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Abstract 
In this paper, we propose a Potts spin 
Mean Field annealed network to address 
the open, independent and incompatibility 
classes of causal reasoning (also said ab­
duction, abductive diagnosis). The strong 
feature of the current work is its characteri­
zation of the reasoning task in these classes 
by an energy/target function. Computa­
tion of a scenario (also said explanation) 
is done by means of Mean Field equations. 
The application of the model to small and 
large-scale causal problems reveals its effi­
cacy and robustness in handling varied and 
multiple causal interactions. 

Keywords: Causal Reasoning, Artificial Neural 
Networks, Mean Field Theory, Potts spin Model­
ing, Open / Incompatibility / Independent Causal 
Interactions. 

1 Prologue 
Causal reasoning (also known as abduction [Tha-
gard, 1989; Ayeb et al., 1998]) is ubiquitous in di­
agnosis [Peng and Reggia, 1989], scientific reasoning 
[Thagard, 1989], natural language processing [Char-
niak, 1987], etc. The intuition behind causal rea­
soning can be stated as follows ([Goel et al., 1995; 
Ayeb et al., 1998]). Given an elementary cause c, 
an observable effect e and the knowledge that c 
causes e, causal reasoning consists in hypothesizing 
that c occurred. The key feature of causal reason­
ing is to infer a set of composite causes from the 
elementary ones. These composite causes are said 
to form a scenario (explanation in [Thagard, 1989; 
Goel et al., 1995]). Unfortunately, computation of a 
best scenario is NP-complete [Bylander et al., 1991]. 
Hence, the computational time becomes prohibitive, 
particularly in the presence of incompatibility inter­
actions [Goel et al., 1995; Bylander et al., 1991]. 

Artificial Neural Networks (ANNs) are biologi­
cally motivated computational models that turned 

out to be efficient in solving many NP-complete 
optimization problems. Mean Field Theory (MFT) 
[Peterson and Anderson, 1987] is receiving an in­
creasing attention, mainly due to its robustness in 
solving many large-scale NP-complete optimization 
problems other methods failed to solve in general; 
e.g. the "Traveling Salesman" and the "Graph Par­
titioning" [Peterson and Soderberg, 1989]. MFT is a 
combination of the Simulated Annealing (SA) of the 
Boltzmann machine [Kirkpatrick et al., 1983] and 
the Hopfield's network [Hopfield, 1984]. Hopfield's 
network is mainly characterized by the simplicity 
of its neurons and its efficient hardware implemen­
tation. However, a major drawback of Hopfield's 
network is its deterministic nature so that the net­
work gets easily trapped into poor local minima as 
the problem size increases. SA is a stochastic hill-
climbing algorithm that uses a gradient descent com­
bined with probabilistic movements. The simulated 
annealing process consists of first melting the system 
at high temperatures, then slowly decrease its tem­
perature until the neurons "crystallize" and formu­
late a solution for the case at hand. However, due to 
the stochastic and annealing processes, the compu­
tational time could be unacceptable. Merging both 
Hopfield's network and SA, MFT has shown to be ef­
ficient in finding optimal solutions for academic and 
real-world A/'P-complete problems. Another impor­
tant issue of MFT is its ability to compute optimal 
(or near optimal) solutions in practical time spans 
even for large-scale problems. 

In the current work, we use Potts spin MFT an­
nealed networks to address the open, independent 
and incompatibility classes of causal reasoning. The 
strong feature of the current work is the character­
ization of the reasoning process in these classes by 
an energy function. The remainder of this paper is 
organized as follows. In section 2, we outline the 
minimal preliminary material and give a real-world 
causal problem. In Section 3.1, we formulate the 
energy function for open, independent and incom­
patibility causal problems. In section 3.2, we use 
MFT Potts modeling and mean field equations to 
minimize our energy function. Section 3.3 describes 
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our algorithm and section 3.4 gives illustrations. Fi­
nally, the paper is concluded in section 4. 

2 Background 
The main purpose of this section is to formalize 
the open, independent and incompatibility classes of 
causal reasoning and to give an introductory causal 
problem. 

