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Abstract 
Statistics-based classifiers in natural language 
are developed typically by assuming a genera­
tive model for the data, estimating its param­
eters from training data and then using Bayes 
rule to obtain a classifier. For many problems 
the assumptions made by the generative models 
are evidently wrong, leaving open the question 
of why these approaches work. 
This paper presents a learning theory account 
of the major statistical approaches to learning 
in natural language. A class of Linear Statis-
tical Queries (LSQ) hypotheses is defined and 
learning with it is shown to exhibit some ro-
bustness properties. Many statistical learn­
ers used in natural language, including naive 
Bayes, Markov Models and Maximum Entropy 
models are shown to be LSQ hypotheses, ex­
plaining the robustness of these predictors even 
when the underlying probabilistic assumptions 
do not hold. This coherent view of when and 
why learning approaches work in this context 
may help to develop better learning methods 
and an understanding of the role of learning in 
natural language inferences. 

1 Introduction 
Generative probability models provide a principled way 
to the study of statistical classification in complex do­
mains such as natural language. It is common to assume 
a generative model for such data, estimate its parame­
ters from training data and then use Bayes rule to ob­
tain a classifier for this model. In the context of natural 
language most classifiers are derived from probabilistic 
language models which estimate the probability of a sen­
tence s, say, using Bayes rule, and then decompose this 
probability into a product of conditional probabilities 
according to the generative model assumptions. 
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where hi is the relevant history when predicting Wi. Note 
that in this representation s can be any sequence of to­
kens, words, part-of-speech (pos) tags. etc. 

This general scheme has been used to derive classifiers 
for a variety of natural language applications including 
speech applications [Rabiner, 1989], part of speech tag­
ging [Kupiec, 1992; Schiitze, 1995], word-sense disam­
biguation [Gale et al., 1993], context-sensitive spelling 
correction [Golding, 1995] and others. While the use of 
Bayes rule is harmless, most of the work in statistical 
language modeling and ambiguity resolution is devoted 
to estimating terms of the form Pr(w\h). The genera­
tive models used to estimate these terms typically make 
Markov or other independence assumptions. It is evident 
from looking at language data that these assumptions are 
often patently false and that there are significant global 
dependencies both within and across sentences. For ex­
ample, when using (Hidden) Markov Model (HMM) as a 
generative model for the problem of part-of-speech tag­
ging, estimating the probability of a sequence of tags in­
volves assuming that the part of speech tag ti of the word 
Wi is independent of other words in the sentence, given 
the preceding tag ti-1. It is not surprising therefore that 
making these assumptions results in a poor estimate of 
the probability distribution density function1. However, 
classifiers built based on these false assumptions never­
theless seem to behave quite robustly in many cases. 

In this paper we develop a learning theory account 
for this phenomenon. We show that a variety of models 
used for learning in Natural Language make their predic­
tion using Linear Statistical Queries (LSQ) hypotheses. 
This is a family of linear predictors over a set of fairly 
simple features which are directly related to the indepen­
dence assumptions of the probabilistic model assumed. 
We claim that the success of classification methods which 
are derived from incorrect probabilistic density estima­
tion is due to the combination of two factors: 

• The low expressive power of the derived classifier. 

• Robustness properties shared by all linear statistical 
queries hypotheses. 

1 Experimental evidence to that effect will not be included 
in this extended abstract for lack of space (but see Sec. 5). 
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We define the class of LSQ hypotheses and prove these 
claims. Namely, we show that since the hypotheses are 
computed over a feature space chosen so that they per­
form well on training data, learning theory implies that 
they perform well on previously unseen data, irrespec­
tive of whether the underlying probabilistic assumptions 
hold. We then show how different models used in the lit-
erature can be cast as LSQ hypotheses by selecting the 
statistical queries (i.e., set of features) appropriately and 
how this affects the robustness of the derived hypothesis. 

The main contribution of the paper is in providing a 
unified learning theory account for a variety of methods 
that are widely used in natural language applications. 
The hope is that providing a coherent explanation for 
when and why learning approaches work in this context 
could help in developing better learning methods and a 
better understanding of the role of learning in natural 
language inferences. 

We first present learning theory preliminaries and then 
define the class of linear statistical queries hypotheses 
and discuss their properties. In Sec. 4 we show how to 
cast known probabilistic predictors in this framework, 
and in Sec. 5 we discuss the difference between LSQ 
learning and other learning algorithms. 

