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Abstract 
In linguistics, the semantic relations between 
words in a sentence are accounted for, inter alia, 
as the assignment of thematic roles, e.g. AGENT, 
INSTRUMENT, etc. As in predicate logic, simple 
linguistic expressions are decomposed into one 
predicate (often the verb) and its arguments. The 
predicate assigns thematic roles to the argu­
ments, so that each sentence has a thematic grid, 
a structure with all thematic roles assigned by 
the predicate. In order to reveal the thematic grid 
of a sentence, a system called HTRP (Hybrid 
Thematic Role Processor) is proposed, in which 
the connectionist architecture has, as input, a 
featural representation of the words of a sen­
tence, and, as output, its thematic grid. Both a 
random initial weight version (RIW) and a bi­
ased initial weight version (BIW) are proposed 
to account for systems without and with initial 
knowledge, respectively. In BIW, initial connec­
tion weights reflect symbolic rules for thematic 
roles. For both versions, after supervised train­
ing, a set of final symbolic rules is extracted, 
which is consistently correlated to linguistic -
symbolic - knowledge. In the case of BIW, this 
amounts to a revision of the initial rules. In 
RIW, symbolic rules seem to be induced from 
the connectionist architecture and training. 

1 Introduction 
In sentences such as 

(.1) The man broke the window with the stone, 
one can intuitively find an AGENT (the man), a PATIENT 
(the window), and an INSTRUMENT (the stone). Linguistic 
theory [Haegeman, 1991] refers to the roles words usu­
ally have in relation to a verb as thematic roles, so that 
one can say that break has a thematic structure with the 
following roles [AGENT, PATIENT, INSTRUMENT], in this 
sentence. But linguistic theory also assumes that this 
structure can change, depending on the sentence. So, for 
the sentence 

(2) The stone broke the vase, 

there is a different thematic structure, since stone is 
CAUSE (the one that causes the action) and vase is 
PATIENT. The difference between (1) and (2) is that al­
though the same verb is employed (break), no AGENT or 
INSTRUMENT is expressed in (2); thus, the thematic 
structure for (2) - [CAUSE, PATIENT] - is different from 
the thematic structure for (1). 

The theoretical approach to thematic roles in linguis­
tics is symbolic. As in predicate logic, the linguistic ex­
pressions are decomposed into a central predicate (often 
the verb) and a number of arguments that complete its 
meaning [Raposo, 1992]. The predicate assigns thematic 
roles to the arguments, and each sentence has a thematic 
grid, i. e., a structure with all thematic roles assigned to 
the sentence arguments by the predicate. 

A Natural Language Processing system, called HTRP 
(which stands for Hybrid Thematic Role Processor), is 
proposed to identify the thematic grid of a semantically 
sound input sentence. Two versions are deployed: the 
first, without initial knowledge, and the second, with 
initial knowledge. The first version specifies an ordinary 
connectionist architecture with initial random connection 
weights, henceforth called RIW (random initial weight 
version). In the second version, henceforth called BIW 
(biased initial weight version), a set of biased initial 
network connection weights is introduced to represent 
symbolic rules for ten thematic roles. In both versions, 
after supervised training, a set of final symbolic rules is 
extracted, which is consistently correlated to linguistic 
(symbolic) knowledge. In the case of BIW, this amounts 
to a revision of the initial rules. In RIW, symbolic rules 
seem to be induced from the connectionist architecture. 

2 Thematic Roles 
Taking sentences (1) and (2) again, it seems that the 
distinction between AGENT and CAUSE has something to 
do with the nouns that are assigned such roles. Thus, 
since only an animate noun is supposed to be an AGENT, 
some kind of semantic analysis is necessary in order to 
distinguish between different thematic assignments. In 
other words, thematic roles must be elements with se-
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mantic content [Dowty, 1989]. One could then imagine 
that the words, which can fill each of the slots for a given 
thematic grid, share a common semantic core. Assuming 
this is regular, one could try to capture such regularity (a) 
by describing each word in terms of its semantic features, 
and (b) by generalizing over all such descriptions for 
each thematic slot. 