2.1 Preliminaries 
A causal problem is entirely described by a set of 
possible effects a set of possible 
causes and a set of causal inter-
actions Several and multiple causal interactions 
could be modeled in and thereby several classes 
of causal problems could introduced. Formal defini­
tions follow. 
Definition 2.1 We use to denote a causal 
interaction in  
• is an interaction if it is expressed 
as:  
• is an interaction if it is expressed 
as:  
where w (resp. is a real number measuring the 
strength of the causality (resp. incompatibility) be­
tween cause c and effect e (resp. causes a and Ck) 

In Definition 2.1, denotes the null effect, i.e. an 
effect that can never be observed. Now, we express 
the concept of a manifestation (observation in [Tha-
gard, 1989; Goel et al, 1995]) for a causal problem 
as follows. 
Definition 2.2 Let be a causal prob­
lem. A manifestation MM for CP is a three-tuple 
{Ep,EA,Eu), where Ep, EA and EA are the three 
finite sets of present, absent and unknown effects, 
respectively  
According to Definition 2.2, each possible effect in 
£ is assigned a. state. It is present if it is known to 
occur, it is absent if it is known not to occur, and 
it is unknown if we have no "knowledge" about it. 
In a practical situation, an effect is unknown if its 
"value" cannot be accessed for some reasons1. Now, 
we are ready to define the independent, open and 
incompatibility classes of causal problems as follows. 
Definition 2.3 Let be a causal prob­
lem. Let be a manifestation for 
CP, then 
• CP belongs to the class 
is an independent interaction. 
• CP belongs to the class 
such that is an incompatibility interaction. 
• CP belongs to the open class if  

Now, we need the following notation inspired from 
[Bylander et al., 1991] to define the concept of a 
scenario (explanation in [Thagard, 1989; Peng and 
Reggia, 1989)). 

In Definition 2.5, the minimality criterion is taken 
w.r.t. set cardinality. One should remark the poten­
tial conflict between criteria (i),(u),(m) and (iv). 
Unfortunately, it is not always guaranteed to meet 
all these criteria in a single scenario. This explains 
why characterization of a best scenario carries cer­
tain arbitrariness [Goel et al., 1995]. However, a 
precedence relationship could be adopted. For our 
concern, we adopt a decreasing precedence relation 
for criteria (i) to (iv) with criterion (i) assigned the 
highest precedence. 

2.2 A Medical Causal Problem 

1 Among reasons; let us mention safeness, time. 

Figure 1: The Set of Causal Interactions for C P M D 

For the sake of illustration, we consider 
a relatively small causal prob-

lem from the medical domain. =  

ble symptoms (effects in our model). = {laryngitis, 
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pneumonia, sinusitis, tonsillitis} are the possible diseases 
(causes in our model). The set of causal interac­
tions is summarized in Figure 1. For instance, the 
causal interaction tells us that pneumonia causes 
dyspnea with the maximal causality 1, whereas (fin 
tells us that laryngitis and tonsillitis are incom­
patible diseases with a relatively high degree, 0.85. 
This means that laryngitis and tonsillitis are in­
coherent and cannot coexist together. One should 
remark that the causal interactions in (as 
well as in our modeling) are a matter of degree 
rather than being either/or (cause/not-cause, com­
patible/incompatible). This allows flexibility since 
real-world causal interactions are generally modeled 
from scratch. 

3 Proposal 
3.1 Formulation of the Energy Function 
Let be a manifestation for 

the causal problem at hand. We use 
and I to index all quantities related to effects, while 
we use and to index all quantities related to 
causes. card(X) denotes the cardinality of the finite 
set is the strength of the causality be­
tween cause and effect We denote by 
the strength of the incompatibility (or incoherence) 
between causes and measures 
our belief in the presence (resp. absence) of effects 
in Ep (resp. Unknown e f f e c t s h a v e a 
null certainty degree, i.e. For 
each present effect we associate a set of discrete 
variables defined as follows: 

a) 
(2) 

The variables are called Ising spin variables. S is 
the vector of variables  

We define the "cover level" of a cause w.r.t. 
MM as follows: 

(3) 

where is null if does not cover 
any of the present effects. The vector of cover levels 
is E = Hence, the cover level of 
all possible causes in C is computed by: 

(4) 

