
Relational Learning for NLP using Linear Threshold Elements
Roni Khardon* Dan Roth* Leslie G. Valiant*

Division of Informatics Computer Science Engineering and Applied Sciences
University of Edinburgh University of Illinois, Urbana Harvard University

Edinburgh, EH9 3JZ Urbana, IL 61801 Cambridge, MA 02138
Scotland USA USA

roni@dcs.ed.ac.uk danr@cs.uiuc.edu valiant@deas.harvard.edu

Abstract
We describe a coherent view of learning and
reasoning with relational representations in
the context of natural language processing.
In particular, we discuss the Neuroidal Ar­
chitecture, Inductive Logic Programming and
the SNoW system explaining the relationships
among these, and thereby offer an explanation
of the theoretical basis for the SNoW system.
We suggest that extensions of this system along
the lines suggested by the theory may provide
new levels of scalability and functionality.

1 Introduction
The paper explores some aspects of relational knowledge
representation and their learnability. While the discus­
sion is to a large extent general it is made in the context
of low-level natural language processing (NLP) tasks.
Recent efforts in NLP emphasize empirical approaches,
that attempt to learn how to perform various natural
language tasks by being trained using an annotated cor­
pus. These approaches have been used for a wide variety
of fairly low level tasks such as part-of-speech tagging,
prepositional-phrase attachment, context-sensitive text
correction, and word selection in speech recognition and
translation.

In this paper we study the general form of such prob­
lems in a relational setting. Thus, our interest here is in
learning to perform such tasks given a set of previously
processed sentences, each represented using a relational
representation. We use the task of Part of speech tagging
(POS) - one of the basic tasks studied in this line of re­
search and often viewed as a prerequisite to performing
many of the other tasks - as our running example. POS
is the task of assigning each word in a given sentence the
part of speech it assumes in that sentence. For example,
assign N or V to ta lk in the following pair of sentences:
Have you l istened to his (him) talk?

* Partly supported by EPSRC grant GR/M21409.
+Research supported by NSF grants IIS-9801638 and

SBR-9873450.
* Research supported by grants NSF-CCR-95-04436 and

ONR-N00014-96-1-0550.

The SNoW system [Roth, 1998] has been used suc­
cessfully for several NLP tasks and, in particular, for
learning to perform part of speech tagging [Roth and
Zelenko, 1998]. The system uses perceptron-like repre-
sentations and propositional learning algorithms. On the
other hand, relational representations are very natural
for NLP tasks and logic programs have been widely used
in this context [Hobbs et al., 1993; Pereira and Shieber,
1987]. A natural approach would thus be to apply learn­
ing in first order logic or Inductive Logic Programming
(ILP) for learning to perform the relevant tasks, as done
e.g in [Cussens, 1997; Dzeroski and Erjavec, 1997].

In this paper we discuss the theoretical basis underly­
ing the SNoW system in terms of the Neuroidal Architec­
ture, particularly following specific suggestions [Valiant,
1998a; 1999] for representing relational information using
linear threshold elements as discussed earlier in [Valiant,
1994]. Using this analysis we show that SNoW can be
viewed as a relational learning system, and this enables
us to go on to compare it more directly with ILP.

The main contribution of the paper is therefore in an­
alyzing the SNoW system in terms of the Neuroidal Ar­
chitecture and consequently as a system learning rela­
tional information. This analysis provides insight into
some of the theoretical and practical considerations that
have been made in the search for scalable systems in
this context. Secondly, since the theory is somewhat
more general than current implementations, this sug­
gests that extending the SNoW system in a manner con­
sistent with the theory may provide new levels of func­
tionality. Finally, by providing a single framework for
discussing both SNoW and ILP we enable future com­
parative work of these seemingly disparate approaches.

The presentation is organized as follows. We first de­
scribe the input (a sentence) and program representa­
tion (Horn rules and variants) for the relational tasks
under consideration. We then discuss various computa-
tional aspects of the representations and their learnabil­
ity. This leads to a description of the SNoW system and
a discussion of some of the pragmatics of systems that
learn to perform these tasks.