Semantic feature generalization is the hallmark of 
McClelland and Kawamoto's [1986] pioneering proposal, 
and of much subsequent work. In a system called CPPro 
[Rosa, 1997], a connectionist architecture based on an 
adaptation of McClelland and Kawamoto's [1986] model 
is proposed. The words are represented by arrays of se­
mantic microfeatures, formed by subsets accounting for 
aspects of word meaning, like human and non-human, 
where only one value in each subset is active. For the 
verb, these arrays are arranged on the basis of thematic 
relationships between the verb and the other words of a 
sentence, thus mapping thematic roles onto semantic 
features. The aim of CPPro is to explore the idea of mi-
crofeature representation in order to build an architecture 
able to analyze and to learn the correct thematic relation­
ship attributions of the words in a sentence. Its output 
reflects judgements of semantic acceptability of a sen­
tence. 

In HTRP, the output is constituted by the thematic 
grid of a sentence, composed of up to ten thematic roles: 
AGENT, EXPERIENCER, CAUSE, PATIENT, THEME, SOURCE, 
GOAL, BENEFICIARY, VALUE, and INSTRUMENT. For 
HTRP, some intuitive thematic role definitions are 
adopted, as follows. AGENT is the argument having the 
control of the action expressed by the predicate. 
EXPERIENCER is a participant who does not have the con­
trol of an action expressing a psychological state. CAUSE 
is the argument that initiates the action expressed by the 
predicate without controlling it. PATIENT is the partici­
pant affected directly by the action of the predicate, usu­
ally changing state. THEME is the participant affected 
indirectly by the action of the predicate, without chang­
ing state. The other role labels are self-explanatory. 

In HTRP, only sentences with up to three arguments 
are taken care of. Thus, the argument structure [Haege-
man, 1991] of the sentences is as follows: 

verb; 1 2 3 
argl arg2 arg3 

where argl, argl and arg3 are the arguments of the verb, 
to which the predicate (the verb) assigns thematic roles. 
A limited set of verbs is chosen for the present imple­
mentation of HTRP: break, buy, deliver, fear, frighten, 
give, hit, and love. 

2.1 Verb Representation 
The representation of the verb in HTRP is strongly based 
on Franchi and Can§ado [1998]. They use a non-
lexicalist representation; that is, the thematic role as­

signment compositionally depends on the whole sen-
tence. For instance, taking the verb break, (5) and (6) are 
the thematic grids for (3) and (4) respectively: 

(3) Mary broke the vase with a hammer. 
(4) The stone broke the vase. 
(5) [AGENT, PATIENT, INSTRUMENT] 
(6) [CAUSE, PATIENT]. 

To explain the difference, one can resort again to the 
notion that thematic roles are elements with semantic 
content. In this case, it seems that sometimes (e.g. in 
sentence (3)) control of action is required by the verb 
break in relation to argl, while no such control is re­
quired in sentence (4). Thus, one could say that control of 
action is a feature to be associated with the verb. 

The same is true for the verb frighten, regarding a 
different feature: direct process triggering. 

(7) Mary frightened Paul with a scream. 
(8) The tests frightened Paul. 

In (7) control of action is part of the game, while in (8) 
direct process triggering assumes a central role. 

Thus, a small set of features can be associated with 
the verb, in the same manner that nouns are associated 
with a set of (different) features [Waltz and Pollack, 
1985; McClelland and Kawamoto, 1986; Rosa, 1997]. 

The compositional features associated with the verb 
change according to the sentence in which the verb is 
used. So, it is inadequate to say that a specific verb has a 
single thematic grid, because this will depend on the 
whole sentence in which the verb occurs. In sum, a non-
lexicalist approach is preferable. 

3 The Connectionist Architecture 
HTRP system uses a connectionist architecture repre­
senting eleven independent artificial neural networks, one 
for each thematic role and one for the error output [Law­
rence et al, 1999]. The elementary processors are classi­
cal perceptron-like units, and each net has 40 input units, 
2 hidden units, and one output unit. The input units are 
responsible for the representation of two words of a sen­
tence, the verb and one of the nouns. Since each HTRP 
sentence has, at most, three nouns beyond the verb, each 
sentence works with at most three neural networks, in 
order to activate a grid of up to three thematic roles. The 
first hidden unit (V) represents the conjunction of all the 
verb microfeatures, and the second (N), the conjunction 
of all the noun microfeatures. The output unit represents 
the conjunction of these two microfeature sets (see figure 
1). The error output, which has also two hidden units and 
one output unit, differs at the input layer, which in this 
case has 80 units, because it is unknown which nouns, in 
conjunction with the verb, activate the error output. 