2 Preliminaries 
In an instance of pac learning [Valiant, 1984], a learner 
needs to determine a close approximation of an un­
known target function from labeled examples of that 
function. The unknown function is as­
sumed to be an element of a known function class 
over the instance space X = and the exam­
ples are distributed according to some unknown prob­
ability distribution D on X. A learning algorithm draws 
a sample of labeled examples according to D and even­
tually outputs a hypothesis h from some hypothesis class 

The error rate of the hypothesis h is defined to be 
err or (h) = The learner goal is to out­
put, with probability at least a hypothesis  
whose error rate is at most e, for the given error parame­
ter e and confidence parameter using sample size that 
is polynomial in the relevant parameters. The learner is 
then called a pac learner. The algorithm is an efficient 
pac learning algorithm if this is done in time polynomial 
in the relevant parameters. 

A more realistic variant of the pac-learning model, the 
agnostic learning model [Haussler, 1992; Kearns et al, 
1992], applies when we do not want to assume that the 
labeled training examples arise from a target con­
cept of an a-priori simple structure In this model 
one assumes that data elements are sampled ac­
cording to some arbitrary distribution D on 
D may simply reflect the distribution of the data as 
it occurs "in nature" (including contradictions) with­
out assuming that the labels are generated according 
to some "rule". The true error of the hypothesis is 
defined to be and the 
goal of the learner is to compute, with high probabil­

ity, a hypothesis with true error not larger than 
A learner that can carry out this 

task for any distribution D is called an efficient (agnos-
tic) pac learner for hypothesis class if the sample size 

and the time required to produce the hypothesis 
are polynomial in the relevant parameters. 

In practice, one cannot compute the true error 
and in many cases it may be hard to guaran­

tee that the computed hypothesis h is close to optimal in 
Instead, the input to the learning algorithm is a sam­

ple of m labeled examples, the learner 
tries to find a hypothesis h with a small empirical error 

and hopes that it behaves well on future examples. 
The hope that a classifier learned from a training set 

will perform well on previously unseen examples is based 
on the basic theorem of learning theory [Valiant, 1984; 
Vapnik, 1995] which, stated informally, guarantees that 
if the training data and the test data are sampled from 
the same distribution, good performance on large enough 
training sample guarantees good performance on the test 
data (i.e., good "true" error). This is quantified in the 
following uniform convergence result: 

where k is some constant and is the VC-
dimension of the class [Vapnik, 1982], a combinatorial 
parameter which measures the richness of  

In practice the sample size \S\ may be fixed, and the 
result simply indicates how much can one count on the 
true accuracy of a hypothesis selected according to its 
performance on S. Also, the computational problem of 
choosing a hypothesis which minimizes the empirical er­
ror on S (or even approximates a minimum) may be hard 
[Kearns et al, 1992; Hoffgen and Simon, 1992]. Finally, 
notice that the main assumption in the theorem above is 
that the training data and the test data are sampled from 
the same distribution; Golding and Roth [1999] discuss 
this assumption in the NLP context. 

3 Robust Learning 
This section defines a learning algorithm and a class of 
hypotheses with some generalization properties, that we 
later show to capture many probabilistic learning meth­
ods used in NLP. The learning algorithm discussed here 
is a Statistical Queries (SQ) algorithm [Kearns, 1993]. 
An SQ algorithm can be viewed as a learning algorithm 
that interacts with its environment in a restricted way. 
Rather than viewing examples, the algorithm only re­
quests the values of various statistics on the distribution 
of the labeled examples to construct its hypothesis. (E.g. 
"What is the probability that a randomly chosen labeled 
example (x, I) has = 0 and l = A feature is an in­
dicator function {0,1} which defines a subset of 
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the instance space - all those elements which are mapped 
to 1 by denotes a class of such indicator functions. 

can be viewed as a transformation of the instance 
space X; each example is mapped to an 
example in the new space. To simplify 
notation, we sometimes view a feature as an indicator 
function over the labeled instance space and 
say that for e x a m p l e s w i t h label/. 

A statistical query has the form where  
is a feature, is a further (optional) restriction 
imposed on the query and is an error parameter. A 
call to the oracle returns an estimate of 

(1) 

which satisfies (When clear from the con­
text we omit from this notation.) A statistical 
queries algorithm is a learning algorithm that constructs 
its hypothesis only using information received from an 
SQ oracle. An algorithm is said to use a query space 

if it only makes queries of the form where 
As usual, an SQ algorithm is said to be a good 

learning algorithm if, with high probability, it outputs a 
hypothesis with small error, using sample size that is 
polynomial in the relevant parameters. 