KHARDON, ROTH, AND VALIANT 911

2 Representing a Sentence
We use first order logic statements with a finite set of
predicates and allow only constants (i.e. no other func­
tion symbols) in expressions. Since the specific predi­
cates used do not affect the conceptual issues, we shall
give a simple running example that will serve to illus­
trate the computational issues.1 The representation is
as follows:

• Each word has a constant associated with it.
• The linear structure of the sentence is captured by

the predicate which means that word
is immediately before w2 in the sentence.

• A variety of relations conveying linguistic or seman­
tic information may be added. For example we may
add is a possible part of speech for
word Another example is adding
where is a word describing an object in a class
of objects described by the word

For simplicity we assume in the examples below that
6e/() and pposQ are the only relations used in the rep­
resentation. Thus the sentence th is can w i l l rust is
represented as the collection of all the atoms that hold
(are active) in it:
S = {be f (this, can),bef (can, will),bef (will, rust),

ppos(this, art),ppos(can, noun), ppos (can, verb),
ppos(will, noun),ppos(will, verb),ppos(rust, noun),
ppos(rust,verb)} (1)

It is implicit in the above that atoms not listed (such as
be f (this,rust)) are false for this sentence.

The above representation may be too restricted if
words appear more than once in a sentence. This can
be easily dealt with formally by replacing constants rep­
resenting words with unary predicates and using "to­
ken constants" to represent positions in the sentence
[Valiant, 1998a; 1999]. In order to keep the notation
simple we ignore this issue in the rest of the paper.

3 Representing Programs
3.1 Horn Representations
A program should take a sentence as an input and pro­
duce part of speech tags for the words in this sentence.
One possible representation for such a program is a set
of Horn rules. For example, the rules2

represent a simple program for predicting whether a
*The examples are meant only to illustrate the language

used and may not be the most accurate - indeed, one reason
learning is crucial in this domain is that it is hard to come
up with concise rules that perform well.

2 Note that the first rule is logically equivalent to
but

the existential presentation is more intuitive from an opera­
tional perspective.

word is a noun or not. These rules exemplify several
aspects of the representation. First, we may want to
construct "complex features" such as and f2() out
of the base predicates. Secondly, such features may in­
clude existentially quantified variables as in the first rule
or constants as in the first or second rule. Note that the
same program can be represented by the single rule

3.2 Threshold Elements w i th Quantified
Propositions

This section reviews a previous proposal for implement­
ing relational predicates by means of linear threshold
elements [Valiant, 1998a; 1999]. Consider a relational
Horn rule

where appears only in the antecedent. By an appro-
priate choice for this rule can be represented
using a threshold element

We impose the restriction that the quantified antecedent
variables appear in each condition separately. That is,
the rule R6 is not legal since y is shared between and
C2. An example for a legal rule (not equivalent to the
one above) is:

In fact, our restriction also allows for universally quan­
tified variables within a single condition (which differs
from quantification outside the rule). Under this restric­
tion, for any sentence and given a binding for the
conditions of the form (where Q is a quan­
tifier) are essentially Boolean variables. That is, they
are either true or false but have no parameters. We call
these quantified propositions to emphasize this point.

As before, rules that use quantified propositions can
be described using a linear threshold element:

Thus a special case of rule representations is used but it is
generalized through the use of linear threshold elements
(that can represent as well as other functions), and
more general quantifiers.

Note that the restriction can be overcome by changing
the set of relations. For example, instead of above
we could have

While the resulting program is the same, the represen­
tation will need to include f3() that explicitly mentions
the variable y.

4 Learning
In this section we discuss the learnability of programs
of the form presented in Sec. 3 in a supervised learn-
ing paradigm. The input to the learning algorithm is
given in terms of an input sentence representation 5 as in

912 NATURAL LANGUAGE PROCESSING

Eq. (1) along with an atom p, such as pos (rust, verb),
that holds in this sentence. We call the pair < S,p > a
labeled example. A single sentence may thus give rise to
several examples, one for each word.

