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Abstract 
We describe a coherent view of learning and 
reasoning with relational representations in 
the context of natural language processing. 
In particular, we discuss the Neuroidal Ar­
chitecture, Inductive Logic Programming and 
the SNoW system explaining the relationships 
among these, and thereby offer an explanation 
of the theoretical basis for the SNoW system. 
We suggest that extensions of this system along 
the lines suggested by the theory may provide 
new levels of scalability and functionality. 

1 Introduction 
The paper explores some aspects of relational knowledge 
representation and their learnability. While the discus­
sion is to a large extent general it is made in the context 
of low-level natural language processing (NLP) tasks. 
Recent efforts in NLP emphasize empirical approaches, 
that attempt to learn how to perform various natural 
language tasks by being trained using an annotated cor­
pus. These approaches have been used for a wide variety 
of fairly low level tasks such as part-of-speech tagging, 
prepositional-phrase attachment, context-sensitive text 
correction, and word selection in speech recognition and 
translation. 

In this paper we study the general form of such prob­
lems in a relational setting. Thus, our interest here is in 
learning to perform such tasks given a set of previously 
processed sentences, each represented using a relational 
representation. We use the task of Part of speech tagging 
(POS) - one of the basic tasks studied in this line of re­
search and often viewed as a prerequisite to performing 
many of the other tasks - as our running example. POS 
is the task of assigning each word in a given sentence the 
part of speech it assumes in that sentence. For example, 
assign N or V to ta lk in the following pair of sentences: 
Have you l istened to his (him) talk? 

* Partly supported by EPSRC grant GR/M21409. 
+Research supported by NSF grants IIS-9801638 and 

SBR-9873450. 
* Research supported by grants NSF-CCR-95-04436 and 

ONR-N00014-96-1-0550. 

The SNoW system [Roth, 1998] has been used suc­
cessfully for several NLP tasks and, in particular, for 
learning to perform part of speech tagging [Roth and 
Zelenko, 1998]. The system uses perceptron-like repre-
sentations and propositional learning algorithms. On the 
other hand, relational representations are very natural 
for NLP tasks and logic programs have been widely used 
in this context [Hobbs et al., 1993; Pereira and Shieber, 
1987]. A natural approach would thus be to apply learn­
ing in first order logic or Inductive Logic Programming 
(ILP) for learning to perform the relevant tasks, as done 
e.g in [Cussens, 1997; Dzeroski and Erjavec, 1997]. 

In this paper we discuss the theoretical basis underly­
ing the SNoW system in terms of the Neuroidal Architec­
ture, particularly following specific suggestions [Valiant, 
1998a; 1999] for representing relational information using 
linear threshold elements as discussed earlier in [Valiant, 
1994]. Using this analysis we show that SNoW can be 
viewed as a relational learning system, and this enables 
us to go on to compare it more directly with ILP. 

The main contribution of the paper is therefore in an­
alyzing the SNoW system in terms of the Neuroidal Ar­
chitecture and consequently as a system learning rela­
tional information. This analysis provides insight into 
some of the theoretical and practical considerations that 
have been made in the search for scalable systems in 
this context. Secondly, since the theory is somewhat 
more general than current implementations, this sug­
gests that extending the SNoW system in a manner con­
sistent with the theory may provide new levels of func­
tionality. Finally, by providing a single framework for 
discussing both SNoW and ILP we enable future com­
parative work of these seemingly disparate approaches. 

The presentation is organized as follows. We first de­
scribe the input (a sentence) and program representa­
tion (Horn rules and variants) for the relational tasks 
under consideration. We then discuss various computa-
tional aspects of the representations and their learnabil­
ity. This leads to a description of the SNoW system and 
a discussion of some of the pragmatics of systems that 
learn to perform these tasks. 
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2 Representing a Sentence 
We use first order logic statements with a finite set of 
predicates and allow only constants (i.e. no other func­
tion symbols) in expressions. Since the specific predi­
cates used do not affect the conceptual issues, we shall 
give a simple running example that will serve to illus­
trate the computational issues.1 The representation is 
as follows: 

• Each word has a constant associated with it. 
• The linear structure of the sentence is captured by 

the predicate which means that word 
is immediately before w2 in the sentence. 

