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Abstract 
An important problem in clustering is how to decide 
what is the best set of clusters for a given data set, in 
terms of both the number of clusters and the member­
ship of those clusters. In this paper we develop four 
criteria for measuring the quality of different sets of 
clusters. These criteria are designed so that different 
criteria prefer cluster sets that generalise at different 
levels of granularity. We evaluate the suitability of 
these criteria for non-hierarchical clustering of the 
results returned by a search engine. We also compare 
the number of clusters chosen by these criteria with 
the number of clusters chosen by a group of human 
subjects. Our results demonstrate that our criteria 
match the variability exhibited by human subjects, 
indicating there is no single perfect criterion. Instead, 
it is necessary to select the correct criterion to match 
a human subject's generalisation needs. 

1 Introduction 
An important problem in clustering is how to decide what is 
the best set of clusters for a given data set, in terms of both 
the number of clusters and the membership of those clusters. 
In this paper we present an empirical evaluation of four crite­
ria for measuring the quality of different sets of clusters. In 
particular, we demonstrate how these criteria can be applied 
to non-hierarchical clustering of search engine results. 

The focus of our work is the problem of document cluster­
ing, which is a major application of clustering techniques. 
While the feasibility of document clustering has been dem­
onstrated since the 1970's (Salton 1971), in recent years 
there has been a growth in applications for this technology. 
Example applications include personal document manage­
ment (Rus and de Sands 1997), sharing information between 
a community of users (Davies et al 1996), and clustering 
search results (Leouski and Croft 19%, Zamir and Etzioni 
1998). In all of these applications, it is not known a priori 
how many clusters exist in the document set. One way 
around this problem is to find a fixed number of clusters. 
However, this imposes artificial constraints on the search for 
structure in a document set. A different approach is to search 
for alternative sets of clusters, and apply a quality criterion to 
decide which is the best partition of a document set. 

The three main contributions of our work are as follows. 
We have developed four criteria for determining the quality 
of clustering. We have evaluated the sensitivity of'these cri­
teria in a practical document clustering application, i.e., clus­
tering the results returned by a search engine. We have 
compared these results with the number of clusters chosen 
by a group of 10 human subjects. We begin in the next sec­
tion by describing the problem of document clustering in 
more detail. In Section 3, we describe the four criteria we 
have developed for evaluating the quality of clusters. We 
then provide the results of an empirical evaluation of our cri­
teria in Sections 4 and 5. Finally, in Section 6 we compare 
our approach to related work in the area of clustering. 

2 Document Clustering 
The context of our work is the development of tools for clus­
tering the results returned by search engines on the Internet. 
When a search engine is given a query, e.g., 'agents*, it 
responds with a set of search results Ri. Each search result is 
a short description of a web page that matches the query. In 
practice, a large number of results are returned, and the user 
is faced with the daunting task of filtering out irrelevant 
results. These irrelevant results arise because the query terms 
can appear in many different contexts, e.g., travel agents or 
intelligent agents. Even within a single context there can be 
multiple sub-topics, e.g., intelligent agent software or intelli­
gent agent conferences. Consequently, we are interested in 
automatically clustering related search results so users can 
easily explore the underlying topics that match their query. 

In order to solve this problem we have followed the stand­
ard model for document clustering as developed by Salton 
(1971). This model has three main features. First, each docu­
ment is represented by a vector of word frequencies, where 
commonly occurring words have been excluded using a stop 
list or heuristic feature selection techniques. Second, a dis­
tance measure is defined as a function of these document 
vectors, so that we can quantify the similarity or distance 
between any pair of documents in the vector space. Finally, a 
clustering algorithm uses this distance measure to group 
related documents into clusters. 

The clustering algorithm groups the search results Ri into 
a set of clusters Cj It is important that clusters can be 
quickly generated, and easily scanned by the user. Conse-
quendy, we have used a non-hierarchical, single-pass clus-

RASKUTTI AND LECKIE 905 



tering algorithm (Rasmussen 1992). We use this clustering 
algorithm to assign each result Rj to a single cluster, so there 
is no overlap between clusters. Therefore, the clusters form a 
partition of the document space, which we refer to as P. In 
principle, a result could be assigned to multiple clusters. 
However, this can make it harder to characterise and differ­
entiate clusters. 