In the following discussion it is sometimes useful to
assume that there is a program in the class of programs
discussed, that can produce correct labels for any sen­
tence. Such a program is called the target program,

4.1 Rela t iona l Me thods
An example < S,p > can be represented as (5 p).
An example of this form is a ground Horn clause that
is implied by the target program (a set of Horn rules).
This is exactly the scheme of learning from entailment
studied in inductive logic programming. (Notice that
this representation assumes that negative atoms are not
relevant for the label i.e. we cannot use in
the condition of a rule). Several techniques from ILP
use examples in this form, and can be applied to this
task [Muggleton and De Raedt, 1994; Cohen, 1995a].3

One of the main features that distinguishes ILP from
other formalizations of learning is the use of background
knowledge. A similar effect can be achieved in our for­
malization by enriching the input representation of sen­
tences with the relevant relational information. Thus,
given rules, say, that compute isa() relations between
words, (e.g., using WordNet) we can augment our initial
representation S with the isa() atoms implied by these
rules (for words in the sentence).

Studies in ILP suggest that unless the rule representa­
tion is restricted the learning problem is intractable. We
briefly discuss some of the common restrictions studied
and their relation to the use of quantified propositions. A
Horn clause is constrained if all the variables in the con­
sequent also appear in the antecedent [Page and Prisch,
1992]. This is a special case of determinacy defined as
follows. Assume one imposes an order (left to right) on
the predicates in a rule's antecedent. A predicate is de-
terminate if in any example and given a binding for the
consequent and the first i — 1 predicates, there is at most
one binding that makes the i'th predicate true. Clearly,
given a binding for the consequent, every predicate in the
condition is a Boolean variable, similar to our restriction
above, a fact which has been used both in theoretical
results and practical applications [Dzeroski et a/., 1992;
Lavrac and Dzeroski, 1994]. In our case, while there may
be more than one binding for each quantified proposition

the condition is still Boolean.
Another related restriction is the depth of terms in a

clause. We assign a depth to terms using the order on
conditions in the antecedent from left to right. A term
in the consequent is of depth 0. If is the next
atom in the condition, such that u has been assigned
depth i (and no other term has been assigned a lower
depth) and v has not yet been assigned a depth, then

3Previous ILP work for similar problems [Cussens, 1997;
Dzeroski and Erjavec, 1997] use a different formalization and
are therefore not directly comparable here.

v is of depth i + 1. Depth is only assigned to "linked"
clauses where at least one term in any atom is already
assigned a depth by the previous atoms. Clearly our re­
striction means that variables in clauses are of depth
at most 1 but constants may create chains of longer
depth. Positive results in ILP [Dzeroski et a/., 1992;
Cohen, 1995a] show that a single non-recursive (or with
limited recursion) determinate clause of constant depth
is learnable in polynomial time. However, relaxing any of
the restrictions, to 2 clauses, non-constant depth, recur­
sive clauses, or non determinate clauses makes the prob­
lem computationally hard [Kietz and Dzeroski, 1994;
Cohen, 1995b; Cohen and Page, 1995].

On the other hand, there are heuristics for learning
programs with more than one rule and these may be used
here as well [Muggleton and De Raedt, 1994; Cussens,
1997]. Another way to make the problem tractable is
to use queries. In particular, for entailment membership
queries, the learner presents a new example (Sn -> pn)
and asks whether it is implied by the target. If a user can
answer such questions or if one can otherwise simulate
these then techniques from [Khardon, 1998; Reddy and
Tadepalli, 1998] can be used to learn programs with more
than one rule.

To summarize, the restriction imposed by using quan­
tified propositions creates a situation that is similar to
determinacy and constant depth in that it reduces the
complexity of the learning problem but is incomparable
to these. One important difference is the fact that deter­
minacy is a property of the data that may not hold for
every domain whereas our restriction is purely syntactic.

4.2 Using Quant i f ied Proposit ions
In the rest of this section we concentrate on the prob­
lem of learning a single rule that uses quantified propo­
sitions and can be expressed given the predicates in the
representation of the sentence. To make this concrete, in
terms of the examples above, we might be trying to learn
the rule R3 from sentence representations that include
6e/(),ppos(),f1(),/2(). In the next section we discuss
combining rules learned separately in a single system.

