actions. If we only 
allow a single action, then there is no planning any 
more: the only possible plan is, in any state, to ap­
ply this only possible action and check whether we 
have achieved our goal yet; the corresponding "plan­
ning" problem is, of course, solvable in polynomial 
time. 

2.3 U s e f u l c o m p l e x i t y n o t i o n s 
For situations with incomplete information, the planning 
problem is more complicated - actually, belongs to the 
next levels of polynomial hierarchy; see the exact results 
below. For precise definitions of the polynomial hierar­
chy, see, e.g., [Papadimitriou, 1994]. Crudely speaking, 
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a decision problem is a problem of deciding whether a 
given input satisfies a certain property (i.e., in set-
theoretic terms, whether it belongs to the corresponding 
set  

• A decision problem belongs to the class if there 
is a feasible (polynomial-time) algorithm for solving 
this problem. 

• A problem belongs to the class if the checked 
formula ( e q u i v a l e n t l y , c a n be rep­
resented as where is a feasible 
property, and the quantifier runs over words of fea­
sible length (i.e., of length limited by some given 
polynomial of the length of the input). The class 

is also denoted by to indicate that formu­
las from this class can be defined by adding 1 exis­
tential quantifier (hence and 1) to a polynomial 
predicate  

• A problem belongs to the class if the checked 
formula S (equivalently, can be rep­
resented as where is a feasible 
property, and the quantifier runs over words of fea­
sible length (i.e., of length limited by some given 
polynomial of the length of the input). The class 

is also denoted by to indicate that for­
mulas from this class can be defined by adding 1 
universal quantifier (hence and 1) to a polyno­
mial predicate (hence  

• For every positive integer a problem be­
longs to the class i f t h e checked for­
mula (equivalently, can be rep­
resented as where 

is a feasible property, and all 
quantifiers run over words of feasible length (i.e., 
of length limited by some given polynomial of the 
length of the input). 

• Similarly, for every positiveinteger a prob­
lem belongs to the class if the checked for­
mula (equivalently, can be rep­
resented as where 

is a feasible property, and all 
quantifiers run over words of feasible length (i.e., 
of length limited by some given polynomial of the 
length of the input). 

• A l l these classes and are subclasses of a 
larger class formed by problems which 
can be solved by a polynomial-space algorithm. It 
is known (see, e.g., [Papadimitriou, 1994]) that 
this class can be equivalently reformulated as a 
class of problems for which the checked formula 

(equivalently, can be represented as 
where the number 

of quantifiers is bounded by a polynomial of the 
length of the input, J) is a feasible 
property, and all quantifiers run over words of 
feasible length (i.e., of length limited by some given 
polynomial of the length of the input). 

A problem is called complete in a certain class if. 
crudely speaking, this, is the toughest problem in this 
class (so that any other general problem from this class 
can be reduced to it by a feasible-time reduction). It is 
stil l not known (1998) whether we can solve any prob­
lem from the class in polynomial time (i.e., in precise 
terms, whether However, it is widely believed 
that we cannot, i.e., that It is also believed that 
to solve a complete or a c o m p l e t e problem, 
we need exponential time and that solving a com­
plete problem from one of the second-level classes or 

requires more computation time than solving N P -
complete problems (and solving complete problems from 
the class takes even longer). 

2.4 C o m p l e x i t y o f t h e p l a n n i n g p r o b l e m 
f o r s i t u a t i o n s w i t h i n c o m p l e t e 
i n f o r m a t i o n : s i t u a t i o n s w i t h n o 
sens ing ac t i ons 

Let us start our analysis with the case of no sensing. 
Theorem 2. For situations with incomplete informa­
tion and without sensing, the planning problem is 
complete. 
Proof . The problem is to check the existence of a 
feasible-length action plan for which, for every set 
of values of the unknown fluents, is successful, 
i.e., we check whether Once we 
know and (i.e., once we know the init ial state and 
the actions), we can determine, step-by-step, all follow­
ing states, and thus check, in polynomial time, whether 
in the final state, the desired predicate is true. So, 

To show that is complete, we reduce, to 
a known complete propositional problem of checking 

are propositional vari­
ables, is a propositional formula). To reduce it to 

we first parse F, i.e., we represent computing F as 
a sequence of elementary steps, on each of which we 
apply &, V, or to compute the intermediate results 

to compute we 
compute etc. In our planning problem, 
we take two actions a and and fluents  

(meaning: is true iff time = i) . Initially, 
is true, all other s, are false; is false, all other 

are unknown; goal: In the first moments 
of time, we select variables a selects  
selects "a causes i f ( s a m e f o r a l s o , ev­ 
ery action increases time by one: e.g., a causes if 
and causes In moments  
we "compute" then causes  
if causes and causes  
if (+ rules which increase time by 1). A plan 
exists iff there exist values for which, for all 

is true. The reduction proves that is 
complete. 
The problem remains even if we consider 
the planning problems with a fixed finite number of ac­
tions: even with two actions. 
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T h e o r e m 3. For situations with incomplete informa­
tion and without sensing, the 0-approximation to the 
planning problem is NP-complete. 

In other words, the use of O-approximation cuts off one 
level from the complexity. So, for this problem, 0-
approximation is indeed computationally very efficient. 

This reduction is in good accordance wi th our intuit ive 
understanding of this problem and its O-approximation: 

• In the case oi complete information, to represent 
a state, we must know which fluents are true and 
which are false. Therefore, a state can be uniquely 
described by a subset of the set of all the fluents -
namely, the subset consisting of those fluents which 
are true in this state. The total number of states is 
therefore equal to the total number of such subsets, 
i.e., to 2F (where F is the total number of fluents). 

