
Improved Classification for a Data Fusing Kohonen Self Organizing Map Using a 
Dynamic Thresholding Technique 

Odin Taylor, John Tait and John Maclntyre 
School of Computing, Engineering and Technology 

University of Sunderland 
St. Peters Campus, St. Peters Way 

Sunderland, SR6 ODD 
U.K. 

Abstract 
The use of linear data fusion is a fast develop­
ing area in the field of military information and 
combat systems. However, the use of data fusion 
in conventional application areas is not as wide 
spread. To date linear data fusion has been used 
only in applications in which substantial 
knowledge of both the problem domain and the 
sensor devices in use are available. However, in 
applications such as condition monitoring the 
problem domain can be very complex, with lit­
tle or no knowledge about the interactions be­
tween measured parameters. This paper de­
scribes the use of non-linear self-learning or 
self-organising systems as a tool for data fusion, 
since these systems can learn complex inter­
relationships between a number of parameters, 
and use this information as a tool for improved 
classification. 

1 Introduction 
The reliable operation of machinery in the industrial 
sector is of major importance due to the ever-increasing 
demand for profitability in the competitive marketplace. 
Failure of critical machinery at an unexpected time can 
devastate a company's ability to maintain production 
and keep a competitive position. Organisations can in­
crease the productivity and reliability of such machines 
by the use of condition monitoring. 

Condition monitoring is a well-established term that 
describes a number of predictive maintenance technolo­
gies enabling skilled engineers to determine the current 
state of a machine and diagnose any problem that might 
be present. However, the number and availability of 
these skilled personnel is limited and they are most 
likely to be external to an organisation, which results in 
machinery health checks being carried out on a sched­
uled off-line basis. 

Complex machines provide data from multiple sources 
such as vibration, temperature and pressure, which 
demonstrate non-linear behavior and are difficult to 
analyze with normal techniques due to the complexity of 
the interactions. The process of data fusion allows more 
information to be gained from the synergy of these mul­
tiple sensors than would be gained from one single sen­
sor [Alag, 1996; Lou, 1989]. 

Due to the complexity of condition monitoring applica­
tions, and the lack of knowledge about the domain, a 
self-learning system is needed to fuse these complex 
relationships into a model that can be used to represent 
normal operating behavior. This model can then be used 
to identify changes from the normal operating behavior, 
for example the development of a mechanical fault, and 
flag this up as a novel condition. 

Self-organising neural networks, especially the archi­
tecture proposed by Kohonen [Kohonen, 1989a] have 
been used successfully over the years in variety of appli­
cations. These self-organizing neural networks have the 
ability to learn by example the general characteristics of 
similar items in an unseen data set and to group these 
into different classifications, or clusters. To classify new 
input patterns after training has completed, the data is 
compared for similarity to the learned groupings using a 
Euclidean distance metric. The winning neuron in the 
network is identified as having the smallest Euclidean 
Distance to the new input data, and the classification of 
the new input is determined to be the same as the win­
ning neuron. 

The Kohonen algorithm maps higher dimensional data 
into a lower dimensional representation and implements 
a nearest neighbor approach for classification of new 
patterns. However factors such as outliers and misrepre­
sented data can affect this and give false classifications. 
Kohonen networks are naturally grouped with other al­
gorithms such as LVQ and Nestor algorithms, which are 
in fact modified versions of it-nearest neighbor classifi­
ers [Reilly et al., 1982; Kohonen et alt 1988b]. It is 

828 MACHINE LEARNING 



known that for a problem where its is assumed that eve­
rything is known about the data the best possible classi­
fier for a probabilistic system is a Bayes classifier [An­
derson, 1995; Bishop, 1995J. 
Another method for improved classification for Koho-
nen networks, is the use of thresholds around the neu­
rons within the network to act as a decision boundary to 
stop false classification occurring. A false classification 
could be a new input pattern that is a significant dis­
tance away from the winner, but is still classified as 
belonging to that group. Alternatively a new pattern 
may be close to a group of neurons or neuron, but these 
neurons may represent outliers in the data where the 
data density is sparse. 