Projection
A possible reduction in complexity comes from splitting
the learning task into a few smaller ones. This is natural
for part of speech tagging. It seems unlikely that the
same condition can be used to predict the part of speech
of, say, both nouns and verbs. Therefore, it may be bet­
ter to avoid trying to learn a general rule of the form
condition pos(x, y) and instead learn a set of rules,
one (or more) for each part of speech, e.g. (conditioni
pos(x,noun))> (condition2 pos(x,verb)) etc. If gen­
eral patterns do not occur (and thus will not be useful)
then we are effectively reducing the complexity of the
learning problem.

One can think of this as projecting the relation
pos(x,y) over its second argument (the pos tag), where
posQ is implemented as a logical disjunction of the var­
ious sub-relations. This clearly works if the instances

KHARDON, ROTH, AND VALIANT 813

describe disjoint sets, which they do. The projection we
use here (for pos()) depends on the label of the exam­
ple. This does not cause a problem during the learning
process but one may need to resolve between competing
learned rules when the programs are used. Other pro-
jections, that depend only on the input sentence, can be
used in other NLP tasks. In fact, this has been done
implicit ly in NLP studies, where the task is defined as
disambiguating between a small set of candidates.4

Our examples of projections simply partition the
learned predicate into several disjoint parts, where the
parts are identifiable in advance, and all parts are needed
(e.g. we need to learn pos(x, y) for each possible value of
y). Projection learning [Valiant, 1998b] provides some
more general conditions under which learning projec­
tions on the input space is guaranteed to work. This
holds even if one has a set of projections that is not dis­
joint and not all projections are needed. In addition,
as we discuss below, this can be done in an attribute
efficient manner.

Us ing Propos i t iona l Learn ing A l g o r i t h m s
As presented in Sec. 3.2 the Neuroidal Architecture
[Valiant, 1998a] restricts the use of rules so that quan­
tified variables in different parts of the condition can be
evaluated separately from the others. The main advan­
tage of this restriction is that it allows one to encode
relational learning examples into a propositional setting.
Consider learning the rule
R7 =
where C1() and C2O are the features used in the repre­
sentation. For a sentence representation 5 and a bind­
ing of the variable x (which determines the example
provided to the learning algorithm) each predicate in a
rule (e.g. is assigned a single binary value.
Thus an example can be described by assigning a binary
value to each of the given features. In our example sen­
tence (learning R3 in terms of bef(),ppos(), f1(), f2O) for
x = t h i s we have f1(x) = 1, f2{x) = 0, bef(x,can) = 1,
and for x =can we have f1{x) = 1, f2(x) = 1, and
bef (x , can) = 0. Since an example always specifies the
binding for the atom in the consequent this can always
be done.5 As a result, under this restriction any proposi­
tional learning algorithm can be used for learning, even
though the rule itself is relational! The rule learned is
an approximation to an equivalence rather than an im­
plication [Valiant, 1999].

4When learning to perform context sensitive spelling, the
task is to decide what is the correct word to use for a given
confusion set e.g. piece or peace. In this case, projection
on the confusion set (i.e., learning for piece, peace and for
weather, whether separately) makes sense since it is unlikely
that the same condition will disambiguate different sets.

5This should be contrasted with the expression R5 =
[Va;,(3y,Ci(x,y) Ac2(x,y) -» new(x))] where for each bind­
ing for y we still get a binary value for each attribute, but
these binary values are dependent upon each other, so that
the example cannot be described simply using a set of binary
values.

Dealing w i th Many Attr ibutes
Recall that in the ILP setting an example is a clause of
the form (5 —> p), implicitly assuming that the atoms
that do not hold in the sentence are irrelevant for it.
This "closed world assumption" is especially important
if the number of atoms that hold in a sentence (positive
atoms) is much smaller than the number of those that do
not hold in it (negative atoms). This is likely to be the
case in the current context especially if we use features
that are partly ground, such as bef(x, can), bef(x, will),
bef(x, table) etc., repeated for every word in our lexicon.
In this setting, the number of potential features may be
in the order of 105 and explicitly mentioning all of them
may be computationally costly.

