
A neura l re inforcement learn ing approach to learn local d ispatch ing
policies in p roduc t i on schedul ing

Simone R iedmi l le r
I n s t i t u t fu r Werkzeugmaschinen
und Betr iebstechnik (wbk)
Un ivers i t y o f Kar ls ruhe
D-76128 Kar ls ruhe
simone.riedmiller@mach.uni-karlsruhe.de

Abs t rac t
Finding optimal solutions for job shop schedul-
ing problems requires high computational ef­
fort, especially under consideration of uncer­
tainty and frequent replanning. In contrast to
computational solutions, domain experts are
often able to derive good local dispatching
heuristics by looking at typical problem in­
stances. They can be efficiently applied by
looking at few relevant features. However,
these rules are usually not optimal, especially in
complex decision situations. Here we describe
an approach that tries to combine both worlds.
A neural network based agent autonomously
optimizes its local dispatching policy wi th re­
spect to a global optimization goal, defined for
the overall plant. On two benchmark schedul­
ing problems, we show both learning and gen­
eralization abilities of the proposed approach.

1 I n t r oduc t i on
Production scheduling is the allocation of l im­
ited resources to tasks over time, while one or
more objectives have to be optimized. Many
variants of the basic problem formulation ex­
ist, and most of them are NP-hard to solve
[Pinedo, 1994], meaning that exact solution al­
gorithms suffer from a non-polynomial increase
of computation time. This constitutes a prob­
lem not only if the problem to solve surmounts
a certain size, but also in moderately complex
domains, where the occurrence of new or un­
expected events - the arrival of new jobs or
the breakdown of machines - makes frequent
replanning necessary. Even more, technolog­
ical changes like semiconductor fabrication or
th in film production are posing additional chal­
lenges, since new problem structures - like con­
ditional loops in the production process - occur,
for which conventional optimization techniques
may not be applicable.
An alternative and far less time-consuming way
is the application of simple heuristic dispatch-

M a r t i n R i e d m i l l e r
Compute r Science Depar tmen t
(I L K D)
Un ivers i t y o f Kar l s ruhe
D-76128 Kar ls ruhe
riedml@ira.uka.de

ing rules that select the job to process next on
an idle resource depending on the current situa­
t ion. However, these dispatching rules only re-
flect heuristic knowledge and do not guarantee
to lead to the optimal behaviour of the overall
system. Even for experienced human experts it
may become arbitrari ly difficult to decide which
dispatching rule to apply and how to time it
in a certain scenario, since the effects on the
dynamics of the overall system can hardly be
predicted.

1.1 Genera l Idea

Here we propose an alternative way that allows
to combine the desire for (nearly) optimal so­
lutions wi th a time-efficient computation, pro­
vided by resource-coupled dispatching rules.
The idea is to have learning agents, that are as­
sociated to each resource and determine the lo­
cal dispatching policy. This policy is not fixed,
but instead is autonomously learned by getting
feedback of the overall dynamic behaviour of
the production system. In contrast to common
dispatching rules which typically only consider
few characteristic features of the current situa­
t ion to make the decision, a learning agent can
deal wi th more state information and therefore
figure out more sophisticated policies, which
are better tailored to the process. The appear­
ance of the proposed training method does not
depend on the optimization goal or constraints
posed by the production process. Therefore,
it is applicable to a wide range of problem in­
stances. As an example, in this article we focus
on job shop scheduling problems wi th the goal
to reduce the summed tardiness. The follow­
ing summarizes the main characteristics of the
proposed approach:

• autonomous acquisition of
(approximately) optimal dispatching poli­
cies (including the adaptation to the plant
structure and the inherent consideration of
constraints)

784 MACHINE LEARNING

mailto:simone.riedmiller@mach.uni-karlsruhe.de
mailto:riedml@ira.uka.de

• reusability of acquired knowledge
• fast situation dependent decision making,

abil ity to do reactive scheduling

1.2 Re la ted W o r k
Recently, several reinforcement learning ap­
proaches have been proposed to solve certain
aspects of scheduling problems. They vary in
the type and their view of the scheduling prob­
lem and - as a consequence - the type of con­
trol decisions. Zhang and Dietterich [Dietterich
and Zhang, 1995] propose an RL approach that
learns a neural value-function to guide a repair-
based scheduler. An action in this approach
is the decision for a certain repair operation.
Schneider, Boyan and Moore [Schneider et al.,
1998] present a value-function-based approach
for the problem of demand based scheduling.
The learning scheduler decides over a set of
possible factory configurations to maximize ex­
pected production profit in the presence of
varying demand curves. In contrast to these
global approaches, a local multi-agent view of
a production scheduling problem is taken in
[Brauer and Weiss, 1998]. Each machine does
make a local decision which job to process next
based on the estimated completion time of the
candidate jobs. The learning rule is based on
the propagation of these estimates along the
production line of a job, similar to the Q-
Routing algorithm [Boyan and Li t tman, 1994].
An application of average-reward RL is pre­
sented by Mahadevan and Theocharous [Ma-
hadevan and Theocharous, 1998] for the control
of a transfer-line.