The clustering algorithm proceeds as follows. The first 
search result R1 is used to initialise the first cluster C1. For 
each of the remaining results Ri, we need to assign Ri. to the 
nearest cluster, or start a new cluster if none is sufficiently 
close. In order to compare a result Ri to a cluster Cj, we rep-
resent Cj by its centroid. The centroid of Cj is the average of 
the word frequency vectors corresponding to the results that 
have already been assigned to Cj. We can then calculate the 
distance between Ri and the centroid of each class Cj. If the 
distance to the closest cluster centroid is less than a threshold 
T, then we assign Ri to that cluster and update its centroid. 
Otherwise, all clusters are a distance greater than T from the 
search result, so we create a new cluster using Ri. 

Using this algorithm we can generate different partitions 
by varying the threshold T Large threshold values will result 
in a small number of general clusters, while small threshold 
values produce a larger number of more specific classes. 
Consequently, we can explore a range of different partitions 
by stepping through different values of T. This raises the 
question of which is the best partition, i.e., how do we judge 
whether one partition better reflects the inherent similarities 
of the search results than another? 

3 Four Quality Criteria for Clustering 
In order to determine the quality of a partition, we have 
defined criteria that evaluate a partition with respect to the 
following measures described in Dubes and Jain (1979): 
• Compactness - This is a measure of cohesion or unique­

ness of objects in an individual cluster with respect to the 
other objects outside the cluster, e.g., the average similar­
ity of objects within the cluster. The greater the similarity, 
the greater the compactness. 

• Isolation - This is a measure of distinctiveness or separa­
tion between a cluster and the rest of the world, e.g., high­
est similarity to an object outside the cluster. The smaller 
the similarity, the greater the isolation. 
Ideally, we need to generate partitions that have compact, 

well-separated clusters. Hence, our criteria combine the two 
measures to return a value that indicates the quality of the 
partition. The value returned is minimised when the partition 
is judged to consist of compact well-separated clusters, with 
different criteria judging different partitions as the best one. 

In each of our criteria, we have used a simple similarity/ 
distance based measure to evaluate compactness and isola­
tion, rather than statistical tests of significance used in multi­
variate analysis of variance. This is done both for 
computational efficiency and due to the inadequacy of 
MANOVA teste to provide quantitative measures of cluster 
validity (Dubes and Jain 1979). 

In our discussion of each of the criteria, Ri represents an 
object or search result, Cj represents a cluster and Cjc its cen­
troid. Gc is the global centroid. is the similarity 

between two search results Ri and Rk where Ri and Rk are 
represented by their frequency vectors, and their similarity is 
calculated using the cosine coefficient (Rasmussen 1992). 

represents the distance or dissimilarity measure and 
is calculated as 1 - 
3.1 Minimum Total Distance (CI) 
In mis criterion, we minimize the total of the sum of dis­
tances of objects to their cluster centroids and the sum of the 
distances of the cluster centroids from the global centroid. 
The value for each partition is computed as follows: 

The first term is the intra-cluster distance (solid lines in 
Figure 1) and represents the compactness of clusters. It is 
small when the objects are close to their cluster centroids, 
e.g., when there are a few compact clusters (Figure la) and 
increases as the number of clusters decreases and the clusters 
are spread out (Figure lb). The maximum value is reached 
when the number of clusters is 1. 

The second term is the inter-cluster distance (dashed lines 
in Figures la and lb) and represents the isolation. It is small 
when there are a few large clusters, and increases to its max­
imum value when there is one document per cluster. 