Therefore, when using a propositional learning algo­
rithm in this setting one would like to make sure that
the algorithm handles only the features active in the ex­
ample and, preferably, does not even represent negative
features since even their representation and manipula­
tion will be time consuming. In turn, this efficiency
requirement may imply that the program learned can­
not depend on negative features. The infinite attribute
model suggested by Blum [1992] provides a theoretical
framework in which this can be studied. In this model,
an example is represented as a list of the attributes that
are active in it, and a learning algorithm is required to be
efficient (polynomial) in terms of the number of the fea­
tures active in the examples rather than the total num­
ber of attributes. To a certain extent, algorithms in the
infinite attribute model can deal with negative features
[Blum, 1992].

At t r ibute Efficient Algorithms
The sample complexity - the number of examples re­
quired in order to achieve learnability - is another im­
portant aspect that requires attention. Consider the case
when the target program depends only on nr (relevant)
attributes, which is small relative to nc, the number of
attributes active in any particular example, and very
small relative to na the number of potential attributes.
As indicated above, this is realistic in many NLP prob­
lems, in which the number of potential attributes de­
pends on the size of the lexicon. In this case, one would
like the number of examples required for learning the
program to depend only weakly on ne or na. Little-
stone's Winnow algorithm [Littlestone, 1988] (adapted
to the infinite attribute model) can achieve this and re­
quires 0(nr log nc) examples. That is, the number of
examples needed is independent of na and depends only
logarithmically on ne.

An important aspect of projection learning, as men­
tioned previously, is that it can be achieved attribute
efficiently [Valiant, 1998b]. This requires no special at­
tention if the projection forms a partition, as in the POS
example, but even in a more general case when we have
a large number of projections of which only a small num­
ber is relevant, there is a logarithmic dependence on the
number of irrelevant projections.

914 NATURAL LANGUAGE PROCESSING

Targe t -Word Centered Representat ion
Our init ial description used a single representation for a
sentence, as in Eq. (1). In this formulation, a single sen­
tence gives rise to several examples, each corresponding
to the part of speech of a word in the sentence, but all
have the same relational representation and differ only
in their label. It is thus worth noting that when using
the propositional translation this does not hold. In par­
ticular, the Boolean value of the features depends on the
binding for x, the word for which we are trying to pre­
dict the part of speech. In this way, a sentence produces
several examples, each corresponding to a word and its
part of speech, but the propositional representation of
each of these examples is different.

5 The S N o W System
The SNoW system6 provides an architecture within
which several learning algorithms - all making predic­
tions using linear functions over the feature space - can
be implemented. The architecture is a network of linear
threshold gates. Nodes in the input layer of the network
represent simple relations on the input sentence and are
being used as the input features. Target nodes represent
features for which programs are sought. Target nodes
are linked via weighted edges to input features; if Ft is
the set of features linked to the target node t, Wi is the
weight associated wi th the i th feature, and 0t is a thresh­
old associated wi th t, we can say that t is represented by
the generalized rule

Each SNoW unit may include a collection of subnet­
works, one for each of the relations for which a program
is learned. A given example is treated autonomously by
each target subnetwork; an example labeled t is treated
as positive example by the subnetwork for t and as a neg­
ative example by the rest of the target nodes (modulo
projection considerations). The learning policy is on-
line and mistake-driven, and the most successful update
rule used within SNoW is the Sparse Winnow Algorithm.
This is a variant of Littlestone's [1988] multiplicative up­
date rule, tailored to the situation in which the set of
input features is not known a priori, as in the infinite
attribute model [Blum, 1992]. Once target subnetworks
have been learned and the network is being evaluated,
a decision support mechanism is employed to select the
dominant active target node in the network or to output
an otherwise coherent output [Munoz et al, 1999].

Originally, the SNoW system was described as a
propositional system. In the rest of this section we shall
detail a new interpretation of it as a relational system.

6Other NLP learning systems like Brill's system [1995]
also incorporate some of the aspects we present; in particular,
they use similar features and decompose the tasks similarly.
However, SNoW corresponds more directly to the Neuroidal
Architecture in its use of threshold elements.