Our approach follows the idea of local decision
making. The neural network based agent con­
siders the current situation, represented by a
set of relevant (local) features, to make its de­
cision which job to process next. It learns a
local decision policy (similar to heuristic dis­
patching rules) wi th the ability to adapt to the
user-defined optimization goal. This is done
autonomously, meaning that the policy is self-
improved by repeating a certain number of typ­
ical training cases.

1.3 Task descr ip t ion
The task considered in the following is to pro­
cess a set of m jobs on the n resources of a fac­
tory. Each job j 1 . . . m, consists of a certain
number of lj basic operations A
basic operation must be performed on a certain
resource k 1. . . .n and has a certain process­
ing time. A job is finished after completion of
its last operation. If the completion time of
job j is larger than a certain due-date , then
the job is said to be tardy. The tardiness of

a job is zero, if it is finished before or at i ts due-
date; otherwise it is In general
scheduling objectives to be optimized all relate
to the completion time of the jobs. Various
variants of the basic optimization problem ex­
ist which can be classified within a complexity
hierarchy [Pinedo, 1994]. In the following, we
look at the problem of minimizing the summed
tardiness over all jobs, , Solving this
deterministic problem subsumizes also the total
completion time problem as well as the max-
imum lateness or maximum makespan prob­
lems. Being NP-hard, it is not possible to solve
this problem with a polynomial time algorithm.

2 Descr ipt ion of the solut ion
approach

2.1 Op t im iza t i on p rob lem and
decision mak ing
The global production scheduling problem can
be described as a Markov Decision Process
(MDP): the system's state s(t) is described by
the current situation of the n resources and the
processing state of the TO jobs, a decision a(t)
describes which job is processed next on a wait­
ing resource. The goal of scheduling is to find
an optimal policy such that production costs
R(s, a, t) accumulated over time are minimized

(1)

where denotes the time after which the last
job is finished. Costs R(s,a,t) may depend
both on the current situation and on the se­
lected decision and express the desired opti­
mization goal. For example, costs may arise
due to the tardiness of a job, due to a resource
waiting idle, or due to costs caused by the need
to change a tool before continuing processing,
and so on.
In our approach, the global decision a(t) is a
vector of single decisions made by dis­
tributed agents each associated with one of the
n resources. If a resource is ready to process a
new operation, then its agent chooses one job
out of a set Ak of jobs, where Ak is the set
of jobs for which the next operation Oji must
be processed on resource k. The resource is
then occupied for the duration of Oji. After
this time, a new decision is made.

2.2 Learn ing A l g o r i t h m
Each agent makes its decision based on a local
view of the global plant situ­
ation at time t. sk represents the local view

RiEDMILLER AND RIEDMILLER

of the agent. It can be thought of compress-
ing the huge amount of global state informa-
t ion into features that are relevant for making
the local decision at resource k. Learning here
means iteratively improving the decision policy
wi th respect to the optimization of the global
costs (1). This is done by a Q-learning related
learning-rule adapted to the local decision pro-
cess:

The learning rule relates the local decision pro­
cess as experienced by agent k to the global op-
timization goal by considering the global direct
costs R(.). Since the t ime between the decisions
varies depending on the duration of the cur­
rently processed operation, the 'reinforcement
term' accumulates the global costs
between t and

Accordingly, if converges, then the opti­
mal local value function predicts the esti­
mated accumulated global costs, if in situation
Sk the job denoted by would be processed
next. A policy greedy wi th respect to , thus
wi l l choose that job next, that wi l l lead to an
optimization of the performance of the overall
plant. The policy of the agent is determined by
greedily exploiting the value function,

During learning, a random exploration strategy
is performed that deviates from time to time
from the current policy.
The agent's learning rule varies from the Q-
learning assumptions in two important issues:
a) no central global decision is made, but in­
stead, the global decision is composed by indi­
vidual decisions of time-varying policies. Un­
less all policies are stable, this makes the pro-
cess seen by the local agent non-stationary (in
contrast, a single Q-learning agent assumes to
experience a stationary environment), b) an
agent does only use compressed information
of the complete state. W i t h an agent's lo-
cal state information, the observed system be-
haviour may become stochastic or even unpre­
dictable. However, there is empirical evidence
that Q-learning works in this scenario [Barto
and Crites, 1996]. In the experiments in sec­
t ion 3 the problems mentioned in a) are cir­
cumvented, since in this paper only situations
wi th a single local learning agent are examined.

