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Abstract 
Simple Recurrent Networks (SRNs) have been 
widely used in natural language tasks. SARDSRN 
extends the SRN by explicitly representing the in­
put sequence in a SARDNET self-organizing map. 
The distributed SRN component leads to good gen-
eralization and robust cognitive properties, whereas 
the SARDNET map provides exact representations 
of the sentence constituents. This combination al-
lows SARDSRN to learn to parse sentences with 
more complicated structure than can the SRN alone, 
and suggests that the approach could scale up to re­
alistic natural language. 

1 Introduction 
The subsymbolic approach (i.e. neural networks with dis­
tributed representations) to processing language is attractive 
for several reasons. First, it is inherently robust: the dis­
tributed representations display graceful degradation of per­
formance in the presence of noise, damage, and incomplete or 
conflicting input [Miikkulainen, 1993; St John and McClel­
land, 1990]. Second, because computation in these networks 
is constraint-based, the subsymbolic approach naturally com­
bines syntactic, semantic, and thematic constraints on the in­
terpretation of linguistic data [McClelland and Kawamoto, 
1986]. Third, subsymbolic systems can be lesioned in var­
ious ways and the resulting behavior is often strikingly 
similar to human impairments [Miikkulainen, 1993;. 1996; 
Plant, 19911 These properties of subsymbolic systems have 
attracted many researchers in the hope of accounting for in­
teresting cognitive phenomena, such as role-binding and lex­
ical errors resulting from memory interference and overload­
ing, aphasic and dyslexic impairments resulting from phys­
ical damage, and biases, defaults and expectations emerg­
ing from training history [Miikkulainen, 1997; 1996; 1993; 
Plaut and Shallice, 1992]. 

Since its introduction in 1990, the simple recurrent network 
(SRN) [Elman, 1990] has become a mainstay in connectionist 
natural language processing tasks such as lexical disambigua­
tion, prepositional phrase attachment, active-passive transfor­
mation, anaphora resolution, and translation [Allen, 1987; 
Chalmers, 1990; Munro et al.,1991; Touretzky, 1991]. This 
paper describes an extension to the standard SRN, which 

utilizes SARDNET [James and Miikkulainen, 1995], a self-
organizing map algorithm designed to represent sequences. 
SARDNET permits the sequence information to remain ex­
plicit, yet distributed in the sense that similar sequences result 
in similar patterns on the map. SARDSRN, THe combination 
of the SRN and SARDNET, effectively solves the fundamen­
tal memory accuracy limitations of the SRN, and allows the 
processing of sentences of realistic length. 

This paper shows how SARDSRN improves upon the per­
formance of the SRN in a nontrivial syntactic shift-reduce 
parsing task. The results show that SARDSRN outperforms 
the SRN in this task by providing an effective solution to the 
memory problem. SARDSRN therefore forms a solid founda­
tion for building a subsymbolic parser of realistic language. 

2 The Task: Shift-Reduce Parsing 
The task taken up in this study, shift-reduce (SR) parsing, is 
one of the simplest approaches to sentence processing that 
nevertheless has the potential to handle a substantial subset 
of English [Tomita, 1986]. Its basic formulation is based on 
the pushdown automata for parsing context-free grammars, 
but it can be extended to context-sensitive grammars as well. 

The parser consists of two data structures: the input buffer 
stores die sequence of words remaining to be read, and the 
partial parse results are kept on the stack (figure 1). Ini­
tially the stack is empty and the entire sentence is in the in­
put buffer. At each step, the parser has to decide whether to 
shift a word from the buffer to the stack, or to reduce one 
or more of the top elements of the stack into a new element 
representing their combination. For example, if the top two 
elements are currendy NP and VPt the parser reduces diem 
into 5, corresponding to the grammar rule S NP VP (step 
17 in figure 1). The process stops when the elements in the 
stack have been reduced to S, and no more words remain in 
the input "The reduce actions performed by the parser in this 
process constitute the parse result, such as the syntactic parse 
tree (line 18 in figure 1). 

The sequential scanning process and incremental forming 
of partial representations is a plausible cognitive model for 
language understanding. SR parsing is also very efficient, 
and lends itself to many extensions. For example, the parse 
rules can be made more context sensitive by taking more of 
the stack and the input buffer into account Also, the partial 
parse results may consist of syntactic or semantic structures. 
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Figure 1: Shift-Reduce Parang a Sentence. Each step in the parse is represented by a line fro The current stack is at left, 
the input buffer in the middle, and the parsing decision in the current situation at right. At each step, the parser either shifts a word onto the 
stack, or reduces the top elements of the stack into a higher-level representation, such as the boy NP[the,boy] (step 3). (Phrase labels such 
as "NP" and "RC'' are only used in this figure to make the process clear.) 