• In the case of incomplete information, we, in gen­
eral, do not know which states the system is. So, a 
state of our knowledge (called a k-state in [Son and 
Baral, 1998]) can be represented by a set of possible 
complete-information states. Therefore, the num­
ber of all possible k-states is equal to the number 
of all possible subsets of the set of all complete-
information states, i.e., to  

• In O-approximation, an a-state is represented by 
stating which fluents are true, which are false, and 
which are unknown. For each of F fluents, there 
are three different possibilities, so totally, in this 
approximation, we have possible a-states. 

So, going from a ful l problem to its O-approximation 
decreases the number of possible "states" from doubly 
exponential to singly exponential Since plan­
ning involves analyzing different possible states, it is no 
wonder that for O-approximation, the computation time 
should also be smaller. Again, this argument is not a 
proof of Theorem 3, but this argument makes the result 
of Theorem 3 intuitively reasonable. 

2.5 Comp lex i t y of the p lanning prob lem 
for si tuat ions w i t h incomplete 
i n fo rma t ion : si tuat ions w i t h sensing 

Let us now consider what wi l l happen if we allow sens­
ing actions. If we allow unlimited sensing, then the situ­
ation changes radically-, the planning problem becomes 
so much more complicated that O-approximation is not 
helping anymore: 

Theorem 4. For situations with incomplete in­
formation and with sensing, the planning problem is 
PSPACE-complete. 

Theorem 5. For situations with incomplete informa-
tion and with sensing, the O-approximation to the plan­
ning problem is PSPACE-complete. 

The proofs are similar to [Lit tman, 1997]. Both the 
planning problem itself and its O-approximation remain 
PSPACE-complete even if we consider the planning 

problems wi th a fixed finite number of actions: even wi th 
two proper actions and a single sensing action which re­
veals the t ru th value of only one fluent - but we are al­
lowed to repeat this sensing action at different moments 
of t ime. 

In many real life control and planning situations, it is 
desirable to monitor the environment continuously, and 
to make sensing actions all the t ime. However, this ne-
cessity is caused by the fact that in many real-life sit-
uations, the consequences of each action are only sta­
tistically known, so we need to constantly monitor the 
situation to f ind out the actual state. In this paper, we 
consider the situations in which the result of each action 
is uniquely determined by this action and by the init ial 
state. In such idealized situations, there is no such need 
for a constant monitoring. It therefore makes sense to 
allow only a l imited repetition of sensing actions in an 
action plan. Wi th such a l imitat ion, the complexity of 
planning drops back, and O-approximation starts helping 
again: 

D e f i n i t i o n 1. Let k be a positive integer. 
• We say that a sensing action is k-limited if it reveals 

the values of no more than k fluents. 
• We say that an action plan is k-bounded if it has no 

more than k sensing actions. 
T h e o r e m 6. For any given k, for situations with incom­
plete information and with k-limited sensing actions, the 
problem of checking the existence of a k-bounded action 
plan is  

Theo rem 7. For any given k, for situations with in­
complete information and with k-limited sensing actions, 
the problem of checking the existence of a k-bounded 0-
approximation action plan is NP-complete. 

Comments. 
• The same result holds if instead of assuming that k 

is a constant, we allow to grow as 
as a square root of the logarithm of the length of 
the input). 

• A difficulty wi th the general situation with incom­
plete information comes from the fact that we do 
not know the exact states, i.e., we do not know 
the values of all the fluents. It is therefore reason­
able to analyze the situations with full sensing, i.e., 
situations In which, for every fluent f i , we have a 
sensing action checki which reveals the value of this 
fluent. Full sensing does make the planning prob-
lem simpler, although not that simpler so that 0-
approximation wi l l help: 

Theo rem 8. For situations with incomplete informa­
tion and with full sensing, the planning problem is 
complete. 

Theorem 9. For situations with incomplete informa­
tion and with full sensing, the O-approximation to the 
planning problem is  

These results can be represented by the following table: 
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unlimited number 
of sensing actions 

PSPACE-complete 

ful l sensing limited sensing 

O-approximation or 
complete information 

NP-complete 

2.6 A u x i l i a r y resul t : 1-approximat ion is 
coNP-comple te 

In addition to O-approximation, the authors of [Baral 
and Son, 1997; Son and Baral, 1998] considered other 
types of approximations, including the so-called 1-
approximation. In 1-approximation, partial states are 
defined in the same manner as for O-approximation: i.e., 
as lists of fluents and their negations. However, the re­
sult of a (proper) action a on an a-state s is defined 
differently: in this new approximation, a fluent literal F 
(fluent or its negation) is true after applying a to s if and 
only if F is true in all possible complete states comple­
menting s. Then, as a new a-state ResrD(a,s), we take 
the set of all fluent literals which are true after applying 
a. 

In this section, we wil l show that this new definition 
increases the computational complexity of an approxi­
mation. Namely, while for O-approximation, computing 
the next a-state ResD(a,s) was a polynomial-time pro­
cedure, for 1-approximation, computing the next state is 
already a coNP-complete problem: 

Theo rem 10. (1-approximation) The problem of check­
ing, for a given a-state s, for a given action a, and for a 
given fluent f, whether f is true in ResD{a, s)} is coNP-
complete. 

Comments. 
♦ An is defined in a similar man-

ner, except that in an the result 
ResD(a, s) is defined not after a single action a, but 
after a sequence of proper actions between two sens­
ing actions. In the particular case when there is ex-
actly one proper action between the two sensing ac­
tions, -approximation reduces to 1-approximation. 
Therefore, -approximation is also at least as com­
plicated as coNP-complete problems. 

• These results show that if we want an approx-
imation to decrease the computational complex-
ity of the planning problem, then (at least from 
the viewpoint of the worst-case complexity) 0-
approximation is preferable to 1-approximation and 
w-approximation. 
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