2 .3 C h o i c e o f R(.)

Since it is our objective to minimize the
summed tardiness of all jobs, we have to choose
R(,) such, that the minimization of (1) is equiv-
alent to the minimization of the tardiness T.
First, R(.) is the sum of the costs associ­
ated w i th the jobs

Two formulations of are possible. The first
is to compute the tardiness after the job is fin­
ished

(2)
The second possibility is to have costs in each
time step during processing, if the job is cur­
rently too late but not ready yet:

(3)
Although both formulations are equivalent wi th
respect to the general problem formulation, the
latter choice has the advantage, that the cost
function directly reflects the tardiness when it
actually occurs, which may help the learning
system. Therefore it is used in the experiments
in section 3.

2.4 Lea rn ing Sys tem
We choose a multilayer-perceptron neural net­
work for representing the value function Q(.)
for two reasons: a) the state space is continuous
and therefore no finite scheme (like a lookup-
table) can represent all states, b) we want to
exploit the generalization abil ity of the neural
network to find general policies, i.e. the Q func­
t ion should generalize to unknown situations.
Input for the function approximator is an ade­
quate description of the current decision situa­
t ion by a feature vector. The features have to
comply wi th the following requirements: They
should relate to the future expected costs and
should be characteristic for the present situa­
t ion. Features should represent characteristics
of typical problem classes rather than of indi­
vidual instances, such that the acquired knowl­
edge can be generalized to new problem in­
stances. For this reason, few attributes are
considered, mainly describing the local situa­
tion at the machine. W i t h respect to practi­
cal applicability, features should be computable

766 MACHINE LEARNING

out of data available from common commercial
PPC-systems. In order to keep the network
input small, redundant information should be
avoided. Dealing wi th a time-dependent prob­
lem, besides static properties dynamic features
should be concerned. They are not only de­
pendent on the job or resource properties (e.g.
processing time) but also on time progress (e.g.
slack). Input to the neural network are lo­
cal state features Sk(t) plus features coding the
available decision Possible features
are:

s tate features Sk(£):
• describing general characteristics of the

problem: 'tightness' r (1) and 'distribu­
t ion ' R (2) of the jobs wi th respect to their
due-dates [Pinedo, 1994)

• describing the current situation: estimated
tardiness, estimated makespan C (3), av­
erage slack

decis ion f ea tu res / j o b character is t ics:
• describing characteristics of job j wi th re-

spect to the present situation in Ak'. e.g.
due date index (EDD) (4), relative slack,
slack index (MS) (5), relative waiting time
(FIFO) (6), relative processing time, pro­
cessing time index (SPT, LPT)

• describing the immediate consequences,
i.e. the properties of the remaining oper­
ations if job j was selected: e.g. average
remaining slack

• describing the relationship j ob / operation,
i.e. the significance of operation o i j for job
j : e.g. relative work in process, relative
buffer

3 E m p i r i c a l E v a l u a t i o n

3 .1 R e s e a r c h o b j e c t i v e s
The following experiments show the behaviour
of the proposed learning approach in compari­
son to heuristic dispatching rules. In detail, we
examine the following issues:

• how does the choice of input features in­
fluence the optimality of the policy found
by the learning system?

• is the learned policy general, i.e. does the
policy show good performance when ap­
plied to untrained situations?

• does the proposed learning scheme work,
i.e. is it possible to improve the decision
policy of the local learning agent wi th re­
spect to the global goal autonomously?

• how does the learned policy perform com­
pared to heuristic dispatching rules?