A method is needed to dynamically set these thresholds 
so as to set a large threshold around tightly grouped 
neurons and smaller thresholds around loosely con­
nected neurons. This gives an approximation of the 
probability density of the data by indicating, that it is 
more likely that closely grouped neurons represent areas 
of data that are frequently winning, whereas loosely 
coupled and dispersed neurons, although representative 
of the data are less likely to give accurate classifica­
tions. 

1.1 Overview 
This paper looks at the implementation of a method for 
automatically setting thresholds for the problem that has 
been outlined above, using a Kohonen Self-Organizing 
Map (SOM). The implementation is based within a 
small Siemmens microprocessor in a hardware device 
and is used for a modular, real world, on-line condition-
monitoring application. The overall NEURAL-MAINE 
project will not be discussed here, but the method of 
assigning thresholds will be examined in closer detail. 
The application involves the use of on-line self-
organizing maps to learn the normal running state of a 
machine and identify when a transition from this state 
occurs [Harris, 1993]. The normal state for this problem 
is modeled by fusing a number of different sensor types 
and learning the representation of this state, passing 
new data through the model and identifying when a sig­
nificant deviation from the norm has occurred, that is, a 
novel condition. 

2 Proposed Method 
Previous methods of using threshold values with a Ko­
honen SOM included the use of a single value, which 
places a threshold around the entire learned data space 
[Taylor and Maclntyre, 1998a]. This method although 
crude, was effective with low dimensional, normally 
distributed data. However with more complex higher 
dimensional data the algorithm failed due to misclassi-
fications. 

Another approach uses a static threshold value for each 
neuron within the Kohonen network, so when a winning 
neuron is identified, the distance of the new pattern is 
compared to the threshold [Taylor and Maclntyre, 
1998b]. If the distance is greater than the threshold then 
this is classified as a novelty, as shown in Formula 1, 
where D is the distance form the wining neuron and T is 
the threshold level for that neuron. 

(1) 

However due to the distribution of neurons relating to 
the data, outliers for example had the same threshold as 
tightly grouped neurons, which allows severe misclassi-
fications. This method requires the threshold to be set 
manually, which is not appropriate for on-line real-time 
systems. Although an improvement, the approach is still 
too likely to misclassify outlying unseen data. 

The Kohonen algorithm roughly estimates the probabil­
ity distribution of the data by clustering more neurons to 
a data space region that is well represented by input 
patterns. For a thresholding algorithm to work effi­
ciently and effectively, it should also model the distri­
bution of the neurons. The distribution of the neurons 
should have the affect on the thresholds that the closer 
and more dense a number of neurons, the larger the in­
dividual neuron threshold should be. This is because 
there is a higher probability that any new data point 
occurring in the same region, or close to the region, is 
likely to belong to the class represented by those neu­
rons. A group of sparsely distributed neurons should 
have small thresholds. This will result in new data 
which is in the area of the sparse representation being 
less likely to be classified as normal, or belonging to the 
class represented by those neurons. This method allows 
small, virtually insignificant thresholds to be assigned 
to neurons, in effect rendering them inoperable as a 
classifier. This eliminates the problems mentioned with 
the previous two approaches. Thus a new data point 
must be very close to the outlier or stretched position to 
be classified as normal, or belonging to that class. 

The approach used to implement this is to use the lateral 
distance between the Kohonen neurons as a basis to set 
the thresholds dynamically and in real time, without the 
need for a user interaction. The algorithm steps through 
each neuron in the Kohonen network and finds the clos­
est of its neighboring neurons using Euclidean distance. 

The Euclidean distance is normalised to a range of -5 to 
+5, where -5 represents a exact match of new data to an 
existing neuron, and +5 represents the furthest distance 
measured within the map. The normalised distance is 
then passed through a sigmoid function, which gives an 
output in the range 0 to 1. Finally the output of the sig-
moid is inverted by subtracting the output value from 1. 
The result is an activation level which is a normalised 

TAYLOR, TAIT, AND MACINTYRE 829 



representation of the Euclidean distances, with larger 
thresholds for densely packed neurons, and lower 
thresholds for sparse representations. 