Hence, when the threshold T is small and there is one doc­
ument per cluster (the null hypothesis), the total of the two 
terms is simply the second term, i.e., the sum of the distances 
of the objects from the global centroid. If the data set is non-
random, the total then reduces as new clusters are formed. 
As clusters get large and diverse, the first term becomes 
larger, and the total of the two terms increases until it reaches 
the maximum value when there is only one cluster. The sec­
ond term is then 0 and the first term is the sum of the dis­
tances of the objects from the global centroid. Thus, the two 
boundary conditions of the null hypothesis and a single clus­
ter return the same value. 

In general, this criterion prefers partitions with small spe­
cific clusters that are far from the global centroid. This is 
because several large inter-cluster distances are then 
replaced by a single large inter-cluster distance and several 
small intra-cluster distances. When clusters are more gen­
eral, the intra-cluster distances get larger, thus overwhelming 
the advantage of the single inter-cluster distance. 
3.2 Separated Clusters (C2) 
In this criterion, we measure cluster quality by maximizing 
the separation of clusters relative to their compactness. Com­
pactness is computed by determining the weakest connection 
within the cluster, i.e., the largest distance between two 
objects and within the cluster (solid lines in Figure 2). 
The more compact a cluster, the smaller the distance. Isola­
tion is computed by determining the strongest connection of 
a cluster to another cluster, i.e., the smallest distance 
between a cluster centroid and another cluster centroid 
(dashed lines in Figure 2). The more distinct a cluster the 
larger die distance. We compute this criterion as follows: 
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This value is defined only when there is at least one clus­
ter with more than one object, and only when there is more 
than one cluster in the partition. As such, this index is not 
defined for the boundary conditions of the null hypothesis 
and a single cluster. 

As shown in Figures 2a and 2b, both the numerator and 
denominator for each cluster increase as the threshold T 
increases. However, the relative change depends on the com­
pactness and isolation of the clusters. In addition, there are 
more terms as the number of clusters increases. Hence, this 
criterion is likely to be minimised when there are larger 
number of more specific clusters. 

3.3 Object Positioning (C3) 
In this criterion, the quality of clustering is determined by 
the extent to which each object has been correctly positioned 
or classified. To compute this, for each object Ri we com­
pute the weakest connection within the cluster, i.e., the larg­
est distance between objects Ri and Rk within the cluster 
(solid lines in Figure 3). In addition, we compute the strong­
est connection of this object to the outside world, i.e., the 
smallest distance between objects Ri, and Rm where Rm 
belongs to a different cluster (dashed lines in Figure 3). The 
extent to which the object is incorrectly positioned is given 
by the difference between its weakest internal connection 
and strongest external connection. Hence this criterion is 
given by the following equation: 

For the null hypothesis, the internal connection for each 
object is 0. However, the closest external object may be very 
close, so the criterion does not necessarily have the smallest 
value. When there is only one cluster, there are no external 
connections, and the index attains its maximum value. 

Figures 3a and 3b show the connections for two objects 
when there are four clusters (Figure 3a) and when there are 
two clusters (Figure 3b). As shown pictorially, both dis­
tances increase as the number of clusters decreases. How­
ever, the increase in the second term is often larger when 
there are fewer clusters. Hence, this criterion prefers large 
general groupings to small specific groupings. 
3.4 Number of Objects Correctly Positioned (C4) 
In this criterion, the quality of clustering is determined by 
the number of objects that have been correctly positioned or 
classified. The more objects that are correctly positioned, the 
better the quality of clustering. An object Ri belonging to 
cluster Cj is correctly positioned if its intra-cluster similarity, 
i.e., average similarity to other objects in the cluster, is 
greater than the inter-cluster similarity, i.e., average similar­
ity to objects outside the cluster. Intra-cluster similarity is 
computed using the following equation: 

The inter-cluster similarity is computed as follows: 

For singleton clusters, i.e., clusters with one element, the 
intra-cluster similarity is 0, hence, the object is always incor-
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Figure 4: Normalised criteria values for different partition sizes on test query results, 
with a histogram of the partition sizes created by human subjects (each marked as an X) 