Maximizing J1 (S) is equivalent to putting "on" all 
Ising spin variables. Hence, for each effect one or 
more Ising spin variables, and thereby one or more 
causes, are active. This kind of competition is re­
ferred to in ANNs as wnner-tokes-others (WTO), 
since more than one competing cause are active at 
the end of the competition. However, a winner-
takes-all (WTA) competition is necessary to ensure 

that a cause takes exclusivity in the coverage of a 
given effect, and thereby meet the minimal cardi­
nality criterion. One possible way is to considerably 
limit the resources of competition between causes, 
i.e. to activate the minimal number of Ising spin 
variables for each present effect. The number of ac-
tive Ising spin for effect is given by 
However, in order to ensure a coverage of at least 
one corresponding Ising spin must be active. For 
this, we define the following constraint: 

(5) 

Maximizing Ji(S) in (4) under the constraint Ja(S) 
in (5) will push each cause to maximize its individual 
cover level and to take the exclusivity in covering the 
present effects. Causes with the highest cover levels 
are more likely to win the competition than those 
with the lowest ones. 

The open class of causal reasoning is modeled as 
follows. For each cause we define a penalty factor 

by: 

(6) 

if does not cover any absent effect, and 
otherwise. We use these factors to weight the 

cover levels of causes. Thus, we redefine equation (4) 
to: 

(7) 
where From equation (7), 
one can see that causes are strongly penalized if 
they cover some absent effects. Consequently, these 
causes enter the competition less effectively, and 
therefore are more likely to loose it, than other 
causes than do not cover absent effects. 

In computation of a scenario, we should avoid si­
multaneous activation of incompatible causes. For 
this, we define the following constraint: 

US) = (8) 
where is the matrix of incompatibility in­
teractions. We should note that is null-diagonal, 
i.e. = 0. In fact, each cause is totally com­
patible with itself by definition. Minimizing Js(S) 
would prevent a simultaneous activation of incoher­
ent causes. Particularly, J3(S) is null if all active 
causes are totally coherent. 

Using equations (7), (5) and (8), we characterize 
the reasoning process in the open, independent and 
incompatibility classes of causal reasoning by the fol­
lowing energy function: 

(•) 

where and are Lagrangian multipliers used to 
weight the distinct constraints in the energy func­
tion J(S). Due to the precedence relationship be­
tween the coverage (see Definition 2.5), minimal 
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cardinality and coherence criteria, one must have 
Minimization of the energy function 

J(S) in equation (9) leads to inference of a minimal 
set of coherent causes covering the present effects 
and avoiding coverage of the absent ones. 

Obviously, minimization of the energy function 
J(S) in equation (9) is not a trivial matter due 
to the huge number of possible states. A state is 
defined by the Ising spin variables sij. Naturally, 
the complexity of the search space is problem-/case-
dependent. Hereafter, we derive its expression in the 
worst-case, i.e. assuming that all effects are present 
and that each effect is covered by all possible causes. 
In this case, the dimension of the search space is 

where = card(C), and = 
Consequently, the remaining task is to employ a ro­
bust method to optimize our energy function: by 
robustness here, we mean the ability of finding op­
timal solutions in practical time spans. Evidently, 
the use of sequential search approaches is inappro­
priate and indeed impossible for large-scale causal 
problems. Gradient descent methods which are local 
in scope are not applicable since they can be easily 
trapped into poor local minima. Mean Field an­
nealing techniques have been shown to be robust in 
solving large-scale combinatorial optimization prob­
lems as the the "Traveling Salesman" and "Graph 
Multi-Partitioning" [Peterson and Soderberg, 1989], 
to cite just a few. For details about MFT methods, 
we refer the interested reader to the specialized lit­
erature, for example [Peterson and Anderson, 1987], 
[Peterson and Soderberg, 1989]. In the next section, 
we use MFT Potts spin modeling to derive the me­
chanics of our model. 

3.2 Potts spin M F T Modeling 
The Ising spin variables Sij are replaced by continu­
ous variables representing their thermal averages; 
i.e. where is said the annealing 
"temperature" of the system. At a given T, the 
probability Vij obeys a Boltzmann distribution: 

(10) 

(11) 

The variables <f>ij are called the mean field variables, 
vij are called Potts spin variables and their proba­
bilistic interpretation is evident. 