In order to simulate the behavior of the SQ oracle on 
a query on the distribution D, we simply draw a 
large sample 5 of labeled examples according to D 
and evaluate 

Chernoff bounds guarantee that the number of exam­
ples required to achieve tolerance with probability at 
least is polynomial i n a n d log  

The SQ model of learning was introduced by Kearns 
[1993] and studied in [Decatur, 1993; Aslam and De­
catur, 1995]. It was viewed as a tool for demonstrating 
that a pac learning algorithm is noise-tolerant. In par­
ticular, it was shown that learning with an SQ algorithm 
allows the learner to tolerate examples with noisy labels 
- labels which, with some probability < 1/2, are incon­
sistent with the target function (classification noise), as 
well as various forms of corrupted examples (malicious 
noise, attribute noise). A typical noise-tolerant learning 
result in the pac model states that if an SQ algorithm 
learns a concept class in the sense that it produces a 
hypothesis with small true error, then this algorithm is 
noise tolerant in that it would have produces a hypoth­
esis with small true error even when trained with noisy 
data. The running time of the algorithm and the num­
ber of data samples required depend on the tolerance 
required from the statistical queries. This, in turn, is 
determined by the noise level the algorithm is required 
to tolerate (up to some bounds; see the references for 
details). In the next section we consider a special SQ al­
gorithm and prove a robustness result that may be more 
satisfying from a practical point of view. 

3.1 Linear Statistical Queries Hypotheses 
Let be a class of features and a function 
that depends only on the values 
Linear Statistical Queries (LSQ) hypothesis predicts  

given when 

Clearly, the LSQ is a linear discriminator over the fea­
ture space with coefficients that are computed given 
(potentially all) the values The definition gener­
alizes naturally to non-binary classifiers by allowing to 
range over a larger set of labels; in this case, the discrim­
inator between predicting l and other values is linear. A 
learning algorithm that outputs an LSQ hypothesis is 
called an LSQ algorithm. 
Example 3.1 The naive Bayes predictor [Duda and 
Hart, 1973] is derived using the assumption that given 
the label the features' values are statistically inde-
pendent. Consequently, the Bayes optimal prediction is 
given by: 

where denotes the prior probability of I (the frac-
tion of examples labeled I) and are the condi­
tional feature probabilities (the fraction of the examples 
labeled I in which the ith feature has value Xi). 

The LSQ definition implies: 
Claim 3.1 The naive Bayes algorithm is an LSQ al­
gorithm over a set X which consists of features: 

and where 

We note that formalized this way, as is commonly done 
in NLP (e.g., [Golding, 1995]), features which are not 
active in the example are assumed unobserved and are 
not taken into account in the naive Bayes estimation. It 
is possible to assume instead that features which are not 
active are false this assumption yields an LSQ 
algorithm over the same features, with different coeffi­
cients (see, e.g., [Roth, 1998] for the derivation). 

The observation that the LSQ hypothesis is linear over 
yiedls the first robustness result. VC dimension theory 

implies (via a variation of, e.g., [Anthony and Holden, 
1993], and due to the restriction LSQ imposes on the 
coefficients) that: 
Claim 3.2 The VC dimension of the class of LSQ hy­
potheses is bounded above by If all the features used 
are polynomials of the form (which 
are all linearly independent), the VC dimension of the 
LSQ hypotheses is exactly  
This, together with the basic theorem 2.1 implies: 
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Corollary 3.3 For any LSQ learning algorithm and 
given a performance guarantee on previously unseen ex-
amples (sampled from the same distribution), the number 
of training examples required in order to maintain this 
performance scales linearly with the number of features 
used. 

3.2 Distr ibutional Robustness 
LSQ hypotheses axe computed by an SQ algorithm; it 
calls the SQ oracle to estimate for all elements in 

and applies Then, given an example it 
evaluates the hypothesis to make the prediction. 

As discussed above, the SQ model was introduced as 
a tool for demonstrating that a pac learning algorithm 
is noise-tolerant. In a practical learning situation we are 
given a fixed sample of data to use in order to generate 
a hypothesis, which will be tested on a different sample, 
hopefully "similar" to the training sample. Our goal is 
to show that an algorithm that is able to learn under 
these restrictions (namely, interacting only via SQs) is 
guaranteed to produce a robust hypothesis. Intuitively, 
since the SQ predictor does not really depend on spe­
cific examples, but only on some statistical properties of 
the data, and only within some tolerance, it should still 
perform well in the presence of data sampled according 
to a different distribution, as long as it has the same 
statistical properties within this tolerance. 