The general SR model can be implemented in many ways. 
A set of symbolic shift-reduce rules can be written by hand or 
learned from input examples [Hermjacob and Mooney, 1997; 
Simmons and Yu, 1991; Zelle and Mooney, 1996]. It is also 
possible to train a neural network to make parsing decisions 
based on the current stack and the input buffer. If trained 
properly, the neural network can generalize well to new sen­
tences [Simmons and Yu, 1992]. Whatever correlations there 
exist between the word representations and the appropriate 
shiftz/reduce decisions, the network will learn to utilize them. 

Another important extension is to implement the stack as 
a neural network. This way the parser can have access to the 
entire stack at once, and interesting cognitive phenomena in 
processing complex sentences can be modeled. The SPEC 
system [Miikkulainen, 1996] was a first step in this direction. 
The stack was represented as a compressed distributed rep­
resentation, formed by a RAAM (Recursive Auto-Associative 
Memory) auto-encoding network [Pollack, 1990]. The result­
ing system was able to parse complex relative clause struc­
tures. When the stack representation was artificially lesioned 
by adding noise, the parser exhibited very plausible cogni­
tive performance. Shallow center embeddings were easier to 
process, as were sentences with strong semantic constraints 
in the role bindings. When the parser made errors, it usu­
ally switched the roles of two words in the sentence, which 
is what people also do in similar situations. A symbolic rep-
resentation of the stack would make modeling such behavior 
very difficult. 

The SPEC architecture, however, was not a complete im­
plementation of SR parsing; it was designed specifically for 
embedded relative clauses. For general parsing, the stack 
needs to be encoded with neural networks to make it possi­
ble to parse more varied linguistic structures. We believe that 
the generalization and robustness of subsymbolic neural net­
works will result in powerful, cognitively valid performance. 
However, the main problem of limited memory accuracy of 
the SEN parsing network must first be solved. An architec­
ture that will do that, SARDSRN, will be described next 

Figure 2: The SARDSRN Network. This snapshot shows the net­
work during step 11 of figure 1. The representation for the current 
input word, chased, is shown at top left. Each word is input to the 
SARDNET map, which builds a representation for the sequence word 
by word. At each step, the previous activation of the hidden layer is 
copied (as indicated by the dotted line) to the Previous Hidden Layer 
assembly. This activation, together with the current input word and 
the current SARDNET pattern, is propagated to the hidden layer of 
the SRN network. As output, the network generates the compressed 
RAAM representation of the top element in the shift-reduce stack 
at this state of the parse (in this case, line 12 in figure 1). SARD-
NET is a map of word representations, and is trained through the 
Self-Organizing Map (SOM) algorithm [Kohonen, 1995; 1990]. All 
other connections are trained through backpropagation. 

3 The SARDSRN parser architecture 
3.1 Simple Recurrent Network 
The starting point for SARDSRN (figure 2) is the simple re-
current network. The network reads a sequence of input word 
representations into output patterns representing the parse 
results, such as syntactic or case-role assignments for the 
words. At each time step, a copy of the hidden layer is saved 
and used as input during the next step, together with the next 
word. In this way each new word is interpreted in the context 
of the entire sequence so far, and die parse result is gradually 
formed at the output. 
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The SRN architecture can be used to implement a shift-
reduce parser in the following way: the network is trained 
to step through the parse (such as that in figure l), generat-
ing a compressed distributed representation of the top element 
of the stack at each step (formed by a RAAM network: sec­
tion 4.1). The network reads the sequence of words one word 
at a time, and each time either shifts the word onto the stack 
(by passing it through the network, e.g. step 1), or performs 
one or more reduce operations (by generating a sequence of 
compressed representations corresponding to the top element 
of the stack: e.g. steps 8-11). After the whole sequence is 
input, the final stack representation is decoded into a parse 
result such as a parse tree. Such an architecture is powerful 
for two reasons: (1) During the parse, the network does not 
have to guess what is coming up later in the sentence, as it 
would if it always had to shoot for the final parse result; its 
only task is to build a representation of the current stack in its 
hidden layer and the top element in its output. (2) Instead of 
having to generate a large number of different stack states at 
the output, it only needs to output representations for a rela-
tively small number of common substructures. Both of these 
features make learning and generalization easier. 

