
Deal ing w i t h geometric constraints in game-theoretic p lann ing 

Abstract 
Tracking a partially predictable moving object 
in a workspace cluttered by obstacles is a chal­
lenging combination of two planning problems. 
The planner must take into account on the one 
hand the visibility and motion constraints im­
posed by the obstacles and on the other hand 
the uncertainties in both the robot's position 
and the future trajectory of the target. Game 
theory is proposed as an appropriate frame-
work to solve this twofold problem. At each 
time step, a probability distribution models the 
positioning uncertainties of the robot and the 
target and a ut i l i ty function represents the re­
ward associated with the possible goal states 
of the motion decision problem. This approach 
allows the simple modeling of different track­
ing strategies, one of which has been implemen­
ted and tested successfully wi th two mobile ro­
bots. By considering simultaneously target vis­
ibil i ty and position uncertainty, the tracking ro­
bot can take advantage of landmarks scattered 
in the workspace to better localize itself so 
as to better track the target afterward. Fu­
ture extensions seem possible in order to in­
troduce useful symbolic inferences within the 
game-theoretic framework. 

1 In t roduc t ion 
Dealing with uncertainty is a major problem in Robot­
ics (e.g. see [Dorst et al., 1996] for an overview), which 
raises and combines a number of issues often associated 
with estimation, planning or execution control. It is usu­
ally unrealistic to assume that a complete and absolutely 
precise model of the environment can ever be obtained. 
Yet, a robot is expected to compute and execute ro­
bust plans. While Computational Geometry offers tools 
to deal with geometric constraints (collision, visibility) 
arising from the robot's workspace, Artificial Intelligence 
techniques make it possible to make decision in the pres­
ence uncertainty. But the techniques from those two 
fields have rarely been combined and in fact are seldom 
compatible. 
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In this paper we show how methods developed in­
dependently can be combined to solve a target track­
ing problem presented in § 2. In this problem, a mo­
bile robot must keep a moving target into its field of 
view. The workspace is cluttered by obstacles that 
create motion and visibility constraints. Uncertainties 
in the robot's self-localization and in the target beha­
vior add to the complexity of the problem. Game the­
ory [Luce and Raiffa, 1957] offers a convenient frame-
work for both decision making under uncertainty [Sav­
age, 1972] and robot motion planning [LaValle, 1995]. 
The game-theoretic formulation presented in § 4 is spe­
cifically proposed for the online computation and execu­
tion of target-tracking motion strategies in the presence 
of uncertainties (§ 6). We have implemented the tech­
niques presented in this paper and tested them with real 
robots: characteristics of the produced motion strategies 
are discussed in § 7. Some shortcomings lead us to pro­
pose several extensions in § 8. 

2 Tracking problem 
A mobile robot equipped with visual sensors, called the 
observer, operates in a workspace cluttered with static 
obstacles. Its task is to keep another moving object, the 
target, in its field of view while avoiding collision with 
the obstacles. A l l the obstacles create visual occlusion. 
Hence, the observer must move in such a way that the 
target is never hidden behind an obstacle. 

We assume that the workspace is realistically de­
scribed by a 2-D map (planar layout) of the obstacles. 
Both the observer and the target are modeled as discs. 
An accurate map of the obstacles is given to the observer 
before target tracking begins. 

The observer uses a camera mounted on a turret to 
detect the target. The turret rotates fast enough to 
make it possible to consider that the observer has omni­
directional vision, independent of its current heading. 
The observer detects and recognizes the target whenever 
it has a cone of sight to the entire target's disk not 
obstructed by any obstacle. In our implementation, a 
black-and-white geometric pattern is mounted on the 
target to simplify visual detection. There exist more 
sophisticated vision techniques to detect natural targets 
(e.g. see [Bregler and Malik, 1998]). 
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The target is mostly unpredictable, that is, i ts fu­
ture trajectory is not known in advance, but it moves 
collision-free and its velocity has a known upper bound. 
The observer localizes itself relative to the workspace us­
ing both odometrie and landmark techniques. Our land­
marks are simple geometric patterns placed at the ceiling 
of the robot environment; they are detected and recog­
nized using a camera mounted vertically on the observer 
platform [Becker et al., 1995]. Natural landmarks could 
be used as well, but would require more sophisticated vis­
ion techniques. Whenever the observer sees a landmark, 
it localizes itself in the workspace with a given precision 
(on the order of l-2in) that has been experimentally es­
tablished. When the robot does not see any landmark, 
the imprecision of its location estimate (dead-reckoning) 
grows linearly wi th the distance traveled. To keep our 
work realistic and compatible wi th the use of natural 
landmarks, the artificial landmarks are sparsely distrib­
uted over the workspace. The two vision systems used 
for target tracking and landmark detection, respectively, 
are independent and operate concurrently. 

