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Abs t rac t 
Finding optimal solutions for job shop schedul-
ing problems requires high computational ef­
fort, especially under consideration of uncer­
tainty and frequent replanning. In contrast to 
computational solutions, domain experts are 
often able to derive good local dispatching 
heuristics by looking at typical problem in­
stances. They can be efficiently applied by 
looking at few relevant features. However, 
these rules are usually not optimal, especially in 
complex decision situations. Here we describe 
an approach that tries to combine both worlds. 
A neural network based agent autonomously 
optimizes its local dispatching policy wi th re­
spect to a global optimization goal, defined for 
the overall plant. On two benchmark schedul­
ing problems, we show both learning and gen­
eralization abilities of the proposed approach. 

1 I n t r oduc t i on 
Production scheduling is the allocation of l im­
ited resources to tasks over time, while one or 
more objectives have to be optimized. Many 
variants of the basic problem formulation ex­
ist, and most of them are NP-hard to solve 
[Pinedo, 1994], meaning that exact solution al­
gorithms suffer from a non-polynomial increase 
of computation time. This constitutes a prob­
lem not only if the problem to solve surmounts 
a certain size, but also in moderately complex 
domains, where the occurrence of new or un­
expected events - the arrival of new jobs or 
the breakdown of machines - makes frequent 
replanning necessary. Even more, technolog­
ical changes like semiconductor fabrication or 
th in film production are posing additional chal­
lenges, since new problem structures - like con­
ditional loops in the production process - occur, 
for which conventional optimization techniques 
may not be applicable. 
An alternative and far less time-consuming way 
is the application of simple heuristic dispatch-
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ing rules that select the job to process next on 
an idle resource depending on the current situa­
t ion. However, these dispatching rules only re-
flect heuristic knowledge and do not guarantee 
to lead to the optimal behaviour of the overall 
system. Even for experienced human experts it 
may become arbitrari ly difficult to decide which 
dispatching rule to apply and how to time it 
in a certain scenario, since the effects on the 
dynamics of the overall system can hardly be 
predicted. 

1.1 Genera l Idea 

Here we propose an alternative way that allows 
to combine the desire for (nearly) optimal so­
lutions wi th a time-efficient computation, pro­
vided by resource-coupled dispatching rules. 
The idea is to have learning agents, that are as­
sociated to each resource and determine the lo­
cal dispatching policy. This policy is not fixed, 
but instead is autonomously learned by getting 
feedback of the overall dynamic behaviour of 
the production system. In contrast to common 
dispatching rules which typically only consider 
few characteristic features of the current situa­
t ion to make the decision, a learning agent can 
deal wi th more state information and therefore 
figure out more sophisticated policies, which 
are better tailored to the process. The appear­
ance of the proposed training method does not 
depend on the optimization goal or constraints 
posed by the production process. Therefore, 
it is applicable to a wide range of problem in­
stances. As an example, in this article we focus 
on job shop scheduling problems wi th the goal 
to reduce the summed tardiness. The follow­
ing summarizes the main characteristics of the 
proposed approach: 

• autonomous acquisition of 
(approximately) optimal dispatching poli­
cies (including the adaptation to the plant 
structure and the inherent consideration of 
constraints) 
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• reusability of acquired knowledge 
• fast situation dependent decision making, 

abil ity to do reactive scheduling 

1.2 Re la ted W o r k 
Recently, several reinforcement learning ap­
proaches have been proposed to solve certain 
aspects of scheduling problems. They vary in 
the type and their view of the scheduling prob­
lem and - as a consequence - the type of con­
trol decisions. Zhang and Dietterich [Dietterich 
and Zhang, 1995] propose an RL approach that 
learns a neural value-function to guide a repair-
based scheduler. An action in this approach 
is the decision for a certain repair operation. 
Schneider, Boyan and Moore [Schneider et al., 
1998] present a value-function-based approach 
for the problem of demand based scheduling. 
The learning scheduler decides over a set of 
possible factory configurations to maximize ex­
pected production profit in the presence of 
varying demand curves. In contrast to these 
global approaches, a local multi-agent view of 
a production scheduling problem is taken in 
[Brauer and Weiss, 1998]. Each machine does 
make a local decision which job to process next 
based on the estimated completion time of the 
candidate jobs. The learning rule is based on 
the propagation of these estimates along the 
production line of a job, similar to the Q-
Routing algorithm [Boyan and Li t tman, 1994]. 
An application of average-reward RL is pre­
sented by Mahadevan and Theocharous [Ma-
hadevan and Theocharous, 1998] for the control 
of a transfer-line. 