A well-known problem with the SRN model is its low 
memory accuracy. It is difficult for it to remember items 
that occurred several steps earlier in the input sequence, es­
pecially if the network is not required to produce mem in 
the output layer during the intervening steps [Stolcke, 1990; 
Miikkulainen, 1996]. The intervening items are superim­
posed in the hidden layer, obscuring the traces of earlier 
items. Nor has simply increasing the size of the hidden layer 
or lowering the learning rate been found to offer much ad­
vantage. As a result, parsing with an SRN has been limited to 
relatively simple sentences with shallow structure. 

3.2 SARDNET 
The solution described in this paper is to use an explicit rep-
resentation of the input sequence as additional input to the 
hidden layer. This representation provides more accurate in­
formation about the sequence, such as the relative ordering 
of the incoming words, and it can be combined with the hid­
den layer representation to generate accurate output that re­
tains all the advantages of distributed representations. The se­
quence representation must be explicit enough to allow such 
cleanup, but it must also be compact and generalize well to 
new sequences. 

The SARDNET (Sequential Activation Retention and 
Decay Network) [James and Miikkulainen, 1995] self-
organizing map for sequences has exactly these properties. 
S ARDNET is based cm the Self-Organizing Map neural net­
work [Kohonen, 1990; 1995], and organized to represent die 
space of all possible word representations. As in a con­
ventional self-organizing map network, each input word is 
mapped onto a particular map node called the maximally-
responding unit, or winner. The weights of the winning unit 
and all the nodes in its neighborhood are updated according to 
the standard adaptation rule to better approximate the current 
input The size of the neighborhood is set at the beginning of 
the training and reduced as the map becomes more organized. 

In S ARDNET, the sentence is represented as a distributed 
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Figure 3: Grammar. This phrase structure grammar generates sen-
tences with subject- and object-extracted relative clauses. The rule 
schemata with noun and verb restrictions ensure agreement between 
subject and object depending on the verb in the clause. Lexicon 
items are given in bold face, 

activation pattern on the map (figure 2). For each word, 
the maximally responding unit is activated to a maximum 
value of 1.0, and the activations of units representing previous 
words are decayed according to a specified decay rate (e.g. 
0.9). Once a unit is activated, it is removed from competition 
and cannot represent later words in the sequence. Each unit 
may then represent different words depending on the context, 
which allows for an efficient representation of sequences, and 
also generalizes well to new sequences. 

In the SARDSRN architecture, SARDNET is used to di-
rectly handle the memory limitation of the SRN. A SARD-
NET representation of the input sentence is formed at the 
same time as the SRN hidden layer representation, and used 
together with the previous hidden layer representation and the 
next word as input to the hidden layer (figure 2). This archi­
tecture allows the SRN to perform its task with significantly 
less memory degradation. The sequence information remains 
accessible in SARDNET, and the SRN is able to focus on cap­
turing correlations relating to sentence constituent structure 
during parsing. 

4 Experiments 
4.1 Input Data, Training, and System Parameters 
The data used to train and test the SRN and SARDSRN net­
works were generated from the phrase structure grammar in 
figure 3, adapted from a grammar that has become common 
in the literature [Elman, 1991; Miikkulainen, 1996]. Since 
our focus was on shift-reduce parsing, and not processing rel­
ative clauses per se, sentence structure was limited to one rel­
ative clause per sentence. From this grammar training targets 
corresponding to each step in the parsing process were ob­
tained. For shifts, the target is simply the current input. In 
these cases, the network is trained to auto-associate, which 
these networks are good at. For reductions, however, the tar­
gets consist of representations of the partial parse trees that 
result from applying a grammatical rule. For example, the 
reduction of the sentence fragment who liked the girl would 
produce the partial parse result [who,[liked,[the^iri]]]. Two 
issues arise: how should the parse trees be represented, and 
how should reductions be processed during sentence parsing? 



the 
whom 

10000000 
01100000 | 

who 01010000 | 
11111111 

boy 
gi r l 

00101000 
00100100 

dog 
cat 

00100010 
00100001 

chased 
[ l iked 

00011000 
00010100 | 

saw 
1 b i t 

00010010 
00010001 

Figure 4: Lexicon, Each word representation is put together from 
a part~of-speech identifier (first four components) and a unique ID 
tag Oast four). This encoding is then repeated eight times to form 
a 64-unit word representation. Such redundancy makes it easier to 
identify the word. 