3.1 The Er ro r Output 
Lawrence et aL [1999] propose a recurrent neural net­
work to classify English sentences as grammatical or un~ 
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4 The Hybrid Approach 
Since its inception, Artificial Intelligence (AI) is torn 
between two opposing fields: the symbolic paradigm, 
based on logic, and the connectionist paradigm, based on 
the propagation of the activity of elementary processors. 

Artificial neural networks do not have the expressive 
power of general logical representations, since they are 
not adequate for manipulation of high level symbols 
[Fodoi and Pylyshyn, 19881 They are usually preferred 
in a number of situations (such as pattern recognition) 
because they are able to generalize over the inputs, they 
are fault tolerant, and they exhibit the ability to learn 
from experience. 

But neural networks have a disadvantage: often be­
cause of lack of transparency it is hard to understand how 
they build their inner representations. For instance, it is 
not easy to ascertain the meaning of the connections and 
their weights or the configuration of the hidden layers as 
regards a certain input-output pair. 

But, the so-called knowledge-based neural networks, 
which bring the opposing AI paradigms into closer con-
tact, allow for symbolic knowledge to be introduced in as 
well as to be extracted from neural networks - that is 
called hybrid approach. 

The extraction of symbolic knowledge from trained 
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Figure 1. The connectionist architecture for one thematic role. 

In HTRP, an error output network is implemented, in 
order to account for this. For a semantically unacceptable 
input like: 

(9) The stone bought the man 
the system activates the error output. So, before generat-
ng the thematic grid for a sentence, HTRP tests the se-
nantic acceptability of such sentence, so that the system 
>nly reveals the thematic grid for semantically well 

The symbolic knowledge generated by the net can be 
extracted, in both versions of HTRP, in a way compara­
ble to initial symbolic knowledge implementation in 
BIW, using the above structure. 

4.1 Microfeatural Representations 
Word representation in HTRP is adapted from the se-
mantic microfeature representations used by Waltz and 
Pollack [1985] and McClelland and Kawamoto [19861 
for the noun. For the verb, the representation is mainly 
based on Franchi and Cangado [1998], Nouns and verbs 
are accounted for by twenty binary semantic microfeature 
units each. The following general schema represents the 
nouns: 

• human - non-human 
• soft - hard 
• small - medium - large 
• 1-D/compact - 2-D - 3-D 
• pointed - rounded 
• fragile/breakable - unbreakable 
• value - furniture - food - toy - tool/utensil -

animate 



• arg 1 has cmtrol of action - on control 
• direct process triggering - indirect triggering 
• direction to source (argl) - direction to goal (arg2) 
• impacting process for arg2 - no impacting process 
• change of state of arg2 - no change of state 
• psychological state - no psychological state 
• argl has objective - no objective 
• effective action - no effective action 
• high intensity of the process - tow intensity 
• argl has interest on process - no interest on process 
Again, for each of these subsets, one feature is active, 

and the other is inactive. For instance, in the sense of 
sentence (1) above, for break the following features are 
active: control of action, direct process triggering, di­
rection to goal, impacting process, change of state, no 
psychological state, objective, effective action, high in-
tensity, and interest on process. In the sense of sentence 
(2), the following features are active: no control of ac­
tion, indirect process triggering, direction to goal, im­
pacting process, change of state, no psychological state, 
no objective, effective action, high intensity, and no in­
terest on process. As one can see, two different readings 
for the same verb break. 

But when the user enters the verb break into HTRP, 
the system does not know which break is intended. And, 
the network input is the "average" of the two readings of 
break. Again, some of the microfeatures will be undeter­
mined. And again, the system will arrive at the missing 
values for the intended reading of break. 