• A variety of relations conveying linguistic or seman­
tic information may be added. For example we may 
add is a possible part of speech for 
word Another example is adding 
where is a word describing an object in a class 
of objects described by the word  

For simplicity we assume in the examples below that 
6e/() and pposQ are the only relations used in the rep­
resentation. Thus the sentence th is can w i l l rust is 
represented as the collection of all the atoms that hold 
(are active) in it: 
S = {be f (this, can),bef (can, will),bef (will, rust), 

ppos(this, art),ppos(can, noun), ppos (can, verb), 
ppos(will, noun),ppos(will, verb),ppos(rust, noun), 
ppos(rust,verb)} (1) 

It is implicit in the above that atoms not listed (such as 
be f (this,rust)) are false for this sentence. 

The above representation may be too restricted if 
words appear more than once in a sentence. This can 
be easily dealt with formally by replacing constants rep­
resenting words with unary predicates and using "to­
ken constants" to represent positions in the sentence 
[Valiant, 1998a; 1999]. In order to keep the notation 
simple we ignore this issue in the rest of the paper. 

3 Representing Programs 
3.1 Horn Representations 
A program should take a sentence as an input and pro­
duce part of speech tags for the words in this sentence. 
One possible representation for such a program is a set 
of Horn rules. For example, the rules2 

represent a simple program for predicting whether a 
*The examples are meant only to illustrate the language 

used and may not be the most accurate - indeed, one reason 
learning is crucial in this domain is that it is hard to come 
up with concise rules that perform well. 

2 Note that the first rule is logically equivalent to 
but 

the existential presentation is more intuitive from an opera­
tional perspective. 

word is a noun or not. These rules exemplify several 
aspects of the representation. First, we may want to 
construct "complex features" such as and f2() out 
of the base predicates. Secondly, such features may in­
clude existentially quantified variables as in the first rule 
or constants as in the first or second rule. Note that the 
same program can be represented by the single rule 

3.2 Threshold Elements w i th Quantified 
Propositions 

This section reviews a previous proposal for implement­
ing relational predicates by means of linear threshold 
elements [Valiant, 1998a; 1999]. Consider a relational 
Horn rule 

where appears only in the antecedent. By an appro-
priate choice for this rule can be represented 
using a threshold element 

We impose the restriction that the quantified antecedent 
variables appear in each condition separately. That is, 
the rule R6 is not legal since y is shared between and 
C2. An example for a legal rule (not equivalent to the 
one above) is: 

In fact, our restriction also allows for universally quan­
tified variables within a single condition (which differs 
from quantification outside the rule). Under this restric­
tion, for any sentence and given a binding for the 
conditions of the form (where Q is a quan­
tifier) are essentially Boolean variables. That is, they 
are either true or false but have no parameters. We call 
these quantified propositions to emphasize this point. 

As before, rules that use quantified propositions can 
be described using a linear threshold element: 

Thus a special case of rule representations is used but it is 
generalized through the use of linear threshold elements 
(that can represent as well as other functions), and 
more general quantifiers. 

Note that the restriction can be overcome by changing 
the set of relations. For example, instead of above 
we could have 

While the resulting program is the same, the represen­
tation will need to include f3() that explicitly mentions 
the variable y. 

4 Learning 
In this section we discuss the learnability of programs 
of the form presented in Sec. 3 in a supervised learn-
ing paradigm. The input to the learning algorithm is 
given in terms of an input sentence representation 5 as in 
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Eq. (1) along with an atom p, such as pos (rust, verb), 
that holds in this sentence. We call the pair < S,p > a 
labeled example. A single sentence may thus give rise to 
several examples, one for each word. 