Due to equation (10), the energy of the network 
J(V) in equation (9) is transformed to: 

(12) 

Let us first remark that due to equation (10), the 
constraints = 1 holds automatically. That's why 

we have omitted the in (12). Due to the 
continuous nature of the last term in (12) is 
added to force variables to converge either to 0 
or 1 - see [Wang and Ansari, 1997] for a similar 
approach. Using equations (11) and (12), the mean 
field variables are given by: 

Using equation (10), we can see that 
when w i thbe ing the number of causes 
covering e .̂ As , fixed points {0,1} emerge. 
Potts spin MFT modeling has many advantages for 
causal reasoning. First, due to formula (10), the di­
mension of the search space is reduced from 
to Second, it ensures that a present effect 
ej is always covered by some active causes since 

always holds. In the next section, we 
describe the mechanics of our algorithm. 

3.3 The Algor i thm 
Our algorithm is summarized in Figure 2. In the 
initialization phase, we compute the factors due 
to absent effects. Moreover, we set and  
We should note that one can use a progressive 
to emphasize constraint violations at low tempera­
tures, i.e. The Potts spin variables are 
initialized to their high-thermal averages and some 
small random bias is added to "break the symme­
try" of the system of neurons (if any). In fact, in 

Figure 2: Solving Multiple Causal Interactions 
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some cases, more than one equivalent solutions ex-
ist for the causal problem at hand, and without an 
unbiased start the algorithm is unable to choose a 
direction to follow. 

Thereafter, we update synchronously mean field 
and Potts spin variables. In computing Potts spin 
variables, we use a "time-step" to avoid the "flip-
flop" behavior of the synchronous mode [Peterson 
and Soderberg, 1989]. However, one has to set as 
close as possible to 1 since this results in a slower 
convergence by a factor  

The algorithm terminates when all Potts spin vari­
ables saturate at 0/1, the rate of change or the 
temperature of the system are both small enough. 
In figure 2, is the total number of Potts spin vari­
ables and is given by = Regarding 
the saturation criteria one can see that: 

The output of our algorithm consists of those causes 
surviving the competition; i.e. whose cover levels 
are not null. Hereafter, we illustrate the mechanics 
of our algorithm on a medical causal problem. 

3.4 I l lustrat ion 
In this section, we run our algorithm on CPMD? the 
medical problem introduced in section 2.2. In our 
simulation, we used the following parameters: the 
cost-term = 0.5, the initial temperature T(0) = 
2.0, the "time-step" = 1.0. Moreover, we have 
used the annealing scheme where  
is the "time-counter". 

We considered a manifestation MM(Ep, EA,EU), 
where = {cough, expectoration, inflamedJhroat, 
headache, lost-voice, nose-pain], EA = {dyspnea, fever} 
and = {nasaLdischarge, thoracic-pain). nose-pain 
somewhat occurs. This is modeled by assigning 
nose-pain a degree of certainty = 0.4. The 
rest of the present effects are assumed to occur with 

a relatively high degree of certainty, 0.9. dyspnea 
and fever are absent with relatively weak degrees of 
certainty: = 0.2 and = 0.3. Re­
member that unknown effects {nasaLdischarge and 
thoracic-pain in this case) are automatically assigned 
a null degree of certainty by the algorithm. The 
computed scenario for MM by our algorithm is 
SCENARIOMD = since these 
are the diseases (causes) winning the competition -
see Figure 3. laryngitis enters the competition with 
a strong activation since it ensures coverage of the 
majority of the effects in Ep. Tins allowed laryngitis 
to endure the competition more effectively than the 
rest of the diseases and to be included in S C E N M D . 
In contrast, tonsillitis starts to compete with a weak 
activation since it only covers inflamedJhroat In ad­
dition, tonsillitis is penalized since it covers the ab-
sent effect fever. Hence, tonsillitis does not survive 
the competition for long and is dragged down toward 
0 around the 1th iteration - see Figure 3. sinusitis 
and pneumonia start the competition with the same 
activation level. However, sinusitis sustain the com­
petition mainly due to its exclusivity in covering the 
present effect nose-pain - see Figure 1. Due to its in­
compatibility with sinusitis, and to its coverage of the 
absent effects dyspnea and /ever, pneumonia is slowly 
"weakened" as the competition continues and "dies" 
around the 16th iteration - see Figure 3. One should 
remark that SCENMD (1) ensures coverage of all 
present effects, (2) is composed only of coherent dis­
eases, (3) avoids cover of all absent effects, and (4) is 
minimal w.r.t. set cardinality since removing either 
sinusitis or laryngitis from SCENMD will lead only 
to a partial coverage of Ep. Remark that SCENMD 
is the best scenario that can be proposed. In fact, 
other scenarios as {tonsillitis, sinusitis) or {tonsillitis, 
sinusitis, pneumonia} will respectively lead only to 
a partial coverage of Ep or to a scenario including 
incoherent diseases. 