The number and type of sensing devices that could be 
connected to the hardware module can vary greatly, and 
the output that they generate can vary dramatically. The 
sensitivity of these parameters must be taken into con­
sideration, as the range of values and the sensitivity of 
fault types to particular parameters vary considerably. 

For normalization of the data, a technique was needed 
that would keep the sensitivity correct and scale the in­
coming data into the same range for the neural network. 
Another problem encountered with our application was 
that data was being presented in real time that needed to 
be learned, and due to hardware requirements a pool of 
data could not be gathered, stored and analyzed for 
normalization purposes. The technique used in the ap­
proach was to use a modified version of Vector Aug­
mentation (or unit sphere). This allowed the incoming 
values from the sensors to be scaled as a pattern and not 
as entire set of data, which has so far proved to be ef­
fective and accurate. 

An indication of the sensitivity of faults was determined 
using the outputs of the Kohonen network. This was 
done by applying a novelty metric to calculate a sensi­
tivity value, as shown in Formula 2. Where D is the 
Euclidean distance of the new input from the winning 
neuron and T is the winning neurons Threshold. 

Previous approaches for applying such a threshold use 
hard limited values. The new approach gives a better 
representation of the degree of sensitivity of a develop­
ing fault. 

3 Data, Training and Results 
Data for testing was provided by Leatherhead Food Re­
search Association, who provides technical and support 
information relating to processes in the food industry for 
it members. Data was collected from a machine that 
produces UHT (Ultra Heat Treated) milk products, over 
a number of states. The states included a normal run­
ning state, two foul (blockage fault) conditions and two 
unexpected errors. 

The Normal running state involved no blockages in the 
UHT process as the product was passed through the 
system. The fouling conditions occurred when the prod­
uct blocked the heat exchanger plates and caused a fault 
and the two unexpected errors, occurred during the run­
ning of the machine causing the process to be shut 

down. The data sets compromised of eight parameters, 
including temperature, pressure and flow readings. 

The Kohonen based novelty detector was trained on the 
normal running state only with one pass (i.e. the learn­
ing mimicked real-time operation by passing once 
through the data set gathered during run-up and a short 
period of steady state operation), as this simulates the 
normal operating condition of the hardware-based sys­
tem. To test for novel conditions, new data is passed 
into the trained network. If the new data is within the 
threshold, it will be classified as normal. If the new data 
is not like the learned data and outside of the threshold, 
then it is classified as a novelty or unknown class. 

As a baseline for comparison, the novelty detector was 
trained as mentioned previously, but with the dynamic 
threshold setting (the proposed method) disabled. In its 
place an arbitrary threshold was assigned by running an 
unseen normal data set through the novelty detector and 
using the average winning distance (278.1) as the 
threshold level for the network. The normal data was 
then re-run through the network along with the four 
fault conditions and the results recorded. 

Table 2 - Results from using Real Data with Arbitrary 
Thresholds 

The average threshold for each pattern set will be exacdy 
the same as each neuron within the network has the same 
arbitrary threshold. Results from the arbitrary setting are 
poor as by using just the winning distance information you 
are not incorporating any information about the clustering 
of data within the self-organized map. 

The novelty detector was then re-trained in the same way as 
mentioned previously, but this time with the dynamic 
thresholding activated. Data which had not previously been 
seen by the network, and represented normal running state, 
was then passed through the network to validate that it 
could correctly identify normal states, as shown in Table 2. 
As can be seen in Table 3, the average Euclidean distance 
for normal patterns is 188, whereas for the fault conditions 
there is a substantial difference in the distance. The average 
threshold value is approximately the same, as the same 

830 MACHINE LEARNING 



network trained on normal data only was used with the 
fault data passed through it, The slight fluctuation in the 
average threshold is due to the firing of the different neu­
rons within the network as each has its own threshold. 