The observer uses the vision system that tracks the 
target to estimate the target's position relative to it-
self and (through a simple transform) to the workspace. 
Note that the observer cannot track the target by only 
using their position relative to one another. It must also 
estimate both its own position relative to the workspace 
to avoid colliding with the obstacles and the target's pos­
ition in the workspace in order to move in such a way that 
it prevents the target from hiding behind an obstacle. 

3 R e l a t e d w o r k 

This tracking problem is a challenging combination of 
different planning problems that have previously been 
studied in Robotics, but separately. Visibility and col­
lision constraints must be satisfied in the presence of 
uncertainties in the positions of the observer and the 
target. The problem of maintaining visibility with the 
target while avoiding collision with the obstacles is ad­
dressed in [LaValle et al., 1997], but position uncertain­
ties are not taken into account. When the target is fully 
predictable, that is, when its future trajectory is com­
pletely known in advance, a dynamic programming ap­
proach [Bertsekas, 1986] can be used to compute a tra­
jectory of the observer that has minimal length. 

As shown in [LaValle et a/., 1997], this approach be­
comes untractable in practice if the target is only par­
tially predictable. Then, the approach can be applied 
to choose a motion command that aims to maximize the 
likelihood that the target wil l remain visible during a 
short interval of time in the future. The observer it­
erates this computation while tracking the target and 
updates its motion heading at each iteration. This is 
essentially the approach taken in this paper. The main 
difference is that we take into account the uncertainties 
in the observer's and target's positions. This difference 
wil l motivate the embedding of this approach into the 
game-theoretic framework presented in 4. 

Taking position uncertainties into account naturally 
leads to planning the observer's motions in order to take 
advantage of the landmarks in the workspace to reduce 
the imprecision of the estimate of the observer's pos­
ition (and consequently that of the target), whenever 
this does not immediately conflict wi th keeping the tar­
get in the observer's field of view. Landmark-based nav­
igation has been addressed from different points of view 
in the literature (e.g. see [Bouilly and Simeon, 1996; 
Saffiotti and Wesley, 1996; Takeda et al., 1994; Lazanas 
and Latombe, 1995]). The principle is simple: if the ro­
bot primarily localizes itself relative to landmarks, the 
planner must guarantee that the robot wil l see land­
marks often enough along its path [Fualdes and Barrouil, 
1993]. To our knowledge, no previous work on landmark-
based navigation simultaneously deals with achieving a 
visual task such as maintaining visibility with a moving 
target. 

4 G a m e - t h e o r e t i c app roach 
Different discrete processes intervene in the behavior of 
the observer. During each iteration, the observer chooses 
its next move according to the last estimate of the tar­
get's position, executes i t , localizes itself (by using a 
landmark, if one is visible), and computes a new estimate 
of the target's position. Meanwhile, the target is moving 
to another location. 

Let be the init ial time point, the duration of 
the time interval between two sampling time (the dur­
ation of the global decision loop), and k 1 an index 
corresponding to the time point 
The observer and the target move in the same work­
space, but since their respective shapes and sizes may 
differ, their free configurations belong to two different 
configuration spaces, defined with standard parameter-
izations [Latombe, 1991], respectively and  
Let and denote the respective configurations of 
the observer and the target at time k. Then, the global 
state at time k is given by the couple  

denote the set of 
all possible states. Let designate the visibility 
region of the target at configuration i.e., the set of 
all configurations from which the observer has an 
unobstructed cone of sight to the entire body of the tar­
get. Let i stand for the set 
of all the configurations in that are 
reachable without collision from between 
times and  

Game theory provides a convenient framework to 
express decision problems in the presence of uncer­
tainty. Yet, most work in that field has focused 
on the probabilistic part of the theory, especially on 
the Bayesian computation of the probability distribu­
tions (POMDP [White, 1993], Bayesian Networks [Pearl, 
1988]). Game theory rests on the axiomatization of a 
relation of preference defined over the possible choices. 
This relation rests on the definition of both a probabil-
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i t y measure and a ut i l i ty function over the possible eon-
sequences. We think that the ut i l i ty part of the theory 
is as important as the probabilistic part. 