Our approach follows the idea of local decision 
making. The neural network based agent con­
siders the current situation, represented by a 
set of relevant (local) features, to make its de­
cision which job to process next. It learns a 
local decision policy (similar to heuristic dis­
patching rules) wi th the ability to adapt to the 
user-defined optimization goal. This is done 
autonomously, meaning that the policy is self-
improved by repeating a certain number of typ­
ical training cases. 

1.3 Task descr ip t ion 
The task considered in the following is to pro­
cess a set of m jobs on the n resources of a fac­
tory. Each job j 1 . . . m, consists of a certain 
number of lj basic operations A 
basic operation must be performed on a certain 
resource k 1. . . .n and has a certain process­
ing time. A job is finished after completion of 
its last operation. If the completion time of 
job j is larger than a certain due-date , then 
the job is said to be tardy. The tardiness of 

a job is zero, if it is finished before or at i ts due-
date; otherwise it is In general 
scheduling objectives to be optimized all relate 
to the completion time of the jobs. Various 
variants of the basic optimization problem ex­
ist which can be classified within a complexity 
hierarchy [Pinedo, 1994]. In the following, we 
look at the problem of minimizing the summed 
tardiness over all jobs, , Solving this 
deterministic problem subsumizes also the total 
completion time problem as well as the max-
imum lateness or maximum makespan prob­
lems. Being NP-hard, it is not possible to solve 
this problem with a polynomial time algorithm. 

2 Descr ipt ion of the solut ion 
approach 

2.1 Op t im iza t i on p rob lem and 
decision mak ing 
The global production scheduling problem can 
be described as a Markov Decision Process 
(MDP): the system's state s(t) is described by 
the current situation of the n resources and the 
processing state of the TO jobs, a decision a(t) 
describes which job is processed next on a wait­
ing resource. The goal of scheduling is to find 
an optimal policy such that production costs 
R(s, a, t) accumulated over time are minimized 

(1) 

where denotes the time after which the last 
job is finished. Costs R(s,a,t) may depend 
both on the current situation and on the se­
lected decision and express the desired opti­
mization goal. For example, costs may arise 
due to the tardiness of a job, due to a resource 
waiting idle, or due to costs caused by the need 
to change a tool before continuing processing, 
and so on. 
In our approach, the global decision a(t) is a 
vector of single decisions made by dis­
tributed agents each associated with one of the 
n resources. If a resource is ready to process a 
new operation, then its agent chooses one job 
out of a set Ak of jobs, where Ak is the set 
of jobs for which the next operation Oji must 
be processed on resource k. The resource is 
then occupied for the duration of Oji. After 
this time, a new decision is made. 

2.2 Learn ing A l g o r i t h m 
Each agent makes its decision based on a local 
view of the global plant situ­
ation at time t. sk represents the local view 
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of the agent. It can be thought of compress-
ing the huge amount of global state informa-
t ion into features that are relevant for making 
the local decision at resource k. Learning here 
means iteratively improving the decision policy 
wi th respect to the optimization of the global 
costs (1). This is done by a Q-learning related 
learning-rule adapted to the local decision pro-
cess: 

The learning rule relates the local decision pro­
cess as experienced by agent k to the global op-
timization goal by considering the global direct 
costs R(.). Since the t ime between the decisions 
varies depending on the duration of the cur­
rently processed operation, the 'reinforcement 
term' accumulates the global costs 
between t and 