Table 3 - Results from using Real Data with Dynamic 
Thresholds 

The four fault conditions all contain normal data that 
progresses into a fault condition. The novelty detector 
correctly identified the normal state as normal, fault 
conditions as novel, and the severity measure indicated 
the increasing deterioration of the fault condition as 
shown in Figure 4. By examining the results, the first 
few patterns of the fault conditions were identified as 
novel, this was due to the machine having a brief start 
up period, which was not represented in the normal 
state training data. 

Further testing including brief start up data with the 
normal data proved to be ineffective as the Kohonen was 
learning on a one pass basis, and the number of patterns 
representing start up to that of normal state was only a 
small proportion and varying. The way the Kohonen 
algorithm performs learning "fades" the start up data 
out, as there is more representational data in the normal 
state data. This is not really a problem, as the project (at 
this level) requires an indication that a transition from 
the normal state has occurred, any other state will be 
dealt with by a higher level of the NEURAL-MAINE 
system. 

Figure 4 - Results for Foul 2 showing Severity Measure 

By comparing the results of the dynamic thresholding 
and the arbitrary thresholding techniques, it can be seen 
that the dynamic method considerably outperforms the 
arbitrary one. The arbitrary methods could improve, 
with more complex analysis, but performance will never 
match that of the dynamic technique since the informa­
tion contained within the lateral connections of the Ko­
honen network are not used. 

The novelty detector was also tested with a number of 
synthetic data sets, to test the function of the normali­
zation and sensitivity, and to test the accuracy of the 
novelty detector. Five test sets were generated by Neural 
Computer Sciences which mimicked a number of sen­
sors connected to a machine component, each having 
varying sensor outputs (high and low values), and 
varying sensitivities. The synthetic data sets contained a 
run-up and normal running state, which progresses into 
a fault condition. To mimic the real operation of the 
neural network when embedded in the hardware device, 
the neural network was trained in a "one pass" mode as 
with the previous real UHT plant data. The novelty de­
tector trained with the first 800 patterns of each data 
set, which simulated the system being activated when a 
machine was started, run up and settled into a steady 
state. After the 800 patterns had been presented, the 
neural network then examined the rest of the data set 
and classified the new inputs as either normal or novel. 
The results are shown in Table 5 

Pa
tte

rn
 

Na
m

e 

No
. 

of
 

Pa
tte

rn
s 

No
. N

ov
­

el
tie

s 

Av
er

ag
e 

Th
re

sh
ol

d 

Av
er

ag
e 

D
ist

an
ce

 

Trial 1 2000 693 1024 1685 
Trial 2 2500 25 1170 509 
Trial 3 2500 1143 518 51 
Trial 4 ! 2500 1152 1461 1011 
Trial 5 2000 1104 1700 744 

Table 5 - Results from the Synthetic Data set and Dynamic 
Thresholds 

The pattern set Trial 1 mimicked a normal run up for 
the first 300 patterns with a steady run of the next 1200 
patterns and the final 500 patterns indicating a slow 
degradation into a fault condition. Trial 2 mimicked a 
quick run up for the first 230 patterns, then stayed in a 
steady state for the rest of the data set. However, the 
steady state was interrupted by a number of single er­
ratic novelties simulating a transient fault. Trial 3 had a 
very quick startup time of the first 100 patterns, and 
then settled into a steady state for the rest of the data 

TAYLOR, TAIT, AND MAC1NTYRE 831 



set. Again transient novelties were detected, which in-
creased in frequency and severity towards the end of the 
data set. Trial 4 had another quick start up of the first 
100 patterns, stabalising into a steady state for another 
1000 patterns. During the steady state a number of vio­
lent single novelties were detected, with a "noisy" 
steadily increasing fault detected during the last patterns 
of the data set. Trial 5 had a quick startup for the first 
100 patterns, followed by a steady state for the next 900 
patterns, with a steady fault detected in the last 1000 
patterns. The novelty and sensitivity readings also 
showed that in the fault (of Trial 5) a repeating violent 
novelty was occurring. 

The novelty detector successfully identified the occur­
rence of these faults, and the severity could be visualised 
as the fault progressed by use of the severity metric. 