4.2 In i t i a l Symbolic Rules 
The HTRP "thematic rules" inspired by Haegeman 
[1991J and McRae et al. [1997] for 13 types of verbs (8 
different verbs and 5 alternative readings) were also im­
plemented. The rules are if-then rules (logical implica­
tions), and they are implemented as an and gate, i. e., if 
an input is absent, the unit should not be activated. Un­
like classical logic, each element in the antecedent part of 
the rules is weighted in a fuzzy way, by the connection 
weight of the respective element in the network. Then, 
for a unit to be active, all its inputs together should be 

For each thematic role there are two 'hidden' rales 
whose antecedents map the units belonging to the input 
layer and whose consequents map hidden units — one for 
the verb, and the otter for the noun (see figure 1). Bar 
instance, for the thematic role AGENT IN BIW, there is no 
initial rule for the noun (N), because any noun can in 
principle be an AGENT. The system, after learning, will 
decide which nouns could be AGENTS. But for the verb 
(V), the rule is: 

If for verb (0.2 control of action) + (0.2 direct 
process triggering) + (0.2 impacting process) + (0.2 
objective) + (0.2 interest on process) 

Then V 
//(0.5 V) + (0.5 N) then thematic role = AGENT. 

4.3 The Learning Step 
The training sentences are generated by a sentence gen­
erator, alternating verbs and nouns. Both semantically 
sound and ill-formed sentences are generated. For BIW, 
learning begins after the introduction of initial symbolic 
rules as connection weights of the network. The algo­
rithm used is the supervised backpropagation [Rumelhart 
et al., 1986]. After 3,000 training cycles, the system is 
able to judge, with a high degree of certainty, if a sen­
tence is meaningful or not, and, if it is, which its thematic 
grid is. 

One interesting consequence of learning is that the 
system is able to categorize on the basis of the comple­
mentarity of the verb microfeatures for most subsets. 
Consider the system without initial knowledge (RIW); in 
this case, the initial connection weights for each subset of 
microfeatures are random. Since, during training the sen­
tences exhibited mutually exclusive values within each 
subset of microfeatures, the final connection weights are 
found to be complementary in the sense that their respec­
tive values are of opposite signals. That is, the network 
incorporates the complementarity of microfeatures in 
virtue of its architecture and experience. 

4.4 Final Rules 
Rule extraction consists in reversing the process of initial 
rule insertion, in BIW. That is, the net weights are as­
sessed and a weighted antecedent is obtained, corre­
sponding to the connection weight. This rule is fuzzy 
because it allows for weighted antecedents in the pro­
duction rule. The symbolic knowledge thus extracted 
from the present connectionist architecture corresponds 
to the network learning and generalization capacities. As 
a consequence, the network is able to "revise" the initial 
symbolic rules. The fuzzy rule extraction from the net­
work, after training, for both versions of HTRP is based 
on Fu [1993], Setiono and Liu [1996], and Towell and 
Shavlik[1993]. 
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grammatical, exhibiting the same discriminatory power 
supplied by linguistic theory. The network is not divided 
into innate and learned knowledge. Instead, positive and 
negative examples are used to discriminate between 
grammatically acceptable and unacceptable sentences. 

verb microfeatures noun microfeatures 

Figure 1. The connectionist architecture for one thematic role. 

In HTRP, an error output network is implemented, in 
order to account for this. For a semantically unacceptable 
input like: 

(9) The stone bought the man 
the system activates the error output. So, before generat­
ing the thematic grid for a sentence, HTRP tests the se­
mantic acceptability of such sentence, so that the system 
only reveals the thematic grid for semantically well 
formed sentences. 

4 The Hybrid Approach 
Since its inception, Artificial Intelligence (AI) is torn 
between two opposing fields: the symbolic paradigm, 
based on logic, and the connectionist paradigm, based on 
the propagation of the activity of elementary processors. 

Artificial neural networks do not have the expressive 
power of general logical representations, since they are 
not adequate for manipulation of high level symbols 
[Fodor and Pylyshyn, 1988]. They are usually preferred 
in a number of situations (such as pattern recognition) 
because they are able to generalize over the inputs, they 
are fault tolerant, and they exhibit the ability to learn 
from experience. 

But neural networks have a disadvantage: often be­
cause of lack of transparency it is hard to understand how 
they build their inner representations. For instance, it is 
not easy to ascertain the meaning of the connections and 
their weights or the configuration of the hidden layers as 
regards a certain input-output pair. 

But, the so-called knowledge-based neural networks, 
which bring the opposing AI paradigms into closer con­
tact, allow for symbolic knowledge to be introduced in as 
well as to be extracted from neural networks - that is 
called hybrid approach. 