Accordingly, if converges, then the opti­
mal local value function predicts the esti­
mated accumulated global costs, if in situation 
Sk the job denoted by would be processed 
next. A policy greedy wi th respect to , thus 
wi l l choose that job next, that wi l l lead to an 
optimization of the performance of the overall 
plant. The policy of the agent is determined by 
greedily exploiting the value function, 

During learning, a random exploration strategy 
is performed that deviates from time to time 
from the current policy. 
The agent's learning rule varies from the Q-
learning assumptions in two important issues: 
a) no central global decision is made, but in­
stead, the global decision is composed by indi­
vidual decisions of time-varying policies. Un­
less all policies are stable, this makes the pro-
cess seen by the local agent non-stationary (in 
contrast, a single Q-learning agent assumes to 
experience a stationary environment), b) an 
agent does only use compressed information 
of the complete state. W i t h an agent's lo-
cal state information, the observed system be-
haviour may become stochastic or even unpre­
dictable. However, there is empirical evidence 
that Q-learning works in this scenario [Barto 
and Crites, 1996]. In the experiments in sec­
t ion 3 the problems mentioned in a) are cir­
cumvented, since in this paper only situations 
wi th a single local learning agent are examined. 

2 .3 C h o i c e o f R(.) 

Since it is our objective to minimize the 
summed tardiness of all jobs, we have to choose 
R(,) such, that the minimization of (1) is equiv-
alent to the minimization of the tardiness T. 
First, R(.) is the sum of the costs associ­
ated w i th the jobs 

Two formulations of are possible. The first 
is to compute the tardiness after the job is fin­
ished 

(2) 
The second possibility is to have costs in each 
time step during processing, if the job is cur­
rently too late but not ready yet: 

(3) 
Although both formulations are equivalent wi th 
respect to the general problem formulation, the 
latter choice has the advantage, that the cost 
function directly reflects the tardiness when it 
actually occurs, which may help the learning 
system. Therefore it is used in the experiments 
in section 3. 

2.4 Lea rn ing Sys tem 
We choose a multilayer-perceptron neural net­
work for representing the value function Q(.) 
for two reasons: a) the state space is continuous 
and therefore no finite scheme (like a lookup-
table) can represent all states, b) we want to 
exploit the generalization abil ity of the neural 
network to find general policies, i.e. the Q func­
t ion should generalize to unknown situations. 
Input for the function approximator is an ade­
quate description of the current decision situa­
t ion by a feature vector. The features have to 
comply wi th the following requirements: They 
should relate to the future expected costs and 
should be characteristic for the present situa­
t ion. Features should represent characteristics 
of typical problem classes rather than of indi­
vidual instances, such that the acquired knowl­
edge can be generalized to new problem in­
stances. For this reason, few attributes are 
considered, mainly describing the local situa­
tion at the machine. W i t h respect to practi­
cal applicability, features should be computable 
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out of data available from common commercial 
PPC-systems. In order to keep the network 
input small, redundant information should be 
avoided. Dealing wi th a time-dependent prob­
lem, besides static properties dynamic features 
should be concerned. They are not only de­
pendent on the job or resource properties (e.g. 
processing time) but also on time progress (e.g. 
slack). Input to the neural network are lo­
cal state features Sk(t) plus features coding the 
available decision Possible features 
are: 

s tate features Sk(£): 
• describing general characteristics of the 

problem: 'tightness' r (1) and 'distribu­
t ion ' R (2) of the jobs wi th respect to their 
due-dates [Pinedo, 1994) 

• describing the current situation: estimated 
tardiness, estimated makespan C (3), av­
erage slack 

decis ion f ea tu res / j o b character is t ics: 
• describing characteristics of job j wi th re-

spect to the present situation in Ak'. e.g. 
due date index (EDD) (4), relative slack, 
slack index (MS) (5), relative waiting time 
(FIFO) (6), relative processing time, pro­
cessing time index (SPT, LPT) 

• describing the immediate consequences, 
i.e. the properties of the remaining oper­
ations if job j was selected: e.g. average 
remaining slack 

• describing the relationship j ob / operation, 
i.e. the significance of operation o i j for job 
j : e.g. relative work in process, relative 
buffer 

3 E m p i r i c a l E v a l u a t i o n 

3 .1 R e s e a r c h o b j e c t i v e s 
The following experiments show the behaviour 
of the proposed learning approach in compari­
son to heuristic dispatching rules. In detail, we 
examine the following issues: 

• how does the choice of input features in­
fluence the optimality of the policy found 
by the learning system? 