CI - Minimum Total Distance C2 - Separated Clusters C3 - Object Positioning C4 - No. of Objects Correctly Positioned 

Figure 5: Histogram of the number of non-singleton clusters for each human subject, and top 5 partitions by each criterion 
o - Minimum Total Distance (CI) o - Separated Clusters (C2) o- Object Positioning (C3) 
A - Number of Objects Correctly Positioned (C4) x - Human subject 

rectly positioned. Thus, for the null hypothesis, no object 
is correctly positioned. When there is exactly one cluster, 
the inter-cluster similarity is 0. Hence, all objects are per­
fectly positioned. Thus, unlike the Minimum Total Dis­
tances measure, this criterion prefers one boundary 
condition to the other. In other partitions, the number of 
well-positioned objects depends on each object's intra-
cluster and inter-cluster similarity. However, since objects 
in singleton clusters are always counted as incorrectly 
positioned, this criterion prefers large clusters rather than a 
few compact clusters and some singleton clusters. 

4 Evaluation 
Our first goal was to evaluate the sensitivity of each crite­
rion, and the spread between different criteria, on alterna­
tive partitions of the same set of search results. To study 
sensitivity, we consider whether one partition is clearly 
better than the rest, or whether there are several partitions 
that are all close to optimal. To study spread, we consider 
the extent to which different criteria agree in their choice 
of the optimum partition. Our second goal was to compare 
how a group of human subjects cluster the same set of 
search results, in order to determine whether they exhibit a 
similar spread in their choice of the optimum partition. 

Our test data was generated by issuing three queries to 
the AltaVista search engine (http://www.altavista.com). 

These queries were 'agents', 'chips' and 'Telstra'. The first 
two query terms are used in many different contexts, while 
the third query is a company name that has many sub-topics 
corresponding to different product lines. For each query we 
received 100 search results, which include the tide and URL 
of the matching web page, as well as a short summary. 

In order to assess how our criteria ranked different parti­
tions of the same data, we first needed to generate a range of 
different partitions for each data set. This was done by 
repeatedly applying our clustering algorithm with increasing 
values of the clustering threshold parameter T (see Section 
2). As T increased, the number of clusters in the partition 
decreased. We then assigned a value to each partition using 
each of our four criteria. The resulting values have been plot­
ted in Figure 4. The horizontal axis of each graph corre­
sponds to the number of clusters in a partition, while the 
vertical axis indicates the value of each criterion for each 
partition. This enables us to compare the sensitivity of each 
criterion as the number of clusters varies. 

For ease of comparison in Figure 4, the values returned by 
the criteria have been normalised to lie in the range 0 to 1, 
where better partitions have higher values. Note that this is 
the opposite of the formulas given in Section 3, where the 
best partition produced the minimum value of the criterion. 
However, we found that the graphs were easier to interpret 
visually when the sign was reversed. It also simplifies com-
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parison with the histogram of results from the human sub­
jects. In addition, we have smoothed these curves using a 
running average of length 2. This makes it easier to visually 
compare the underlying trend of each criterion, with little 
effect on their sensitivity. 

We also gave the search results for the 3 test queries to 10 
human subjects, and asked them to cluster the search results 
by hand. Their results appear as a histogram above each 
graph in Figure 4, where each point indicates the number of 
clusters found by that human subject. We can thus compare 
the spread between our four criteria and our human subjects. 

In many cases, the partitions found by both the clustering 
system and our human subjects contained a large number of 
singleton classes. In order to test whether this distorted the 
results in Figure 4, we have plotted histograms in Figure 5 of 
the number of non-singleton clusters found by our four crite­
ria and our human subjects. Due to space restrictions, for 
each criterion we have plotted only die best 5 partitions. 

5 Discussion 
As shown in Figures 4 and S, there is a large variability in the 
number of clusters that human subjects generated for the 
same document sets. For instance, for the 'agents' query, the 
number of clusters ranges from 12 to 31 and the number of 
non-singleton clusters ranges from 6 to I5. This indicates 
that some subjects prefer general groupings while others pre­
fer tight specific groupings. 