The extraction of symbolic knowledge from trained 

neural networks permits the exchange of information 
between connectionist and symbolic knowledge repre­
sentations and has been of great interest to understand 
what the neural network actually does [Shavlik, 1994]. 
Additionally, a significant decrease in learning time can 
be obtained by training networks with initial knowledge 
[Omlin and Giles, 1996]. Also, the symbolic knowledge 
can be input into neural networks and then refined after 
training. 

In the hybrid approach adopted here, the symbolic 
knowledge is represented through connection weights 
between neural network processing units. For instance, a 
fuzzy logical rule, with weighted antecedents A and B, 
and consequent C, 

(10)  
can be represented by a connectionist schema, as shown 
in figure 2. The rule is fuzzy-like, because wAC and wBc 
(connection weights) are not binary values but real num­
bers. Also, it simulates an and unit, such that only the 
presence of both inputs A and B causes unit C to be acti­
vated. 

The symbolic knowledge generated by the net can be 
extracted, in both versions of HTRP, in a way compara­
ble to initial symbolic knowledge implementation in 
BIW, using the above structure. 

4.1 Microfeatural Representations 
Word representation in HTRP is adapted from the se­
mantic microfeature representations used by Waltz and 
Pollack [1985] and McClelland and Kawamoto [1986], 
for the noun. For the verb, the representation is mainly 
based on Franchi and Cancado [1998]. Nouns and verbs 
are accounted for by twenty binary semantic microfeature 
units each. The following general schema represents the 
nouns: 

• human - non-human 
• soft - hard 
• small - medium - large 
• 1-D/compact - 2-D - 3-D 
• pointed - rounded 
• fragile/breakable - unbreakable 
• value - furniture - food - toy - tool/utensil -

animate 

854 MACHINE LEARNING 



For each of these subsets, only one feature is active, 
and all the others are inactive. For instance, man is hu­
man, soft, large, 3-D, rounded, unbreakable, and ani­
mate', stone is non-human, hard, small, 3-D, pointed, 
unbreakable, and tool/utensil. 

The system also includes ambiguous nouns, so that 
some of its microfeatures are undetermined. In such 
cases, the system will arrive at the missing values for the 
intended reading, because it is fault tolerant. 

The following schema represents the verbs: 
• argl has control of action - no control 
• direct process triggering - indirect triggering 
• direction to source (argl) - direction to goal (arg2) 
• impacting process for arg2 - no impacting process 
• change of state of arg2 - no change of state 
• psychological state - no psychological state 
• argl has objective - no objective 
• effective action - no effective action 
• high intensity of the process - low intensity 
• argl has interest on process - no interest on process 
Again, for each of these subsets, one feature is active, 

and the other is inactive. For instance, in the sense of 
sentence (1) above, for break the following features are 
active: control of action, direct process triggering, di­
rection to goal, impacting process, change of state, no 
psychological state, objective, effective action, high in­
tensity, and interest on process. In the sense of sentence 
(2), the following features are active: no control of ac­
tion, indirect process triggering, direction to goal, im­
pacting process, change of state, no psychological state, 
no objective, effective action, high intensity, and no in­
terest on process. As one can see, two different readings 
for the same verb break. 

But when the user enters the verb break into HTRP, 
the system does not know which break is intended. And, 
the network input is the "average" of the two readings of 
break. Again, some of .the microfeatures will be undeter­
mined. And again, the system will arrive at the missing 
values for the intended reading of break. 

4.2 In i t i a l Symbolic Rules 
The HTRP "thematic rules" inspired by Haegeman 
[1991] and McRae et al. [1997] for 13 types of verbs (8 
different verbs and 5 alternative readings) were also im­
plemented. The rules are if-then rules (logical implica-
tions), and they are implemented as an and gate, i. e., if 
an input is absent, the unit should not be activated. Un­
like classical logic, each element in the antecedent part of 
the rules is weighted in a fuzzy way, by the connection 
weight of the respective element in the network. Then, 
for a unit to be active, all its inputs together should be 

such that their sum is enough to activate the unit (see 
figure 2). 