We briefly discuss how-some of the aspects presented ear-
lier are reflected in the design of the system, and then
present a few more pragmatic aspects that are some­
what harder to discuss theoretically at this point. Most
of these aspects have been evaluated experimentally and
found to perform successfully on a variety of NLP tasks.
In particular, single SNoW units have been evaluated on
context-sensitive spelling correction [Golding and Roth,
1999]; chaining of SNoW units (as well as other as­
pects) has been studied in [Roth and Zelenko, 1998;
Munoz et al., 1999] several aspects of projections have
been studied in [Rosen, 1999], and a preliminary study
of incorporating background knowledge by augmenting
the input features is in [Krymolovsky and Roth, 1998].

5 .1 Sentence r e p r e s e n t a t i o n

While the description above suggests that SNoW uses
a propositional representation, a relational representa­
tion of sentences as in Eq. (1) is used. This is done
by utilizing quantified propositions and using a proposi­
tional representation of these as features. Accordingly,
examples are target-word centered and a single relational
sentence representation may give rise to several proposi­
tional examples, corresponding to the target word.

Quantified propositions include features with con­
stants (as in f2() in Sec. 3) and existential features (as
in / i () in Sec. 3). The system generates the features and
the word-centered representation automatically using a
simple language for relational feature definitions. Specif­
ically, features are relations of the form where
the predicate c() is one of three types: (1) relations that
can be readily read from the sentence, like bef {this, can).
(2) Relations that become active as a result of evaluat­
ing other, previously learned programs. (3) Relations
that are read from an outside source. These may in­
clude predicates like isa(), and synonymQ. In this way
background knowledge is incorporated in a transparent
way and plays the same role in the representation as do
simpler predicates.

The predicate c() can also be a small conjunction of
predicates of the above types. The pattern for existen­
tial features is restricted to bind words within a fixed
distance of the target word. Thus, / i () above can be
rephrased as "ppos(y, verb) holds for the word y which
is two positions to the right of x". Notice that due to the
semantics of bef(), these features are determinate in any
rule; more general features like "ppos{y, verb) holds for
some word y which is at most 5 positions away from x"
are also used, but they too have bounded determinacy.

The above syntactic description generates a large num­
ber of possible features. Following the positive sentence
representation principle discussed above, features are al­
located only if they are active in the example sentence.
The architecture supports a limited use of negative fea­
tures by learning several programs at the same time and
using positive features for one program as potential neg­
ative features for others.

KHARDON, ROTH, AND VALIANT 915

5.2 Learning
• SNoW is a propositional learning system that uses

linear threshold functions over the set of quantified
propositions as its knowledge representation.

• Two complementary aspects of projection are han­
dled in SNoW. Precondition projection is similar to
the one described above. This is a condition ap­
plied to the input representation (either just the
sentence or the label as well) that is employed to
learn several target programs rather than a single,
more abstract, program as described above for POS
and the spelling examples. In this way, different
examples can be used to train different programs.
Task projection is a form of projection that is em­
ployed at prediction time, when several learned pro­
grams are being evaluated, and is used to restrict
the programs that are being evaluated on a given
input example, thereby simplifying the prediction
process. For example, when learning programs for
each of the possible POS, a (learned) task projec­
tion may prevent the evaluation of the pos(x, adj)
program given that the target word is can. In par­
ticular, this form of projection addresses one of the
issues discussed above, when the projection is with
respect to the label. An experimental evaluation of
the forms of projections within SNoW, exhibiting
both significant efficiency and performance gains is
presented in [Rosen, 1999].

• SNoW implements several on line learning algo­
rithms for linear functions, including variations of
Winnow, Perceptron, naive Bayes and a memory
based algorithms (the last two use only positive ex­
amples for learning). In all cases, the variation im­
plemented is tuned to (be on-line and) deal with
many attributes along the lines described above.
This is imposed by the sparse architecture of the
system, which assigns a positive weight to a feature
only if it is active together with the target predicate
in a single example.

5.3 Other Pragmatic Issues
• SNoW can learn programs that are represented in

terms of predicates which are themselves conse­
quents of other programs (that were learned pre­
viously). Thus SNoW supports chaining of learned
programs assuming that each of the learning stages
is supervised. One difficulty in this process is
that learned rules may not be completely accurate,
resulting in potentially noisy input to the other
learning stages. This imposes another practical
constraint on the algorithms used in this setting,
namely robustness to attribute noise.