Analysis of the cluster groupings generated by human 
subjects indicates that subjects formed conceptual groupings 
that were not necessarily apparent from the words in the 
summary. However, different subjects generalise at different 
levels of granularity. For instance, when clustering the search 
results of the 'agents' query, 5 subjects grouped software, 
mobile, intelligent and autonomous agents into a single clus­
ter, which we refer to as AI agents. 3 subjects grouped AI 
agents into two clusters: mobile and other intelligent agents. 
2 subjects split these documents into three clusters, but the 
cluster groupings were different. 

This same variability is also exhibited by the four criteria 
for cluster quality, with different criteria preferring different 
levels of generalisation (Figure 4). For instance, for the 
'agents' query, the number of clusters in the best partition 
ranges from 9 (9 non-singleton) to 28 (23 non-singleton), 
which is in line with the variability found in the human clus­
ters. Even with a single criterion, there is a whole range of 
partitions that are near-optimal, i.e., the value returned is 
within 5% of the value for the best partition. However, the 
location and width of the range varies between criteria. 

The Minimum Total Distances criterion (CI) prefers 
many small specific clusters to a few large general clusters. 
For instance, for the 'agents' query, the best partition has 28 
clusters out of which 23 are non-singleton. The AI agents 
group discussed earlier is split into five groups: software, 
intelligent, autonomous, mobile and others that did not fall 
into the above groups. In general, this criterion has a narrow 
optimal area indicating high sensitivity, e.g., for the 'agents' 
query, four other partitions are near-optimal and the number 
of clusters for these partitions range from 23 (19 non-single-
ton) and 32 (22 non-singleton). 

The Separated Clusters criterion (C2) also prefers many 
small specific clusters to a few large general clusters, e.g., 
for the 'agents' query, the best partition has the same number 
of clusters, and the AI agents group is again split into five 
groups although the actual groupings are different. In gen­
eral, the sensitivity of this criterion is data-dependent with 
large optimal areas for some queries such as 'Telstra' and 
very narrow optimal areas for other queries. 

The Object Positioning criterion (C3) prefers a few large 
general clusters to many small specific clusters. For instance, 
for the 'agents' query, the best partition has 10 clusters out of 
which 8 are non-singleton, and the AI agents group dis­
cussed earlier is split into two groups with software, autono-
mous and mobile agents grouped together. In general, this 
criterion has a narrow optimal area indicating high sensitiv­
ity, e.g., for the 'agents' query, two other partitions are near-
optimal and the number of clusters for these partitions range 
from 7 (5 non-singleton) and 10 (8 non-singleton). 

The Number of Objects Correcdy Positioned criterion 
(C4) also prefers a few large general clusters to many small 
specific clusters. For instance, the best partition of the 
'agents' query has 8 clusters, all with more than one object. 
The AI agents group discussed earlier is split into two groups 
in the best partition, with MIT software agents in one group 
and other intelligent agents in the other group. In general, 
this criterion has a very wide optimal area indicating low 
sensitivity, e.g., for the 'agents' query, 16 other partitions are 
near-optimal and the number of clusters for these partitions 
range from 2 (2 non-singleton) and 22 (19 non-singleton). 

Given the diversity of partitions generated by human sub­
jects and our evaluation criteria, there is no single clustering 
methodology or cluster quality criterion that is useful for all 
users. However, preliminary studies into the use of clustering 
as an exploratory tool during retrieval indicates that cluster­
ing is useful in quickly eliminating large sets of retrieved 
results (Zamir and Etzioni 1998). The choice of clustering 
methodology and quality criterion is dictated by a user's 
preferences for generalisation, and a clustering algorithm 
with varying thresholds and different quality criteria is one 
method for catering to a user's generalisation preferences. 
Criteria C1 or C2 may be used when users want tight specific 
clusters, and criteria C3 or C4 when users require a few gen­
eral clusters. We have found from further testing on a wide 
range of queries that the above difference in behaviour 
between these criteria is consistent. 