Next we formalize this intuition and show that the ba­
sic results proved for the SQ model can be adapted to 
this situation. Formally, we assume that there is a test 
sample, Stest, generated according to some distribution 
D1', and that we care about our hypothesis' performance 
on this sample. However, training is performed on a dif­
ferent sample, Strain, generated according to a different 
distribution D. We show that an SQ hypothesis trained 
over Strain can still perform well on Stest, if D and D' 
are not too different. A common distance measure be­
tween distributions is the variation = 

It is easy to see that this mea­
sure is equivalent to 
which is more convenient for our purposes. A more bi­
ased measure, strictly smaller than the standard mea­
sures may also be used in this case: 

yielding better robustness guarantees for the algorithm. 
Theorem 3.4 Let A be an learning algorithm 
for a function class over the distribution D and assume 
that inversely polynomial in  
Then is also an learning algorithm for  
over  
Proof: Since is an algorithm, a hypoth­
esis generated with estimates that are close to 
behaves well on D. In order for the hypothesis to behave 

2[Yamanishi, 1992] shows that this measure is equivalent 
to other well known measures such as the KL divergence. 

well on D1 we can simply run with oracle calls of tol­
erance to get that is within of 
By the definition of the distance measure, the difference 
between the probability of events of interest occurring 
under D and D' is no more than and therefore 

Thus, this procedure simulates estimates that are within 
on D', implying a well behaved hypothesis on Df. 

To simulate the more accurate estimates, with tolerance 
there is a need to use more samples, but only 

polynomially more due to the relation between and  

For the final point regarding robustness, observe that 
the proof shows the importance of the tolerance. In prac­
tice, the sample is given, and the robustness of the algo­
rithm to different distributions depends on the sample's 
size. The richness of the feature class plays an impor­
tant role here. To ensure tolerance of for all features 
in one needs to use samples (more generally, 

samples). For a given size sample, therefore, 
the use of simpler features in the LSQ representation 
provides better robustness. This, in turn, can be traded 
off with the ability to express the learned function with 
an LSQ over a simpler set of features. 

4 Applications: Probabilistic Classifiers 
In this section we cast a few widely used probabilistic 
classifiers as LSQ hypotheses, implying that they are 
subject to the properties discussed in Sec. 3. 

4.1 Naive Bayes 
As shown in Example 3.1, the naive Bayes predictor is 
an LSQ hypothesis. The implication is that this method, 
which has been widely used for- natural language tasks 
[Gale et a/., 1993; Golding, 1995] satisfies: 
Corollary 4.1 The naive Bayes algorithm is a robust 
learning method in the sense of Cor. 3.3 and Thm 3.4-

4.2 General Bayesian Classifier 
The naive Bayes predictor can be generalized in sev­
eral ways. First, one can consider a generalization of 
the naive model, in which hidden variables are allowed. 
The simplest generalization in this direction would as­
sume that the distribution is generated by postulating a 
"hidden" random variable z. Having randomly chosen a 
value z for the hidden variable, we choose the value for 
each observable Xi independently of each other. 

As a motivating example consider the case of disam­
biguation or tagging in natural language tasks, where the 
"context" or a tag may be viewed as hidden variables. 

The prediction problem here is to predict the value 
of one variable, given known values for the remaining 
variables. One can show that the predictor in this setting 
is again an LSQ that uses essentially the same features 
as in the simple (observable) naive Bayes case discussed 
above (e.g., [Grove and Roth, 1998]). 
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A second generalization of naive Bayes is to assume 
that the independence structure around the predicted 
variable x is more complicated and is represented, for ex­
ample, using a Bayesian network that is not as trivial as 
the naive Bayes network. In this case too, since we care 
only about predicting a value for a single variable having 
observed the other variables, it is not hard to verify that 
the Bayes optimal predictor is an LSQ hypothesis. The 
features in this case are polynomials 
of degree that depends on the number of neighbors of 
x in the network. The details of this analysis are not 
included for lack of space. Instead, we concentrate on a 
special case that is of great interest in natural language. 