4 Conclusions 
The methods described here were developed with a need 
for speed, accuracy and automation as the data fusion 
component is being embedded into a small microproces­
sor based hardware system. This hardware system will 
be the basis for the NEURAL-MAINE project and will 
be used on a number of real world condition-monitoring 
applications from small processing machinery to large 
steam turbines. 

Using arbitrary threshold levels is just not feasible, as 
this is not accurate enough. Furthermore the combina­
tions of possible data sets in future applications makes 
the generic calculation of a threshold value impossible. 
The dynamic method outperforms the arbitrary method 
and can be used in general applications. This is because 
the technique uses the information stored within the 
lateral connections of the Kohonen map (which de­
scribes the clustering of the data) as a basis for dynami­
cally setting individual neuron threshold values. 

The methods were tested using synthetic data, which 
mimicked extreme sensor readings, and real data was 
used from a UHT machine. Both data sets were used in 
testing and the dynamic method performed accurately 
with no user intervention. 

The sensitivity metric also produced more output infor­
mation as this gave an indication of the severity of the 
fault. For the gentle fouling conditions of the UHT ma­
chine, the severity measure is a gently slow increase. 
The sudden faults caused violent, powerful sensitivity 
readings. And the final UHT unexpected fault showed 
an error at startup and a small time of settling into nor­
mal state. The severity metric was just on the scale, 
which indicated that the fault was just on the bounds of 
normality and did eventually settle into a normal state. 

The initial version of the algorithm looks at only the 
closest neuron, but future versions will investigate the 

use of k-nearest neurons to see if this improves classifi­
cation. 

References 
[Alag, 1996] Satnam Alag, Kai Goebel, and Alice Ag-
gino. A Framework for Intelligent Sensor Validation, 
Sensor Fusion, and Supervisory Control of Automated 
Vehicles in IVHS. Intelligent Systems Research Group, 
Department of Mechanical Engineering, UC Berkley, 
1996. 

[Anderson, 1995] James A. Anderson. An Introduction 
to Neural Network. MIT Press, ISBN 0-262-01144-1, 
1995. 

[Bishop, 1995] Christopher Bishop. Neural Networks 
for Pattern Recognition. Oxford University Press, ISBN 
0-19—853864-2, 1995. 

[Lou, 1986] Lou R.C., and Kay M.G. "Multisensor Inte­
gration and Fusion in Intelligent Systems", IEEE 
Transactions on Systems, Man and Cybernetics, Vol. 
19, No. 5, 1989. 

[Harris, 1993] Harris Tom. Neural Networks in Machine 
health Monitoring. Professional Engineering, 
July/August, 1993. 

[Kohonen, 1989a] Teuvo Kohonen. Self-Organization 
and Associative Memory - Third Edition. Springer-
Verlag, ISBN 0-387-51387-6, 1989. 

[Kohonen et al., 1988b] Teuvo Kohonen. G. Barna, and 
Chrisley R.. Statistical patter recognition with neural 
networks: Benchmarking studies. Proceedings of the 
IEEE International Conference on Neural Networks, 
San Diego, 1988. 

[Reilly et al., 1982] Reilly D.L., Cooper L.N. and El-
baum C. "A Neural Model for Category Learning", 
Biological Cybernetics, 45, pages 35-44, 1982. 

[Taylor and Maclntyre, 1998a] Odin Taylor, and John 
Maclntyre. Adaptive Local Fusion Systems for Novelty 
Detection and Diagnostics in Condition Monitoring. In 
Sensor Fusion: Architectures, Algorithms, and Applica­
tions II, Belur V. Dasarthy, Editor, Proceedings of 
SPIE, Vol. 3376, pages 210-218, 1998. 

[Taylor and Maclntyre, 1998b] Odin Taylor, and John 
Maclntyre. Modified Kohonen Network for Data Fusion 
and Novelty Detection within Condition Monitoring. 
Proceedings of EuroFusion98, pages 145-154, 1998. 

832 MACHINE LEARNING 