• SNoW allows for some use of recursive rules in
the following way. When learning from labeled
data, the pos() labels are available for all words
and may be included in the input representation.
As a result, the learned rule may be recursive in
that it includes pos() predicates in the antecedent.

However, when evaluating the learned program for
posQ on new sentences that are not annotated, one
needs to initialize the posQ predicates in the an­
tecedent in some way (e.g., use the most frequent
part of speech for each word) and then, the same
program may be applied to the sentence represen­
tation (even several times) as to improve the ap­
proximate input representation before the output
posQ is decided upon [Roth and Zelenko, 1998;
Munoz et al., 1999].

• Finally, whenever a collection of programs is
learned, given an input sentence, there is a need
to make a decision that may involve several learned
programs. In particular, as in POS, the programs
compute competing pos tags and there is a need for
a procedure that determines which of them to se­
lect. (Note that in SNoW this results from the use
of projection.) SNoW employs a few mechanisms for
decision making including a winner-take-all mecha­
nism and a learned decision making mechanism.

6 Discussion
Based on an analysis of SNoW in terms of the Neu-
roidal Architecture, we presented a framework describ­
ing SNoW as a relational learning system and explained
its relation to ILP. This, in particular, facilitates future
comparative studies involving SNoW and ILP.

Since the theory presented is more general than cur­
rent implementations, extensions of SNoW along the
lines suggested by the theory may provide new levels
of scalability and functionality. This is, however, not
straightforward and requires careful consideration. Ad­
ditionally, our analysis may provide guidelines for further
analysis of some issues which are not well understood yet.

One of the issues that can be addressed in future work
is the following tradeoff: adding more complex existen­
tial features to the representation increases computa­
tional complexity, but at the same time results in more
expressive programs and more significant gain from the
use of attribute efficient algorithms. A second issue is
the use of more general forms of projections. Finally, one
advantage of relational methods is the ability to choose
the right features dynamically and in fact change them
during the learning process. For example, if a sentence
includes the atom bef (can, will), this feature may be
needed as part of a learned rule. Naturally, we do not
know in advance whether the feature should be ground
or whether a more general form, one of bef(x,will),
6e/(can,y), or bef(x,y) should be used. In the current
propositional setting, each of these is used separately as a
feature and the learning algorithm may use any of them.
On the other hand, computing the least general general­
ization [Plotkin, 1970] over several example sentences we
may be able to find the right general form of the feature.
It is not clear whether a technique that changes the fea­
tures in this way, during the on-line process of learning,
can be incorporated in the propositional setting.

816 NATURAL LANGUAGE PROCESSING

References
[Blum, 1992] A. Blum. Learning Boolean functions in an

infinite attribute space. Machine Learning, 9(4):373-
386, 1992.

[Brill, 1995] E. Brill. Transformation-based error-driven
learning and natural language processing: A case
study in part of speech tagging. Computational Lin-
guistics, 21(4):543-565, 1995.

[Cohen and Page, 1995] W. Cohen and D. Page. Poly­
nomial learnability and inductive logic programming:
Methods and results. New Generation Computing,
pages 369-409, 1995.

[Cohen, 1995a] W. Cohen. PAC-learning recursive logic
programs: Efficient algorithms. Journal of Artificial
Intelligence Research, 2:501-539, 1995.

[Cohen, 1995b] W. Cohen. PAC-learning recursive logic
programs: Negative result. Journal of Artificial Intel­
ligence Research, 2:541-573, 1995.

[Cussens, 1997] J. Cussens. Part-of-speech tagging using
progol. In International Workshop on Inductive Logic
Programming, pages 93-108, Prague, Czech Republic,
1997. Springer. LNAI 1297.

[Dzeroski and Erjavec, 1997] S. Dzeroski and T. Er-
javec. Induction of Slovene nominal paradigms. In
International Workshop on Inductive Logic Program-
ming, pages 141-148, Prague, Czech Republic, 1997.
Springer. LNAI 1297.

[Dzeroski et al, 1992] S. Dzeroski, S. Muggleton, and
S. Russell. PAC-learnability of determinate logic pro­
grams. In Proceedings of the Conference on Compu­
tational Learning Theory, pages 128-135, Pittsburgh,
PA, 1992. ACM Press.