In the following discussion it is sometimes useful to 
assume that there is a program in the class of programs 
discussed, that can produce correct labels for any sen­
tence. Such a program is called the target program, 

4.1 Rela t iona l Me thods 
An example < S,p > can be represented as (5 p). 
An example of this form is a ground Horn clause that 
is implied by the target program (a set of Horn rules). 
This is exactly the scheme of learning from entailment 
studied in inductive logic programming. (Notice that 
this representation assumes that negative atoms are not 
relevant for the label i.e. we cannot use in 
the condition of a rule). Several techniques from ILP 
use examples in this form, and can be applied to this 
task [Muggleton and De Raedt, 1994; Cohen, 1995a].3 

One of the main features that distinguishes ILP from 
other formalizations of learning is the use of background 
knowledge. A similar effect can be achieved in our for­
malization by enriching the input representation of sen­
tences with the relevant relational information. Thus, 
given rules, say, that compute isa() relations between 
words, (e.g., using WordNet) we can augment our initial 
representation S with the isa() atoms implied by these 
rules (for words in the sentence). 

Studies in ILP suggest that unless the rule representa­
tion is restricted the learning problem is intractable. We 
briefly discuss some of the common restrictions studied 
and their relation to the use of quantified propositions. A 
Horn clause is constrained if all the variables in the con­
sequent also appear in the antecedent [Page and Prisch, 
1992]. This is a special case of determinacy defined as 
follows. Assume one imposes an order (left to right) on 
the predicates in a rule's antecedent. A predicate is de-
terminate if in any example and given a binding for the 
consequent and the first i — 1 predicates, there is at most 
one binding that makes the i'th predicate true. Clearly, 
given a binding for the consequent, every predicate in the 
condition is a Boolean variable, similar to our restriction 
above, a fact which has been used both in theoretical 
results and practical applications [Dzeroski et a/., 1992; 
Lavrac and Dzeroski, 1994]. In our case, while there may 
be more than one binding for each quantified proposition 

the condition is still Boolean. 
Another related restriction is the depth of terms in a 

clause. We assign a depth to terms using the order on 
conditions in the antecedent from left to right. A term 
in the consequent is of depth 0. If is the next 
atom in the condition, such that u has been assigned 
depth i (and no other term has been assigned a lower 
depth) and v has not yet been assigned a depth, then 

3Previous ILP work for similar problems [Cussens, 1997; 
Dzeroski and Erjavec, 1997] use a different formalization and 
are therefore not directly comparable here. 

v is of depth i + 1. Depth is only assigned to "linked" 
clauses where at least one term in any atom is already 
assigned a depth by the previous atoms. Clearly our re­
striction means that variables in clauses are of depth 
at most 1 but constants may create chains of longer 
depth. Positive results in ILP [Dzeroski et a/., 1992; 
Cohen, 1995a] show that a single non-recursive (or with 
limited recursion) determinate clause of constant depth 
is learnable in polynomial time. However, relaxing any of 
the restrictions, to 2 clauses, non-constant depth, recur­
sive clauses, or non determinate clauses makes the prob­
lem computationally hard [Kietz and Dzeroski, 1994; 
Cohen, 1995b; Cohen and Page, 1995]. 

On the other hand, there are heuristics for learning 
programs with more than one rule and these may be used 
here as well [Muggleton and De Raedt, 1994; Cussens, 
1997]. Another way to make the problem tractable is 
to use queries. In particular, for entailment membership 
queries, the learner presents a new example (Sn -> pn) 
and asks whether it is implied by the target. If a user can 
answer such questions or if one can otherwise simulate 
these then techniques from [Khardon, 1998; Reddy and 
Tadepalli, 1998] can be used to learn programs with more 
than one rule. 

To summarize, the restriction imposed by using quan­
tified propositions creates a situation that is similar to 
determinacy and constant depth in that it reduces the 
complexity of the learning problem but is incomparable 
to these. One important difference is the fact that deter­
minacy is a property of the data that may not hold for 
every domain whereas our restriction is purely syntactic. 