Let us define a decision problem over the triplet 
where is the set of atomic states, is 

the set of possible decisions, and is the set of possible 
consequences Each possible decision is 
a function  

A decision problem also requires the definition of a 
relation of preference over For each  

must be read ''d is preferable than 
Von Neumann's theorem tells us that this relation of 
preference can be defined as follows [Von Neumann and 
Morgenstern, 1944]: 

• Let P be a probability distribution over the set of 
states, 

• Let U be a utility function over the set of con­
sequences, 

• Posing: 

is the expected uti l i ty of choosing 
we have: 

if and only if 

W i th this formulation, the best decision is: 

(1) 

In our target tracking problem, suppose that at time 
+1 the target is at configuration and the observer 

has reached after the motion decision was made 
in state The new state is a con­
sequence of dk. The need that be inside the vis­
ibil i ty region can be expressed in the uti l i ty 
function of the problem. 

More precisely, our tracking problem is a sequence of 
motion decision problems (one at each time that are 
all defined on the same state space 
The set of possible consequences is also fixed. As the 
observer may collide with obstacles by mistake (due to 
localization errors), there is an additional consequence 
ceil (standing for "collision"). The resulting set of con­
sequences is At each time 
the motion decision problem can be defined as follows: 

• The observer's and target's positions are not pre­
cisely known at time denote 
the probability distribution of the observer's (resp. 
target's) position over The joint 
distribution is the probability dis­
tribution over  

• Let be the current estimate of the position of 
the observer according to This estimate can 
be a singleton or a set of configurations. 

• Let be the set of possible motion decisions for 
the observer from the current estimated configura­
tion In practice, is finite. 

• The uti l i ty function over (here, the set of pos­
sible consequences at time 4- 1) can be simply 
defined to be 1 if the observer sees the target at 
time + 1 and 0 if it does not see the target or has 
collided with an obstacle. More formally: 

Figure 1: Geometric constraints and ut i l i ty regions 

Geometric constraints illustrated in Fig. 1 directly affect 
the evaluation of the above uti l i ty function: Is the ob­
server colliding with obstacles, or not? Is the observer 
in the visibility region of the target? As we wil l see in 
the next section, they also affect the computation of the 
probability distributions and hence that of the 
best motion decision defined by Equ. (1): can the ob­
server see a landmark? 

Note that more complex uti l i ty functions could be con­
sidered. For example, could evaluate to 
the minimal distance that the target would have to travel 
before is no longer in the target's visibility region. 

5 Model ing uncertainties 
In our work wil l only consider uncertainties caused by 
inaccuracies in sensing in motion control and in lack of 
prior knowledge of the target's trajectory. Uncertainty 
in the observer's location depends critically on whether 
it sees a landmark, or not. 

Whenever the observer moves and no landmark is vis­
ible, dead-reckoning errors occur and accumulate. Con­
sequently, the uncertainty on the position of the observer 
increases (see Fig. 2) and the observer may risk colli­
sion along a supposedly collision-free path. The actu­
ally reached configuration at time ­ 1, can be 
modeled as a random variable that is conditionally de-
pendent upon both the observer's configuration at time 

and the decision made at time k, dib*. 
The conditional probability is 

given a priori and allows the computation (at time k) of 
the predictive probability law at time which 
models the imprecision of dead-reckoning. 
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If localization fails at time the predictive probabil­
ity law cannot be updated: then the best estimate 
of the observer's location at time is the one given by 
dead-reckoning and (the predictive prob­
ability law). The location uncertainty reduces whenever 

Figure 2: The localization dilemma 

the observer sees a landmark. Let be a boolean 
variable equal to 1 whenever the observer reaches a po­
sition at time -f 1 where it can see a landmark, and 0 
otherwise (or if the observation of the landmark fails). 
When a landmark is visible, the positioning accuracy 
that is obtained after the updating process at time 
depends both on the predictive probability law 
and on the experimentally established precision of the 
localization. This is modeled by the updating function 

in the following equation: 

i f and only i f = 1 (7) 

i f and only i f =0 (8) 