[Golding and Roth, 1999] A. R. Golding and D. Roth. A
winnow-based approach to context-sensitive spelling
correction. Machine Learning, 1999. Special issue on
Machine Learning and Natural Language; to appear.

[Hobbs et al, 1993] R. Hobbs, J, M. Stickel, P. Martin,
and D. Edwards. Interpretation as abduction. Artifi­
cial Intelligence, 63:69-142, 1993.

[Khardon, 1998] R. Khardon. Learning first order uni­
versal Horn expressions. In Proceedings of the Confer­
ence on Computational Learning Theory, pages 154-
165, Madison, WI, 1998. ACM Press.

[Kietz and Dzeroski, 1994] J. Kietz and S. Dzeroski. In­
ductive logic programming and learnability. SIGART
Bulletin, 5(l):22-32, 1994.

[Krymolovsky and Roth, 1998] Y. Krymolovsky and
D. Roth. Incorporating knowledge in natural language
learning: A case study. In COLING-ACL 98 work­
shop on the Usage of WordNet in Natural Language
Processing Systems, Aug 1998.

[Lavrac and Dzeroski, 1994] N. Lavrac and D. Dzeroski.
Inductive Logic Programming: Techniques and Appli­
cations, Ellis Horwood, London, 1994.

{Littlestone, 1988] N. Eittlestone. Learning quickly
when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning, 2:285-318,
1988.

[Muggleton and De Raedt, 1994] S. Muggleton and
L. De Raedt. Inductive logic programming: Theory
and methods. Journal of Logic Programming, 20:629-
679, 1994.

[Munoz et al,, 1999] M. Munoz, V. Punyakanok,
D. Roth, and D. Zimak. A learning approach to shal­
low parsing. Technical Report UIUCDCS-R-99-2087,
UIUC Computer Science Department, April 1999.

[Page and Prisch, 1992] D. Page and A. Frisch. Gen­
eralization and learnability: A study of constrianed
atoms. In S. Muggleton, editor, Inductive Logic Pro­
gramming. Academic Press, 1992.

[Pereira and Shieber, 1987] F. Pereira and S. Shieber.
Prolog and natural-language analysis. Stanford : Cen­
ter for the Study of Language and Information, 1987.

[Plotkin, 1970] G. D. Plotkin. A note on inductive gen­
eralization. In B. Meltzer and D. Michie, editors, Ma­
chine Intelligence 5, pages 153-163. American Else­
vier, 1970.

[Reddy and Tadepalli, 1998] C. Reddy and P. Tadepalli.
Learning first order acyclic Horn programs from en­
tailment. In International Conference on Inductive
Logic Programming, pages 23-37, Madison, WI, 1998.
Springer. LNAI 1446.

[Rosen, 1999] J. Rosen. Scaling up context sensitive
text correction. Master's thesis, UIUC, Department
of Computer Science, May 1999.

[Roth and Zelenko, 1998] D. Roth and D. Zelenko. Part
of speech tagging using a network of linear separators.
In COLING-ACL 98, The 17th International Confer­
ence on Computational Linguistics, pages 1136-1142,
1998.

[Roth, 1998] D. Roth. Learning to resolve natural lan­
guage ambiguities: A unified approach. In Proceedings
of the National Conference on Artificial Intelligence,
pages 806-813, 1998.

[Valiant, 1994] L. G. Valiant. Circuits of the Mind. Ox­
ford University Press, November 1994.

[Valiant, 1998a] L. G. Valiant. Neuroidal architecture
for cognitive computation. In ICALP'98, The In­
ternational Colloquium on Automata, Languages, and
Programming, pages 642-669. Springer-verlag, 1998.
Lecture notes in Computer Science, vol. 1443.

[Valiant, 1998b] L. G. Valiant. Projection learning.
In Proceedings of the Conference on Computational
Learning Theory, pages 287-293, 1998.

[Valiant, 1999] L. G. Valiant. Robust logics. In Pro­
ceedings of the Annual ACM Symp. on the Theory of
Computing, 1999. To Appear.

KHARDON, ROTH, AND VALIANT 917