4.2 Using Quant i f ied Proposit ions 
In the rest of this section we concentrate on the prob­
lem of learning a single rule that uses quantified propo­
sitions and can be expressed given the predicates in the 
representation of the sentence. To make this concrete, in 
terms of the examples above, we might be trying to learn 
the rule R3 from sentence representations that include 
6e/(),ppos(),f1(),/2(). In the next section we discuss 
combining rules learned separately in a single system. 

Projection 
A possible reduction in complexity comes from splitting 
the learning task into a few smaller ones. This is natural 
for part of speech tagging. It seems unlikely that the 
same condition can be used to predict the part of speech 
of, say, both nouns and verbs. Therefore, it may be bet­
ter to avoid trying to learn a general rule of the form 
condition pos(x, y) and instead learn a set of rules, 
one (or more) for each part of speech, e.g. (conditioni 
pos(x,noun))> (condition2 pos(x,verb)) etc. If gen­
eral patterns do not occur (and thus will not be useful) 
then we are effectively reducing the complexity of the 
learning problem. 

One can think of this as projecting the relation 
pos(x,y) over its second argument (the pos tag), where 
posQ is implemented as a logical disjunction of the var­
ious sub-relations. This clearly works if the instances 
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describe disjoint sets, which they do. The projection we 
use here (for pos()) depends on the label of the exam­
ple. This does not cause a problem during the learning 
process but one may need to resolve between competing 
learned rules when the programs are used. Other pro-
jections, that depend only on the input sentence, can be 
used in other NLP tasks. In fact, this has been done 
implicit ly in NLP studies, where the task is defined as 
disambiguating between a small set of candidates.4 

Our examples of projections simply partition the 
learned predicate into several disjoint parts, where the 
parts are identifiable in advance, and all parts are needed 
(e.g. we need to learn pos(x, y) for each possible value of 
y). Projection learning [Valiant, 1998b] provides some 
more general conditions under which learning projec­
tions on the input space is guaranteed to work. This 
holds even if one has a set of projections that is not dis­
joint and not all projections are needed. In addition, 
as we discuss below, this can be done in an attribute 
efficient manner. 

Us ing Propos i t iona l Learn ing A l g o r i t h m s 
As presented in Sec. 3.2 the Neuroidal Architecture 
[Valiant, 1998a] restricts the use of rules so that quan­
tified variables in different parts of the condition can be 
evaluated separately from the others. The main advan­
tage of this restriction is that it allows one to encode 
relational learning examples into a propositional setting. 
Consider learning the rule 
R7 =  
where C1() and C2O are the features used in the repre­
sentation. For a sentence representation 5 and a bind­
ing of the variable x (which determines the example 
provided to the learning algorithm) each predicate in a 
rule (e.g. is assigned a single binary value. 
Thus an example can be described by assigning a binary 
value to each of the given features. In our example sen­
tence (learning R3 in terms of bef(),ppos(), f1(), f2O) for 
x = t h i s we have f1(x) = 1, f2{x) = 0, bef(x,can) = 1, 
and for x =can we have f1{x) = 1, f2(x) = 1, and 
bef (x , can) = 0. Since an example always specifies the 
binding for the atom in the consequent this can always 
be done.5 As a result, under this restriction any proposi­
tional learning algorithm can be used for learning, even 
though the rule itself is relational! The rule learned is 
an approximation to an equivalence rather than an im­
plication [Valiant, 1999]. 

4When learning to perform context sensitive spelling, the 
task is to decide what is the correct word to use for a given 
confusion set e.g. piece or peace. In this case, projection 
on the confusion set (i.e., learning for piece, peace and for 
weather, whether separately) makes sense since it is unlikely 
that the same condition will disambiguate different sets. 

5This should be contrasted with the expression R5 = 
[Va;,(3y,Ci(x,y) Ac2(x,y) -» new(x))] where for each bind­
ing for y we still get a binary value for each attribute, but 
these binary values are dependent upon each other, so that 
the example cannot be described simply using a set of binary 
values. 