4.3 Markov Models 
Markov Models and Hidden Markov Models (HMMs) are 
a standard model used in language modeling in general 
and in disambiguation tasks such as part-of-speech (pos) 
tagging in particular. (See, e.g.,[Rabiner, 1989]; we will 
assume familiarity with them here). For a bi-gram pos 
tagger, the states of the HMM are pos tags. Transition 
probabilities are probabilities of a tag given the previous 
tag, and emission probabilities are probabilities of a word 
given a tag. The standard algorithms first estimate the 
transition and emission probabilities from training data; 
then they use the Markov model assumption in order to 
evaluate the probability of a particular part of speech 
sequence given a sentence. For example, for the part-of-
speech sequence of the sentence th is can w i l l rust 
one computes 

Of course, this is correct only under the Markov as­
sumption; namely, one assumes that given a tag for 
the ith word in the sentence, the value of the word is 
independent of other words or tags (yielding the term 
P{can\NN))i and the tag of the i -f 1 word is indepen­
dent of preceding tags (yielding P(MD\NN)). In order 
to tag a sentence for pos one needs to maximize this 
term over all possible assignments of pos tags. This is 
usually done using a dynamic programming technique, 
e.g., a variation of the Viterbi algorithm. 

Here we will be interested in the main computational 
step in this process - predicting the pos of a single word, 
given the sentence and assuming the pos of all the neigh­
boring words as input. We will disregard the global opti­
mization of finding the best simultaneous pos assignment 
to all words in the sentence3. We call this predictor the 
Markov predictor. For this prediction, it is easy to see 
that given an example 

3Interestingly, experimental studies have shown that 
sometimes the global optimization is not required and the 
local predictions actually produce better results [Delcher et 
al., 1993; Roth and Zelenko, 1998]. 

we predict  

or, equivalently, 

where T is the set of all possible pos tags. In the above 
example, for the word 'can' we will select the tag t that 
maximizes  

Let T, W denote the sets of all tags t and all words 
resp., which occur in the examples. In order to represent 
the Markov predictor as an LSQ algorithm we use = 

the set of all singletons and pairs 
of words and tags. With this set of features and the 
notation introduced in Eq. 1 it is clear that the Markov 
predictor above can be written as an LSQ hypothesis: 

where 

and otherwise,  
Notice that in this formalization each word in the sen­

tence yields a single training example and features are 
computed with respect to the word for which the tag is 
to be predicted. We get that: 
Claim 4.2 The Markov predictor is an LSQ algorithm 
over a set of singletons and pairs of words and tags. 
Therefore, the Markov predictor is a robust learning 
method in the sense of Cor. 3.3 and Thm 3.4- This fact 
naturally generalizes to higher order Markov predictors 
by increasing the expressivity of the features. 

4.4 Maximum Entropy Models 
Maximum Entropy (ME) models [Jaynes, 1982] are ex­
ponential distributions which satisfy given constraints. 
Constraints are what we have called features and the 
distribution is defined in terms of the expected value 
of the feature over the training set. These models 
have been used successfully to generate predictors for 
several disambiguation tasks [Ratnaparkhi et a/., 1994; 
Ratnaparkhi, 1997], typically by estimating the ME 
probability model for the conditional probability 
(as in Sec. 1). 

It can be shown that the distribution that maxi­
mizes the entropy and is consistent with a set of con­
straints (features) must have the form  

where c is a normalization constant and 
the ctj are the model parameters. Each parameter 
corresponds to exactly one feature and can be viewed 
as the weight of that feature. 

Predictions using the ME model are performed as fol­
lows. Given that the probability distribution PME has 
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been estimated as above, and given the observed sen­
tence s we would predict 

Equivalently, by taking logarithms, we get a linear deci­
sion surface over the feature space. 

However, while the optimal coefficients for an ME pre­
dictor are also a function of the features' statistics over 
the training data, they cannot be written explicitly. In­
stead, an iterative algorithm (e.g., [Darroch and Ratcliff, 
1972]) that approximates the optimal coefficients (but is 
not known to converge efficiently) is required. The ME 
predictor is thus a Linear predictor but, strictly speak­
ing, in its optimal form is not an SQ algorithm. 