The approach taken in this paper is the same as in SPEC 
(section 2), as well as in other connectionist parsing sys­
tems [Miikkulainen, 1996; Berg, 1992; Sharkey and Sharkey, 
1992]. Compressed representations of all the partial syntactic 
parse trees using RAAM are built up through auto-association 
of die constituents. This training is performed beforehand 
separately from the parsing task. Once formed, the com­
pressed representations can be decoded into their constituents 
using just the decoder portion of the R AAM architecture. 

In shift-reduce parsing, the input buffer after each "Re­
duce" action is unchanged; rather, the reduction occurs on 
the stack. Therefore, if we want to perform the reductions 
one step at a time, the current word must be maintained in the 
input buffer until the next "Shift" action. Accordingly, the 
input to the network consists of the sequence of words that 
make up the sentence with the input word repeated for each 
reduce action, and the target consists of representations of the 
top element of the stack (as shown in figure 1). 

Word representations were hand-coded to provide basic 
part-of-speech information together with a unique ID tag that 
identified the word within the syntactic category (figure 4). 
The basic encoding of eight units was repeated eight times to 
fill out a 64-unit representation, The 64-unit representation 
length was needed to encode all of the partial parse results 
formed by R A A M , and redundancy in the lexical items facili­
tate learning. 

Four data sets of 20%, 40%, 60%, and 80% of the 436 sen­
tences generated by the grammar were randomly selected to 
train both parsers, and each parser was trained on each dataset 
four times. Training on all thirty-two runs was stopped when 
die error on a 22-sentence (5%) validation set began to level 
off. The same validation set was used for all the simulations 
and was randomly drawn from a pool of sentences that did 
not appear in any of the training sets. Testing was then per­
formed on the remaining sentences that were neither in the 
training set nor in the validation set. 

The SRN network architecture consisted of a 64-unit input 
layer, 200-unit hidden and context layers, and 64-unit output 
and target layers. SARDSRN added a 144-unit feature map 
(SARDNET) to the SRN setup. A learning rate of 0.2 was used 
to train both networks, while the learning and decay rates for 
the S ARDNET feature map input in SARDSRN were set to 0.5 
and 0.9, respectively. The neighborhood was set at 6 initially 
and gradually reduced to 0. These parameters were found 
experimentally to result in the best general performance for 
both parsers. 

Figure 5: Results. Averages over four simulation runs using the 
stricter average mismatches per sentence measure on the test data. 
The SRN'S performance in all 16 runs bottomed out at a much higher 
error than SARDSRN, while still unable to parse all of the train-
ing sentences. SARDSRN, on the other hand, did learn to parse 
the training sentences, and showed very good generalization to the 
test sentences. These differences are statistically significant with 
p < 0.0005. 

4.2 Results 

The average mismatches performance measure reports the av­
erage number of leaf representations per sentence that are 
not correctly identified from the lexicon by nearest match 
in Euclidean distance. As an example, if the target is 

(step 11 of figure 1), but the out­
put is then a mismatch would occur 
at the leaf labelled saw once the RAAM representation was 
decoded. Average mismatches provide a measure of the cor­
rectness of the information in the RAAM representation. It is 
a much stricter measure of the utility of the network than the 
standard mean squared error and was, therefore, used in our 
experiments. 

Training took about four days on a 200 MHz Pentium Pro 
workstation, with SARDSRN taking about 1.5 times as long 
per epoch as the SRN alone. The validation error in the SRN 
runs quickly leveled off, and continued training did nothing 
to improve i t On the other hand, the SARDSRN simulation 
runs ware still showing slight improvements when they were 
cut off. Figure 5 plots these performance measures averaged 
over the four simulation runs against the test sentences. 

By all measures, SARDSRN performed significantly-even 
qualitatively-better than th]e standard SRN. On the training 
datasets, there was roughly an order of magnitude difference 
in both the epoch errors and the average number of mis­
matches per sentence between SARDSRN and SRN. These 
results suggest that the SRN could not even learn the training 
data to any useful extent, whereas SARDSRN does not ap­
pear to be nearing its limit. On the test sets, the epoch error 
for the SRN never fell below 0.05, and there were nearly 7 
mismatches per sentence on average. Even in the most diffi­
cult case for the SARDSRN (on the 20% test dataset, in which 
the networks were trained on just 89 sentences, and tested 
on 325), these errors never reached half that level. These re-
sults show tiiat SARDSRN forms a promising starting point 
for parsing sentences of realistic length and complexity. 
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43 Example Parse 
Adding SARDNET to the SRN architecture made it possible 
for the network to learn the parsing task. This can be shown 
clearly by contrasting the performances of SARDSRN and the 
SRN on a typical sentence, such as the one in figure 1. Nei­
ther S ARDSRN nor SRN had any trouble with the shift targets. 
Not surprisingly, early in training the networks would master 
all the shift targets in the sentence before they would get any 
of the reductions correct The first reduction ([the,boy] in our 
example) also poses no problem for either network. Nor, in 
general, does the second, [the,girl], because the constituent 
information is still fresh in memory. However, the ability of 
the SRN to generate the later reductions accurately degrades 
rapidly because the information about earlier constituents is 
smothered by the later steps of the parse. Interestingly, the 
structural information survives much longer. For example, 
instead of the SRN might produce 