Dealing w i th Many Attr ibutes 
Recall that in the ILP setting an example is a clause of 
the form (5 —> p), implicitly assuming that the atoms 
that do not hold in the sentence are irrelevant for it. 
This "closed world assumption" is especially important 
if the number of atoms that hold in a sentence (positive 
atoms) is much smaller than the number of those that do 
not hold in it (negative atoms). This is likely to be the 
case in the current context especially if we use features 
that are partly ground, such as bef(x, can), bef(x, will), 
bef(x, table) etc., repeated for every word in our lexicon. 
In this setting, the number of potential features may be 
in the order of 105 and explicitly mentioning all of them 
may be computationally costly. 

Therefore, when using a propositional learning algo­
rithm in this setting one would like to make sure that 
the algorithm handles only the features active in the ex­
ample and, preferably, does not even represent negative 
features since even their representation and manipula­
tion will be time consuming. In turn, this efficiency 
requirement may imply that the program learned can­
not depend on negative features. The infinite attribute 
model suggested by Blum [1992] provides a theoretical 
framework in which this can be studied. In this model, 
an example is represented as a list of the attributes that 
are active in it, and a learning algorithm is required to be 
efficient (polynomial) in terms of the number of the fea­
tures active in the examples rather than the total num­
ber of attributes. To a certain extent, algorithms in the 
infinite attribute model can deal with negative features 
[Blum, 1992]. 

At t r ibute Efficient Algorithms 
The sample complexity - the number of examples re­
quired in order to achieve learnability - is another im­
portant aspect that requires attention. Consider the case 
when the target program depends only on nr (relevant) 
attributes, which is small relative to nc, the number of 
attributes active in any particular example, and very 
small relative to na the number of potential attributes. 
As indicated above, this is realistic in many NLP prob­
lems, in which the number of potential attributes de­
pends on the size of the lexicon. In this case, one would 
like the number of examples required for learning the 
program to depend only weakly on ne or na. Little-
stone's Winnow algorithm [Littlestone, 1988] (adapted 
to the infinite attribute model) can achieve this and re­
quires 0(nr log nc) examples. That is, the number of 
examples needed is independent of na and depends only 
logarithmically on ne. 

An important aspect of projection learning, as men­
tioned previously, is that it can be achieved attribute 
efficiently [Valiant, 1998b]. This requires no special at­
tention if the projection forms a partition, as in the POS 
example, but even in a more general case when we have 
a large number of projections of which only a small num­
ber is relevant, there is a logarithmic dependence on the 
number of irrelevant projections. 
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Targe t -Word Centered Representat ion 
Our init ial description used a single representation for a 
sentence, as in Eq. (1). In this formulation, a single sen­
tence gives rise to several examples, each corresponding 
to the part of speech of a word in the sentence, but all 
have the same relational representation and differ only 
in their label. It is thus worth noting that when using 
the propositional translation this does not hold. In par­
ticular, the Boolean value of the features depends on the 
binding for x, the word for which we are trying to pre­
dict the part of speech. In this way, a sentence produces 
several examples, each corresponding to a word and its 
part of speech, but the propositional representation of 
each of these examples is different. 

5 The S N o W System 
The SNoW system6 provides an architecture within 
which several learning algorithms - all making predic­
tions using linear functions over the feature space - can 
be implemented. The architecture is a network of linear 
threshold gates. Nodes in the input layer of the network 
represent simple relations on the input sentence and are 
being used as the input features. Target nodes represent 
features for which programs are sought. Target nodes 
are linked via weighted edges to input features; if Ft is 
the set of features linked to the target node t, Wi is the 
weight associated wi th the i th feature, and 0t is a thresh­
old associated wi th t, we can say that t is represented by 
the generalized rule 

Each SNoW unit may include a collection of subnet­
works, one for each of the relations for which a program 
is learned. A given example is treated autonomously by 
each target subnetwork; an example labeled t is treated 
as positive example by the subnetwork for t and as a neg­
ative example by the rest of the target nodes (modulo 
projection considerations). The learning policy is on-
line and mistake-driven, and the most successful update 
rule used within SNoW is the Sparse Winnow Algorithm. 
This is a variant of Littlestone's [1988] multiplicative up­
date rule, tailored to the situation in which the set of 
input features is not known a priori, as in the infinite 
attribute model [Blum, 1992]. Once target subnetworks 
have been learned and the network is being evaluated, 
a decision support mechanism is employed to select the 
dominant active target node in the network or to output 
an otherwise coherent output [Munoz et al, 1999]. 