• is the learned policy general, i.e. does the 
policy show good performance when ap­
plied to untrained situations? 

• does the proposed learning scheme work, 
i.e. is it possible to improve the decision 
policy of the local learning agent wi th re­
spect to the global goal autonomously? 

• how does the learned policy perform com­
pared to heuristic dispatching rules? 

3.2 Description of the experiments 
We examine two cases: a single resource case, 
as a demonstration for the principle working 
and performance capabilities, and a mult i re­
source case, to show the capability of the agent 
to work within a multi-agent scenario. In both 
cases, 10 different production scenarios are used 
during the training phase. Each production 
scenario has a random number of jobs (5 to 
8) with different processing times and differ­
ent due-dates. Experiments were based on a 
random generation of problems with different 
problem characteristics (number of jobs, loads, 
tightness of jobs, due-date-range, ...). In the 
single resource case, each job has one operation, 
whereas in the multi-resource case, each job has 
a random number of basic operations. Each 
operation has a random duration and must be 
processed on a certain resource. In the mult i-
resource case we also allow circles - i.e. a job 
may have to visit one resource multiple times 
- which constitutes an additional difficulty for 
conventional solution algorithms. The mean 
process duration and the mean due-date were 
chosen such that 'interesting' scenarios are cre­
ated, i.e. that arbitrary policies are not likely 
to produce acceptable solutions. As mentioned 
above, the production objective considered here 
is to reduce the overall tardiness of all the jobs. 
To test the generalization ability, 10 test sce­
narios were generated, which vary from the 
ones considered in the learning phase. 
For learning, we used a multi-layer perceptron 
with up to 6 inputs, 10 hidden neurons and one 
output neuron. The learning rate was set to 0.1 
(since it was not our goal to optimize the learn­
ing speed, not much effort was done to find an 
optimal parameter here). During learning, the 
jobs are selected randomly (exploration factor 
= 1). The performance is reported in terms 
of the average tardiness of the jobs when act­
ing greedily with respect to the current value 
function. 

3.3 T h e o n e r e s o u r c e case 

Table 1 shows the performance of some typi­
cal heuristic dispatching rules. The LPT-policy 
chooses the job wi th the longest processing time 
first, the minimum-slack (MS)-policy chooses 
the job with the minimum time between the ex-
pected termination and the due-date, and the 
EDD-policy chooses the job with the most ur­
gent due-date. The average tardiness per job 
varies considerably on the 10 training scenar­
ios. LPT performs worst with an average tar­
diness of 18.9, even worse than a random policy 
(12.9). MS works considerably better showing 
an average tardiness of 7.5, and EDD perfoms 
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best with an average tardiness of 5.7. 

Table 1: Average tardiness on the training set for differ­
ent heuristic dispatching policies 

To test the learning capability of the neural 
dispatching agent, several combinations of in­
put features were tested (the feature numbers 
in table 2 correspond to the numbering in sec­
tion 2.4). In general, with a sensitive choice of 
input features the performance of the learning 
system did improve considerably with the num­
ber of production runs (remember that the av­
erage tardiness of a random policy is 12.9). Not 
surprisingly, the final performance depends cru­
cially on the provided input information. We 
observed that the performance of the system 
with features that are also considered by the 
EDD-rule has the same final performance as the 
EDD-rule (column 1). This means, that the 
learning system was able to extract this rule 
automatically out of the experience it made. 
Analogously, the same was true for the MS-
rule (column 2). When we gave the combina­
tion of both features to the learning system, it 
was able to find a new policy, that is better 
than both EDD and MS (column 3). Actually, 
this is the effect we are expecting the learning 
agent to exploit: considering a combination of 
features that are of different importance in dif­
ferent situations and acquiring a new (probably 
very complicated) policy based on the input. 
However, adding more features not always im­
proves the performance here (column 4). 