Eventually, the probability distribution at time  
depends both on and on the observation of a land­
mark, if a landmark has been observed. is thus 
given by equations (5) to (8) as a function of the prob­
ability measure the d e c i s i o n m a d e at time 
and the value of the variable This is summarized 
in the following evolution equation, where the evolution 
function models both the possible motion errors 
and the reduction of positioning imprecision whenever a 
landmark is detected: 

0) 

Similarly, due to the limited capabilities of its tracking 
camera, the observer can only obtain an imprecise es­
timate of the position of the target relative to own cur­
rent position (see Fig. 3). Let denote the probab­
il ity over the possible configurations of the target after 
detection by the observer at time The uncertainty 

on the position of the target in the workspace combines 
the uncertainty on the target's position relative to the 
observer and the uncertainty on the observer's position 
in the workspace. Hence, depends on both 
and and it is necessarily more imprecise than  
(see Fig. 3). The target's partial predictability between 
times and can be written:  
Since the target's trajectory is not known in advance, 
Stgt depends only the known target's maximal velocity. 
This means that the uncertainty on the target's posi­
tion at time (as predicted at time may be much 
greater than for the observer. On the other hand, the 
target is observed at every time step before the predic­
tion stage, which considerably reduces uncertainty. The 
evolution equation for the target takes into account how 
the probability measure is updated at time by the 
observer and how it evolves from time to time -f 1 
due to partial predictability of the target: 

(11) 

Figure 3: Positioning imprecision 

6 Tracking strategies 
At each time step, the observer, decides where to move 
according to and is the in­
formation state of the observer at time and the global 
evolution equation follows 
from Equ. (9) and (11). A strategy for the tracking 
problem with finite time horizon [White, 1993] is a 
sequence of decision rules  
An optimal strategy is obtained by discrete dynamic pro­
gramming [White, 1993]. Let denote the optimal 
value function for the /i-stage tracking problem begin­
ning with an init ial probability distribution on at 
time t1, i.e. the maximum expected reward that the 
observer can get wi th this init ial condition. Bellman's 
optimality equations give :  

FABIANI AND LATOMBE 945 

(10) 

Unfortunately, as already mentioned in 3, the cost of 
computing an optimal strategy is exponential in the ho-
rizon h (number of time steps). This difficulty is well-
known in the field of POMDP's [White, 1993] where 



dynamic programming is nevertheless widely used. In 
target tracking, a greater h would make it possible to 
compute better strategies if the computation time was 
negligible. But since this is not the case and the target 
moves while the observer computes its next motion, a 
compromise is necessary. In our experiments in simula­
t ion, we computed strategies wi th h = 2. In our exper­
iments wi th real robots, we used h = 1. The empiric­
ally established real-time constraint with real robots is 
that the observer must choose a motion command within 
50ms. On a SUN SPARCstation 20 the computation 
time for ft = 1 ranges between 1 and 10ms, but grows 
up to 120-1200ms for h = 2. 

For h = 1, the decision rule at time when is the 
probability distribution over corresponds to in 
Equ. (12). Hence, the best decision is: 

(13) 

where  

7 Exper imentat ion 
Experiments were conducted to test our game-theoretic 
approach : the observer and the target are two Nomad-
200 mobile robots of Nomadic Technologies. Each 
Nomad-200 has a rigid cylindrical body that allows its 
representation as a disc in the 2-D workspace. The ob-
server detects landmarks placed at the ceiling of the 
laboratory. It can track the target regardless of its cur­
rent heading, thanks to a camera that is kept aimed 
at the target by servoing the observer's turret appropri­
ately. A l l the obstacles in the environment are polygonal 
and obstruct both visibility and motion. More sophist­
icated geometric models for the obstacles are possible. 
Simple probabilistic models of the robots were intro-
duced in the evolution equations (Equ. (9) - ( l l ) ) : they 
can be improved experimentally. Their good behavior in 
practice is due to the fact that they are rather conser­
vative. Yet, it can be argued that l i tt le improvement is 
to be expected from more precise probabilistic models, 
while so l i t t le is known about the target's future motion. 