For each thematic role there are two 'hidden' rules 
whose antecedents map the units belonging to the input 
layer and whose consequents map hidden units - one for 
the verb, and the other for the noun (see figure 1). For 
instance, for the thematic role AGENT in BIW, there is no 
initial rule for the noun (N), because any noun can in 
principle be an AGENT. The system, after learning, will 
decide which nouns could be AGENTS. But for the verb 
(V), the rule is: 

If for verb (0.2 control of action) + (0.2 direct 
process triggering) + (0.2 impacting process) + (0.2 
objective) + (0.2 interest on process) 

Then V 
//(0.5 V) + (0.5 N) then thematic role = AGENT. 

4.3 The Learning Step 
The training sentences are generated by a sentence gen­
erator, alternating verbs and nouns. Both semantically 
sound and ill-formed sentences are generated. For BIW, 
learning begins after the introduction of initial symbolic 
rules as connection weights of the network. The algo­
rithm used is the supervised backpropagation [Rumelhart 
et al., 1986]. After 3,000 training cycles, the system is 
able to judge, with a high degree of certainty, if a sen­
tence is meaningful or not, and, if it is, which its thematic 
grid is. 

One interesting consequence of learning is that the 
system is able to categorize on the basis of the comple­
mentarity of the verb microfeatures for most subsets. 
Consider the system without initial knowledge (RIW); in 
this case, the initial connection weights for each subset of 
microfeatures are random. Since, during training the sen­
tences exhibited mutually exclusive values within each 
subset of microfeatures, the final connection weights are 
found to be complementary in the sense that their respec­
tive values are of opposite signals. That is, the network 
incorporates the complementarity of microfeatures in 
virtue of its architecture and experience. 

4.4 Final Rules 
Rule extraction consists in reversing the process of initial 
rule insertion, in BIW. That is, the net weights are as­
sessed and a weighted antecedent is obtained, corre­
sponding to the connection weight. This rule is fuzzy 
because it allows for weighted antecedents in the pro­
duction rule. The symbolic knowledge thus extracted 
from the present connectionist architecture corresponds 
to the network learning and generalization capacities. As 
a consequence, the network is able to "revise" the initial 
symbolic rules. The fuzzy rule extraction from the net­
work, after training, for both versions of HTRP is based 
on Fu [1993], Setiono and Liu [1996], and Towell and 
Shavlik [1993]. 
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For RIW, the final rules for the thematic role AGENT 
are the following: 

'Hidden* rules: 
If for verb (-0.6 control of action) + (-1.0 direct 

process triggering) + (-0.1 direction to goal) + (-0.9 
impacting process) + (-1.1 change of state) + (-0.1 no 
psychological state) + (-2.2 objective) + (-0.6 effective) 
+ (0.2 high intensity) + (-0.8 interest on process) 

ThenV 
If for noun (1.7 human) + (0.2 soft) + (3.1 me-

Jiuro + I.8 large) + (0.2 3-D) + (0.2 rounded) + (1.4 
unbreakable) + (3.7 animate) 

ThenN 
'Output' rule: 
If(-7;3 V) + (6.9 N) then thematic role = AGENT. 

Notice that almost all antecedents of the 'hidden' rule 
are negative for the verb. But the antecedent of the 'out­
put' rule (-7.3 V) is also negative for the verb, which 
means that the negative signals cancel each other out. 

Notice also that, for the verb, many microfeatures 
were highly biased by learning: control of action, direct 
process triggering, impacting process, change of state, 
objective, effective, and interest on process. In relation to 
the noun rule, the AGENT learned by the net is mainly 
medium and animate, and less prominently, human, 
large, and unbreakable. 

For BIW, that is, with the introduction of initial sym­
bolic rules, for the thematic role AGENT there is the fol­
lowing final rule for the verb: 

'Hidden' rule: 
If for verb (0.9 control of action) + (1.2 direct 

process triggering) + (0.8 direction to goal) + (0.5 im-
pacting process) + (0.4 change of state) + (0.1 no psy­
chological state) + (1.2 objective) + (-0.1 effective) + 
(0.2 high intensity) + (1.2 interest on process) 

ThenV 
As one can see, considering the initial rule antece­

dents, all features were highly strengthened by learning, 
with the exception of impacting process, which rose only 
from 0.2 to 0.5. That is, the system can be said to rein­
force the initial features. 