Table 2: Learning agent: Average tardiness on the train­
ing set for different input feature combinations 

Figure 1 gives an impression of the learning pro­
cess. The bold line shows the performance on 
the training set. After about 500 production 
runs, the system has a performance of 5.3 and 
thus already beats the EDD-policy (5.7). In 
course of learning, the performance is further 
improved. 

3.4 G e n e r a l i z a t i o n a b i l i t y 
Besides the principle learning and optimization 
capabilities, one major effect we expect to ob­
serve is the generalization ability of the learning 
system. To test i t , the trained neural agent is 
applied to situations not included in the train­
ing set. The results are shown in table 3. 

Figure 1: Improvement of the performance of the 
learning system with an increasing number of pro-
duction runs. The average performance of a ran­
dom policy was 12.9, and the best heuristic policy, 
EDD, achieved an average tardiness of 5.5. The 
learning agent beats EDD after only 500 produc­
tion runs (bold line). 

Table 3: Average tardiness for different dispatching poli­
cies on the test set (test for generalization) 

Again, the neural agent shows the best perfor­
mance 5.2 and beats the best heuristic rule con­
siderably, which is the SPT-rule here with 6.5. 
This shows, that the learning agent is not only 
able to optimize its performance on a certain 
set of training cases, but also is able to gen­
eralize this knowledge to new, previously un­
known cases without retraining. It may also be 
derived, that the selected features fulfil l the re­
quirement of problem independency. 

3.5 T h e m u l t i - r e s o u r c e case 

In the multi-resource benchmark we consider a 
plant consisting of 3 resources. Here we exam­
ine the ability of one learning agent to adapt 
to the behaviour of a complex process. This 
behaviour is determined by the job profile and 
the structure of the plant, but in contrast to 
the previous scenario, also dispatching policies 
for the other resources play an important role. 
While we are examining the case of one learn­
ing agent and the other policies being fixed, in 
future experiments we wil l examine situations 
of multiple agents learning simultaneously. 
In the training scenario, for example, when two 
fixed agents are acting according to the FIFO 
(First-in-First-Out) rule, than the performance 
of the third agent can be improved from 12.2 
(the case of also acting according to the FIFO 
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Table 4: Average tardiness for different dispatching poli­
cies in the multi-resource case. The horizontal row de­
notes the fixed policies of resource 1 and 2, the vertical 
row compares the policy of resource 3 for a fixed policy 
and a neural learning policy • 

principle) to 7.5 (when a learning policy is ap­
plied). In order to get an optimal behaviour, 
the learning agent has to consider the future 
processing policy of a candidate job, too. As 
an additional difficulty, since circles may occur 
during the lifetime of a job, the current decision 
now also determines the future development of 
the candidate set. As can be seen in table 4, 
the learning agent is capable to deal with the 
described difficulties. In all training cases (left 
side) and all test cases (right side) the learn­
ing policy outperformed the fixed policy. The 
agent has autonomously acquired a local policy 
based on few relevant decision features, that is 
able to perform well in a complex environment 
with complex dynamics. 

4 Conclusions 

The paper describes a neural network based lo­
cal learning approach to job shop scheduling 
problems. It is based on local learning agents, 
associated to a resource. The agent has a re-
stricted view on the complete factory's state, 
representing the most important features that 
are needed for the local decision. The learning 
rule relates a local value function with costs 
depending on the overall performance of the 
global plant. Doing so, the acquired local de­
cision policy is coordinated with the global op­
timization goal. The experiments on a one-
resource and a three-resource production plant 
show the capability to learn local policies to op­
timize global behaviour from experience. Fur­
thermore, the agent's policy can be general­
ized to unknown situations without retrain­
ing. Therefore, the learned policies are more 
tailored to the actual task than comparable 
heuristic dispatching rules, but still are general 
enough to be valid in a wide range of untrained 
situations. In case of major changes in the or­
ganizational structure the proposed learning ar­
chitecture allows an easy reconfiguration of the 
reactive scheduling policy. 
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