5 LSQ vs. Consistent Learning 
In this section we discuss an important difference be­
tween an LSQ algorithm and "standard" learning algo­
rithms, using the naive Bayes classifier as a running ex­
ample. In most cases, algorithms studied in Machine 
Learning search for a hypothesis that is (almost) consis­
tent with the training data and then rely on Thm 2.1 
to guarantee good performance in the future. An LSQ 
algorithm, on the other hand, need not seek consistency. 
It simply computes a hypothesis from the responses of 
the SQ oracle and uses that hypothesis to make future 
predictions. Indeed, it is easily verified that the hypoth­
esis produced by, say, a naive Bayes algorithm may not 
be consistent with the data that was used to compute it. 
Nevertheless, when the data satisfies the probabilistic as­
sumptions used to derive the predictor, namely features' 
values are independent given the label, this hypothesis 
is the optimal predictor for future examples (although 
it may still make many mistakes). However, when the 
probabilistic assumptions do not hold, the success of the 
predictor is directly related to its success on the training 
data. 

Consistency (or almost consistency) is not a trivial re­
quirement. In fact, it is hard to come up with structural 
properties of classes for which naive Bayes is an optimal 
predictor. Even when the target concept is very simple 
- the class of Boolean conjunctions - consistency is not 
achieved in general, and the naive Bayes algorithm is not 
a good predictor for this class4. 
Example 5.1 Consider the Boolean conjunction f = 

over over Assume that exam­
ples are generated according to the following distribution: 
Exactly half of the examples are positive. Over the pos­
itive examples necessarily = =1 and we define 

and that this value is 1 with probability 
are 1 with probability 1/2, independently 

4Domingo&Pazzani claim in a 1998 MLJ paper that naive 
Bayes is optimal for Boolean conjunctions and disjunctions. 
Their proof, however, holds only for product distributions, 
for which the naive Bayes assumptions hold. The following 
example may be viewed as a counterexample to a more gen­
eral interpretation of their claim. 

of anything else. Overthe negative examples x1 is l with 
probability 1/2 and x3 = X4 =x5 and this value 
is 1 with probability 7/8. x6, • • • xk are 1 with probability 
1/2, independently of anything else. 

In this way we have thatp(x1|l = 1) = p(x2|l = 1) = 1 
and = 1|Z = 1) = 1/2 for i = 3,...k. For the 
negative examples we have that = 7/8 
for i = 3,4,5 and = 1/2 for  

It is now easy to see that while the naive Bayes algo­
rithm does not make mistakes on negative examples of 
a conjunction, it will predict incorrectly on half of the 
positive examples, all those for which x3 = X4 = x5 = 1. 
Clearly, this behavior is indicative of the performance 
of this predictor on any data presented to it which is 
sampled according to this distribution. 

Practitioners, however, do not simply compute the 
LSQ hypothesis and use it, confident that it performs 
well since (when the assumptions of the underlying 
model hold) it represents the maximum likelihood hy­
pothesis. Instead, they spend time choosing a feature 
set with which the predictor performs well on the train­
ing set. Once this is achieved, according to the results in 
Sec. 3, the predictor behaves well on previously unseen 
examples, but this happens regardless of whether the un­
derlying probabilistic assumptions hold5. The only limi­
tation on growing the feature set is the relation between 
the expressiveness of these features and the sample size 
required to achieve small tolerance, which we have al­
luded to. The role of the probabilistic assumptions in 
this case may be viewed as supplying guidance for se­
lecting good features. 

The question of why it is that even in seemingly hard 
NLP tasks, the search for good features is fairly sim­
ple, making it unnecessarily to resort to very expressive 
features, is an orthogonal question that we address in 
a companion paper. For the sake of the argument de­
veloped here, it is sufficient to realize that all the al­
gorithms presented rely on their good behavior on the 
training set, and thus behave well even if the probabilis­
tic assumptions that were used to derive the predictor 
do not hold. 

6 Conclusion 
In the last few years we have seen a surge of empiri­
cal work in natural language. A significant part of this 
work is done by using statistical machine learning tech­
niques. Roth [1998] has investigated the relations among 
some of the commonly used methods and taken prelimi­
nary steps towards developing a better theoretical under­
standing for why and when different methods work. This 
work continues to develop the theoretical foundations of 
learning in natural language, focusing on the study of 

5 Experimental evidence to this effect is presented in [Gold-
ing and Roth, 1999]. Two sets of features are compared. The 
one which provides a better conditional probability estima­
tion, by virtue of better satisfying the independence assump­
tion, nevertheless supports significantly worse performance 
on the prediction task. 
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probabilistic density estimation models and their use in 
performing natural language predictions. 

In addition to providing better learning techniques, 
developing an understanding for when and why learn­
ing works in this context is a necessary step in studying 
the role of learning in higher-level natural language in­
ferences. 
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