The structure of this representation 
is correct; what is lost are the particular instantiations of the 
parse tree. This is where SARDNET makes a difference. The 
lost constituent information remains accessible in the feature 
map. As a result, SARDSRN is able to capture each con­
stituent even through the final reductions. 

5 Discussion 
These results demonstrate a practicable solution to the mem­
ory degradation problem of simple recurrent networks. The 
SRN does not have to maintain specific information about the 
sequence constituents, and can instead focus on what it is best 
at: capturing structure. The explicit and concise representa­
tion of the entire sequence on SARDNET also enables SARD­
SRN to handle long-term dependencies better than a moving-
window architecture such as NARX [Mayberry and Miikku-
lainen, in press]. Although the sentences used in these ex­
periments are still relatively uncomplicated, they do exhibit 
enough structure to suggest that much more complex sen­
tences could be tackled with SARDSRN. 

The operation of SARDSRN on the shift-reduce parsing 
task is a nice demonstration of holistic computation. The 
network is able to learn how to generate each RAAM parse 
representation during the course of sentence processing with­
out ever having to decompose and recompose the constituent 
representations. Partial parse results can be built up incre­
mentally into increasingly complicated structures, which sug­
gests that training could be performed incrementally. Such a 
training scheme is especially attractive given that training in 
general is still relatively cosdy. 

An extension of die SARDSRN idea, currently being in­
vestigated by our group, is an architecture where SARDNET 
is combined with a R A A M network. RAAM, although hav­
ing many desirable properties for a purely connectionist ap-
proach to parsing, has long been a bottleneck during training. 
Its operation is very similar to the SRN, and it suffers from 
die same memory accuracy problem: with deep structures 
the superimposition of higher-level representations gradually 
obscure the traces of low-level items, and the decoding be­
comes inaccurate. This degradation makes it difficult to use 
RAAM to encode/decode parse results of realistic language. 

Preliminary results indicate that the explicit representation of 
a compressed structure formed on a SARDNET feature map, 
coupled with the distributed representations of the RAAM, 
yields an architecture able to encode richer linguistic struc-
ture.. This approach should readily lend itself to encoding the 
feature-value matrices used in the lexicalist, constraint-based 
grammar formalisms of contemporary linguistics theory, such 
as HPSG [Pollard and Sag, 1994], needed to handle realistic 
natural language. 

The SARDSRN idea is not just a way to improve the per­
formance of subsymbolic networks; it is an explicit imple­
mentation of the idea that humans can keep track of identities 
of elements, not just their statistical properties [Miikkulai-
nen, 1993]. The subsymbolic networks are very good with 
statistical associations, but cannot distinguish between repre­
sentations that have similar statistical properties. People can; 
whether they use a map-like representation is an open ques­
tion, but we believe the SARDNET representation suggests a 
way to capture a lot of the resulting behavior. It is useful for 
building powerful subsymbolic language understanding sys­
tems, but it is also a plausible cognitive approach. 

6 Conclusion 
We have described an extension of the SRN called SARD­
SRN that combines the subsymbolic distributed properties of 
the SRN with the localtst properties of SARDNET. The dis­
tributed component leads to good generalization and robust 
cognitive properties, whereas the map provides exact repre­
sentations of the sentence constituents. The results in this pa­
per demonstrate a practicable solution to the memory degra­
dation problem of SRNS. With SARDNET keeping track of 
the sequence constituents, the SRN is able to learn the struc­
ture representation necessary to perform shift-reduce pars­
ing. This combination allows SARDSRN to learn to parse 
longer and more complex sentences than the SRN alone. The 
representative properties of SARDNET also promise to allow 
RAAM to encode die more complicated structures used in lin­
guistics theory. 
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