The sensitivity analysis indicates that even for the highly 
sensitive criteria, such as CI and C3, there are a number of 
partitions that are optimal. Hence, for applications that 
require real-time response, such as clustering search results, 
only a few thresholds need to be explored in order to provide 
a near-optimal rather than the best partition. 

6 Related Work 
One of the main studies of clustering criteria was made by 
Milligan and Cooper (1985), in which they performed an 
empirical evaluation of 30 different criteria. Their focus was 
on stopping rules for hierarchical clustering. They tested 
these criteria on simulated data sets involving a maximum of 
5 clusters and 8 attributes. In contrast, we have focused on 
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non-hierarchical clustering of practical data sets, where our 
data sets have 50-100 attributes. These practical differences 
motivated our interest in a sensitivity analysis of clustering 
criteria for such large and complex data sets. 

Our study has concentrated on distance-based clustering, 
which relies on a similarity function to compare vectors 
describing the objects to be clustered. An alternative class of 
clustering algorithm is known as mixture modelling, where 
the objects to be clustered are generated from a mixture of 
probability distributions of a known type. Oliver et al. (1996) 
conducted an empirical comparison between a Minimum 
Message Length criterion and several other statistical criteria 
on simulated data. However, our experience has been that a 
mixture modelling approach is difficult to apply to document 
clustering, due to the problems in finding suitable underlying 
distributions for term frequencies in documents. 

Leouski and Croft (1996) performed an empirical evalua­
tion of methods for clustering search results. Their emphasis 
was the representation of documents and the performance of 
different clustering techniques. While they examine how to 
evaluate clustering techniques in terms of precision and 
recall, they do not provide quality criteria that can be applied 
as the clusters are being generated. In addition, they focused 
on hierarchical clustering of full-text documents. 

The problem of clustering results from a search engine 
has also been studied by Zamir and Etzioni (1998). They use 
a technique called Suffix Tree Clustering, which first clusters 
documents that contain common phrases. They then merge 
clusters based on the proportion of documents in common 
between two clusters. It is difficult to make a direct compari­
son between the quality of their clusters and ours, because 
they can assign a result to more than one cluster, and they 
used a fixed number of clusters in their tests. The aim of their 
experiments was to assess the relevance of clusters to the 
original query, based on a manually assigned value of rele­
vance. In contrast, our aim has been to detect the number of 
clusters in the search results, and assess the sensitivity of 
numerical criteria as well as human judgement in the choice 
of this number of clusters. 

Macskassy et al. (1998) have studied how a group of 
human subjects clustered the results of 10 search queries. 
They reached the conclusion that humans show considerable 
variation in how they cluster search results, which matches 
our own experience. We have extended this result by making 
a comparison between the sensitivity of humans and numeri­
cal criteria to the number of clusters. We have shown that the 
numerical criteria also reflect the range in the number of 
clusters found by our human subjects. 

7 Conclusion and Further Work 
We have developed several alternative criteria for determin­
ing the quality of clustering. These criteria are designed so 
that different criteria prefer cluster sets that generalise at dif­
ferent levels of granularity. We have evaluated our criteria 
for sensitivity and spread in a practical application. In addi­
tion, we have compared the partitions chosen by our criteria 
with those generated by human subjects. 

Our analysis demonstrates that our criteria match the vari­
ability exhibited by human subjects, indicating there is no 

single perfect criterion. Instead, it is necessary to select the 
correct criterion to match a human subject's generalisation 
needs. We show how this matching may be done using a 
clustering algorithm with varying thresholds and different 
quality criteria. The number of thresholds examined may be 
adjusted to provide the required computational efficiency. 

Our next step is to explore the behaviour of our criteria 
with non-document data sets and to test the suitability of our 
criteria as stopping rules for hierarchical clusters. In addi­
tion, we plan to extend our criteria to study overlapping clus­
ters such as those generated by Zamir and Etzioni (1998). 
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