Originally, the SNoW system was described as a 
propositional system. In the rest of this section we shall 
detail a new interpretation of it as a relational system. 

6Other NLP learning systems like Brill's system [1995] 
also incorporate some of the aspects we present; in particular, 
they use similar features and decompose the tasks similarly. 
However, SNoW corresponds more directly to the Neuroidal 
Architecture in its use of threshold elements. 

We briefly discuss how-some of the aspects presented ear-
lier are reflected in the design of the system, and then 
present a few more pragmatic aspects that are some­
what harder to discuss theoretically at this point. Most 
of these aspects have been evaluated experimentally and 
found to perform successfully on a variety of NLP tasks. 
In particular, single SNoW units have been evaluated on 
context-sensitive spelling correction [Golding and Roth, 
1999]; chaining of SNoW units (as well as other as­
pects) has been studied in [Roth and Zelenko, 1998; 
Munoz et al., 1999] several aspects of projections have 
been studied in [Rosen, 1999], and a preliminary study 
of incorporating background knowledge by augmenting 
the input features is in [Krymolovsky and Roth, 1998]. 

5 .1 Sentence r e p r e s e n t a t i o n 

While the description above suggests that SNoW uses 
a propositional representation, a relational representa­
tion of sentences as in Eq. (1) is used. This is done 
by utilizing quantified propositions and using a proposi­
tional representation of these as features. Accordingly, 
examples are target-word centered and a single relational 
sentence representation may give rise to several proposi­
tional examples, corresponding to the target word. 

Quantified propositions include features with con­
stants (as in f2() in Sec. 3) and existential features (as 
in / i ( ) in Sec. 3). The system generates the features and 
the word-centered representation automatically using a 
simple language for relational feature definitions. Specif­
ically, features are relations of the form where 
the predicate c() is one of three types: (1) relations that 
can be readily read from the sentence, like bef {this, can). 
(2) Relations that become active as a result of evaluat­
ing other, previously learned programs. (3) Relations 
that are read from an outside source. These may in­
clude predicates like isa(), and synonymQ. In this way 
background knowledge is incorporated in a transparent 
way and plays the same role in the representation as do 
simpler predicates. 

The predicate c() can also be a small conjunction of 
predicates of the above types. The pattern for existen­
tial features is restricted to bind words within a fixed 
distance of the target word. Thus, / i ( ) above can be 
rephrased as "ppos(y, verb) holds for the word y which 
is two positions to the right of x". Notice that due to the 
semantics of bef(), these features are determinate in any 
rule; more general features like "ppos{y, verb) holds for 
some word y which is at most 5 positions away from x" 
are also used, but they too have bounded determinacy. 

The above syntactic description generates a large num­
ber of possible features. Following the positive sentence 
representation principle discussed above, features are al­
located only if they are active in the example sentence. 
The architecture supports a limited use of negative fea­
tures by learning several programs at the same time and 
using positive features for one program as potential neg­
ative features for others. 
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5.2 Learning 
• SNoW is a propositional learning system that uses 

linear threshold functions over the set of quantified 
propositions as its knowledge representation. 

• Two complementary aspects of projection are han­
dled in SNoW. Precondition projection is similar to 
the one described above. This is a condition ap­
plied to the input representation (either just the 
sentence or the label as well) that is employed to 
learn several target programs rather than a single, 
more abstract, program as described above for POS 
and the spelling examples. In this way, different 
examples can be used to train different programs. 
Task projection is a form of projection that is em­
ployed at prediction time, when several learned pro­
grams are being evaluated, and is used to restrict 
the programs that are being evaluated on a given 
input example, thereby simplifying the prediction 
process. For example, when learning programs for 
each of the possible POS, a (learned) task projec­
tion may prevent the evaluation of the pos(x, adj) 
program given that the target word is can. In par­
ticular, this form of projection addresses one of the 
issues discussed above, when the projection is with 
respect to the label. An experimental evaluation of 
the forms of projections within SNoW, exhibiting 
both significant efficiency and performance gains is 
presented in [Rosen, 1999]. 