There is a final rule for the noun too: 
'Hidden' rule: 
If for noun (-1.6 human) + (-0.3 soft) + (-2.3 

medium + -0.8 large) + (-0.7 3-D) + (-0.6 rounded) + 
(-0.6 unbreakable) + (-2.6 animate) 

ThenN 
'Output' rule: 
If (7.1 V) + (-7.1 N) then thematic role = AGENT. 

Since the 'output' rule shows a negative antecedent 
for the noun (-7.1 N), all the negative weights of the 
'hidden' rule antecedents become positive. So, the AGENT 
learned by the net is mainly human, medium and animate, 

and, with less prominence, soft, targe, 3-D, rounded, and 
unbreakable. 

Notice that there are small differences between the 
final hidden rules for nouns in RIW and BIW, although 
one might expect them to be the same because both for 
BIW and RIW no initial rules for nouns are provided. 
Such difference stems from (i) the connectionist archi­
tecture employed, which takes into account both verb and 
noun inputs to activate the thematic role output (see fig­
ure 1); and (ii) from the backpropagation algorithm, 
which causes vert) weights to influence noun weights 
during the error backpropagation step. 

To illustrate and compare the differences between 
RIW and BIW, a summary of the weights for the verb, 
concerning the thematic role AGENT, is presented in table 
3. Recall that these values are used to weigh the micro-
features in the antecedents of the symbolic rules. 

Mf ca dt dg im cs np ob ef hi ip 
I 0.2 0.2 0.2 - 0.2 - 0.2 
FR 0.6 1.0 0.1 0.9 1.1 0.1 2.2 0.6 -0.2 0.8 
FB 0.9 1.2 0.8 0.5 0.4 0.1 1.2 -0.1 0.2 1.2 

Note: Mf = semantic microfeature; ca = control of action; dt = 
direct triggering; dg = direction to goal; im = impacting process; 
cs = change of state; np = no psychological state; ob = objective; ef 
= effective; hi = high intensity; ip = interest on process; / = initial 
weights; FR = final weights for RIW; FB = final weights for BIW. 

Table 3. A comparison between initial and final weights. 

Notice that, when initial knowledge is input to the 
system (BIW), there is a tendency of strengthening the 
initial weights. When no initial knowledge is provided 
(RIW), the final weights are quite close to those in BIW. 
This can only be taken as evidence that the final weights 
reflect the available symbolic knowledge (about a the­
matic role) from the examples and from the architecture, 
since in this case the initial weights are arbitrary. 

5 Conclusion 
In the realms of connectionist Natural Language Proc­
essing, several systems use the notion of thematic role 
modeling (e.g., McClelland and Kawamoto [1986], 
McClelland et al. [1989], St. John and McClelland 
[1990], Jain [1991], and Miikkulainen [1996]). Also, at 
least one recent paper [Chan and Franklin, 1998] imple­
menting a hybrid system makes use of the notion of case 
roles, which is close to the concept of thematic relations. 
The present system departs from all these in that it relies 
on the role of semantic entailments in thematic relations, 
i.e., in the way it makes use of theoretical knowledge 
from linguistics. 

HTRP implements a symbolic-connectionist hybrid 
approach to thematic role processing. In this approach, 
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the advantages of symbolic systems (ease of knowledge 
representation, understanding through logical inference, 
etc.) are combined with the advantages of connectionism 
(learning, generalization, fault tolerance, etc.) to yield a 
more discriminating thematic role processing, that is 
sensitive to the subtleties involved in such linguistic 
phenomenon. 

The representation of semantic features adopted in 
this system would also easily allow for new words to be 
entered in order to increase its lexicon, once their se­
mantic microfeature arrays are supplied. In HTRP a sin­
gle network accounts for each verb-noun pair; thus gen­
eralizing over both nouns and verbs. In fact, this is cru­
cial in dealing with thematic roles, for they are but the 
generalization of semantic relationships between verbs 
and nouns. Another interesting result that should be em­
phasized regards RIW. Even in a system without initial 
knowledge, the final rules extracted from the network 
fully correspond to the symbolic theory that explains 
them. That is, it seems that the HTRP architecture to­
gether with training is enough for the system to arrive at 
the correct semantic grid of a sentence. 
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