Figure 3: Final Scenario for CPMD w.r.t. MM. 

4 Epilogue 
In this paper, we presented a Potts spin MFT an­
nealing model for mechanization of causal reason­
ing in the open, independent and incompatibility 
classes. We characterized the reasoning process in 
these classes by an energy function to be minimized 
by means of Mean Field equations. The main contri­
butions of this paper can be summarized as follows. 
To our knowledge, it is the first proposal in the lit­
erature that models an explicit energy function for 
independent, open and incompatibility causal prob­
lems; and use MFT Potts spin modeling to encode its 
dynamics. The use of MFT Potts spin method has 
many advantages for causal reasoning. First, it au­
tomatically ensures a total coverage of the present ef­
fects. To date, no existing neural model in the liter­
ature meets this criterion, particularly in large-scale 
causal problems. Second, it is able to find, in prac-
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tical time spans, optimal solutions since it avoids 
efficiently poor local minima of the energy function. 
Third, its inherent parallelism raiders the hardware 
implementation of the model possible and indeed de­
sirable. We have numerically compared our model 
to a recent abductive model presented in [Ayeb et 
cd., 1998] on a large-scale medical problem composed 
of 26 diseases, 56 symptoms and 465 causal interac­
tions; using a huge battery of 1000 cases. Simulation 
results revealed that our model performs better than 
the model in [Ayeb et al., 1998] in computing opti­
mal scenarios, in much less CPU time. Due to the 
space limit, these benchmarks will not be reported 
herein. 

As one should expect, there are some shortcom­
ings in the current work. An important issue is 
extension of our model to include cancellation and 
monotonic interactions [Bylander et al., -1991], which 
have to be addressed in future research. Remem­
ber that cancellation interactions involve not only 
causes, but also effects [Bylander et al., 1991]. Re-
garding additive interactions, they suggest cooper-
ation between causes [Goel et al., 1995]. Unfor­
tunately, additive/cancellation interactions cannot 
straightforwardly implemented by means of spin (ei­
ther Potts or Ising) modeling. 

Finally, use of MFT methods raises the problem 
of a so-called "critical temperature" [Peterson and 
Soderberg, 1989]. During the thermostatic opera­
tion of MFT equations, a critical temperature Tc is 
reached at which each Potts spin begins to move 
predominantly to 0 or 1. Estimating Tc can save 
time since annealing at temperatures much higher 
than Tc is in vain [Peterson and Soderberg, 1989]. 
Unfortunately, we found no general methodology in 
the literature for estimating Tc. Most proposals esti­
mate Tc empirically using many assumptions which 
are valid only for the tackled problem. However, the 
methodology adopted in [Peterson and Soderberg, 
1989] seems to be applicable for many combinato-
rial optimization problems and could be adapted to 
our case. In [Peterson and Soderberg, 1989], Tc was 
estimated by forming a small signal model of the 
system of spins and finding the eigenvalues of the 
matrix which expresses the interactions between the 
linearized neurons. Unfortunately, computing the 
eigenvalue of the interaction matrix is difficult espe­
cially in large-scale causal problems and if the goal 
is to infer scenarios within reasonable time scales. 
Most importantly, is that the interaction matrix is 
case-dependent, i.e. it varies from one manifesta­
tion to another given the same causal interactions. 
Hence, it is unworthy to proceed this way since the 
computational burden will not be negligible. How­
ever, it would be more appropriate to estimate Tc (or 
even an upper bound of it) from the set of causal 
strengths (independent and incompatibility) since 
these do not vary from one case to another. The 

last point is under investigations. 
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