• SNoW implements several on line learning algo­
rithms for linear functions, including variations of 
Winnow, Perceptron, naive Bayes and a memory 
based algorithms (the last two use only positive ex­
amples for learning). In all cases, the variation im­
plemented is tuned to (be on-line and) deal with 
many attributes along the lines described above. 
This is imposed by the sparse architecture of the 
system, which assigns a positive weight to a feature 
only if it is active together with the target predicate 
in a single example. 

5.3 Other Pragmatic Issues 
• SNoW can learn programs that are represented in 

terms of predicates which are themselves conse­
quents of other programs (that were learned pre­
viously). Thus SNoW supports chaining of learned 
programs assuming that each of the learning stages 
is supervised. One difficulty in this process is 
that learned rules may not be completely accurate, 
resulting in potentially noisy input to the other 
learning stages. This imposes another practical 
constraint on the algorithms used in this setting, 
namely robustness to attribute noise. 

• SNoW allows for some use of recursive rules in 
the following way. When learning from labeled 
data, the pos() labels are available for all words 
and may be included in the input representation. 
As a result, the learned rule may be recursive in 
that it includes pos() predicates in the antecedent. 

However, when evaluating the learned program for 
posQ on new sentences that are not annotated, one 
needs to initialize the posQ predicates in the an­
tecedent in some way (e.g., use the most frequent 
part of speech for each word) and then, the same 
program may be applied to the sentence represen­
tation (even several times) as to improve the ap­
proximate input representation before the output 
posQ is decided upon [Roth and Zelenko, 1998; 
Munoz et al., 1999]. 

• Finally, whenever a collection of programs is 
learned, given an input sentence, there is a need 
to make a decision that may involve several learned 
programs. In particular, as in POS, the programs 
compute competing pos tags and there is a need for 
a procedure that determines which of them to se­
lect. (Note that in SNoW this results from the use 
of projection.) SNoW employs a few mechanisms for 
decision making including a winner-take-all mecha­
nism and a learned decision making mechanism. 

6 Discussion 
Based on an analysis of SNoW in terms of the Neu-
roidal Architecture, we presented a framework describ­
ing SNoW as a relational learning system and explained 
its relation to ILP. This, in particular, facilitates future 
comparative studies involving SNoW and ILP. 

Since the theory presented is more general than cur­
rent implementations, extensions of SNoW along the 
lines suggested by the theory may provide new levels 
of scalability and functionality. This is, however, not 
straightforward and requires careful consideration. Ad­
ditionally, our analysis may provide guidelines for further 
analysis of some issues which are not well understood yet. 

One of the issues that can be addressed in future work 
is the following tradeoff: adding more complex existen­
tial features to the representation increases computa­
tional complexity, but at the same time results in more 
expressive programs and more significant gain from the 
use of attribute efficient algorithms. A second issue is 
the use of more general forms of projections. Finally, one 
advantage of relational methods is the ability to choose 
the right features dynamically and in fact change them 
during the learning process. For example, if a sentence 
includes the atom bef (can, will), this feature may be 
needed as part of a learned rule. Naturally, we do not 
know in advance whether the feature should be ground 
or whether a more general form, one of bef(x,will), 
6e/(can,y), or bef(x,y) should be used. In the current 
propositional setting, each of these is used separately as a 
feature and the learning algorithm may use any of them. 
On the other hand, computing the least general general­
ization [Plotkin, 1970] over several example sentences we 
may be able to find the right general form of the feature. 
It is not clear whether a technique that changes the fea­
tures in this way, during the on-line process of learning, 
can be incorporated in the propositional setting. 
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