Thanks to the fact that all obstacles are static and 
known in advance, a number of precomputations are 
performed in advance in order to reduce on-line com­
putation times (e.g. visibility and reachability regions). 
The ut i l i ty function Uk at each time step k is obtained 
through a small amount of calculation (Equ. (2)-(4)) and 
wi th nice properties of piecewise smoothness. could 
have been chosen to give a higher penalty to collision. 
For a given state at time a more soph­
isticated could have been proposed, for example to 
penalize states where the observer is close to loosing the 
target and/or where the observer's turret needs to ro-
tate by a large amount. could also be designed to 
take into account the speed of the observer at stage in 
order to advantage future configurations that correspond 
to small accelerations of the observer in either direction. 
Yet, simplicity was preferred. 

Figure 4: Sample sequence of motion decisions 

Fig. 4 represents an 8-step decision sequence generated 
by the observer's planner in response to target's moves. 
This sample sequence shows snapshots of the graphic dis­
play of the conducted experiments: the target appears 
as a dark disk and the observer as a light-grey disc with 
a l i tt le tai l . In each snapshot, the small grey circle with 
variable radius and the same center as the observer de­
picts the observer's positioning uncertainty. The other 
static light-grey disks represent landmark regions (re­
gions in which the observer's center must lie in order to 
see a landmark). The landmark that was detected the 
most recently, recognized and used for location updating 
by the observer is marked with a small blue circle in the 
center. The arrows describe each agent's moves. Please 
note that the target's moves are represented by arrows 
reflecting the target's next move in the scenario, whereas 
for the observer the arrows reflect the subsequent move 
that is performed by the observer in response to the ob­
served move of the target at the previous stage. 

The conducted implementation successfully validates 
our approach. The observer is able to manage prop­
erly its positioning uncertainty. Whenever a landmark 
visibility region is reachable, the motion decision corres­
ponds to the best compromise between the tracking task 
and the need for location updating. There is no con­
flict because the observer localizes itself so as to better 
track the target afterward. More precisely, the following 
features are remarkable in its behavior in Fig. 4: 

• the observer takes its positioning uncertainty into 
account before choosing its next move: it localizes 
itself when useful, but does not need to do so when 
it can travel in a wide enough free area (stage 1-6); 
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• the observer goes and localizes itself so as to reduce 
its positioning imprecision (if possible) prior to en­
tering a narrow region (stages 7-8); 

• the observer always minimizes its probability of col­
lision because this improves the probability of vis­
ibil i ty of the target at next time step; 

• in practice the observer's probability of collision re­
mains equal to zero whenever possible (stages 1-8 
here), unless the observer gets trapped by the tar-
get in a narrow region where it cannot reach any 
landmark region in order to localize itself. 

8 Perspectives 
The nice experimental behavior of the designed plan­
ner shows that the choice of modeling this problem in a 
game-theoretic framework was more than a theoretical 
exercise: it should allow geometric algorithms to be effi­
ciently combined with algorithms designed for POMDP's 
or Bayesian Networks. Sti l l , this would need to be fur­
ther formalized with more generality, so to be applicable 
to a wider range of problems. 

Furthermore, the proposed game-theoretic framework 
allows dealing wi th symbolic constraints (e.g. "a ro-
bot cannot see/travel through walls") and reasoning 
with probabilistic uncertainty to be efficiently combined 
through the computation of well-adapted uti l i ty func­
tions. The introduction of reasoning mechanisms, such 
as in Fuzzy Sets theory [Saffiotti and Wesley, 1996] or 
Possibility theory [Dubois and Prade, 1995] seem to be a 
promising approach for reasoning wi th uti l i ty functions. 

In that perspective, the conducted experiments 
provide interesting ideas for future developments. For 
instance, when the observer happens to estimate the pos­
ition of the target on a configuration that is not collision-
free, this may be due to location and detection errors, 
but also to the fact that some obstacles in the modeled 
workspace of the robots do not exist in the real envir­
onment: our 2-D layout of the workspace actually is a 
very conservative model of the real indoor environment. 
Dealing with an incomplete and inaccurate map in full 
generality is a really tough challenge. The proposed gen­
eralized game-theoretic approach should provide an in­
teresting framework in order to release progressively the 
hypothesis of a perfectly known environment. 
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