3.2 Description of the experiments
We examine two cases: a single resource case,
as a demonstration for the principle working
and performance capabilities, and a mult i re­
source case, to show the capability of the agent
to work within a multi-agent scenario. In both
cases, 10 different production scenarios are used
during the training phase. Each production
scenario has a random number of jobs (5 to
8) with different processing times and differ­
ent due-dates. Experiments were based on a
random generation of problems with different
problem characteristics (number of jobs, loads,
tightness of jobs, due-date-range, ...). In the
single resource case, each job has one operation,
whereas in the multi-resource case, each job has
a random number of basic operations. Each
operation has a random duration and must be
processed on a certain resource. In the mult i-
resource case we also allow circles - i.e. a job
may have to visit one resource multiple times
- which constitutes an additional difficulty for
conventional solution algorithms. The mean
process duration and the mean due-date were
chosen such that 'interesting' scenarios are cre­
ated, i.e. that arbitrary policies are not likely
to produce acceptable solutions. As mentioned
above, the production objective considered here
is to reduce the overall tardiness of all the jobs.
To test the generalization ability, 10 test sce­
narios were generated, which vary from the
ones considered in the learning phase.
For learning, we used a multi-layer perceptron
with up to 6 inputs, 10 hidden neurons and one
output neuron. The learning rate was set to 0.1
(since it was not our goal to optimize the learn­
ing speed, not much effort was done to find an
optimal parameter here). During learning, the
jobs are selected randomly (exploration factor
= 1). The performance is reported in terms
of the average tardiness of the jobs when act­
ing greedily with respect to the current value
function.

3.3 T h e o n e r e s o u r c e case

Table 1 shows the performance of some typi­
cal heuristic dispatching rules. The LPT-policy
chooses the job wi th the longest processing time
first, the minimum-slack (MS)-policy chooses
the job with the minimum time between the ex-
pected termination and the due-date, and the
EDD-policy chooses the job with the most ur­
gent due-date. The average tardiness per job
varies considerably on the 10 training scenar­
ios. LPT performs worst with an average tar­
diness of 18.9, even worse than a random policy
(12.9). MS works considerably better showing
an average tardiness of 7.5, and EDD perfoms

RIEDMILLER AND RIEDMILLER

best with an average tardiness of 5.7.

Table 1: Average tardiness on the training set for differ­
ent heuristic dispatching policies

To test the learning capability of the neural
dispatching agent, several combinations of in­
put features were tested (the feature numbers
in table 2 correspond to the numbering in sec­
tion 2.4). In general, with a sensitive choice of
input features the performance of the learning
system did improve considerably with the num­
ber of production runs (remember that the av­
erage tardiness of a random policy is 12.9). Not
surprisingly, the final performance depends cru­
cially on the provided input information. We
observed that the performance of the system
with features that are also considered by the
EDD-rule has the same final performance as the
EDD-rule (column 1). This means, that the
learning system was able to extract this rule
automatically out of the experience it made.
Analogously, the same was true for the MS-
rule (column 2). When we gave the combina­
tion of both features to the learning system, it
was able to find a new policy, that is better
than both EDD and MS (column 3). Actually,
this is the effect we are expecting the learning
agent to exploit: considering a combination of
features that are of different importance in dif­
ferent situations and acquiring a new (probably
very complicated) policy based on the input.
However, adding more features not always im­
proves the performance here (column 4).

Table 2: Learning agent: Average tardiness on the train­
ing set for different input feature combinations

Figure 1 gives an impression of the learning pro­
cess. The bold line shows the performance on
the training set. After about 500 production
runs, the system has a performance of 5.3 and
thus already beats the EDD-policy (5.7). In
course of learning, the performance is further
improved.

3.4 G e n e r a l i z a t i o n a b i l i t y
Besides the principle learning and optimization
capabilities, one major effect we expect to ob­
serve is the generalization ability of the learning
system. To test i t , the trained neural agent is
applied to situations not included in the train­
ing set. The results are shown in table 3.

Figure 1: Improvement of the performance of the
learning system with an increasing number of pro-
duction runs. The average performance of a ran­
dom policy was 12.9, and the best heuristic policy,
EDD, achieved an average tardiness of 5.5. The
learning agent beats EDD after only 500 produc­
tion runs (bold line).

Table 3: Average tardiness for different dispatching poli­
cies on the test set (test for generalization)

Again, the neural agent shows the best perfor­
mance 5.2 and beats the best heuristic rule con­
siderably, which is the SPT-rule here with 6.5.
This shows, that the learning agent is not only
able to optimize its performance on a certain
set of training cases, but also is able to gen­
eralize this knowledge to new, previously un­
known cases without retraining. It may also be
derived, that the selected features fulfil l the re­
quirement of problem independency.

3.5 T h e m u l t i - r e s o u r c e case

In the multi-resource benchmark we consider a
plant consisting of 3 resources. Here we exam­
ine the ability of one learning agent to adapt
to the behaviour of a complex process. This
behaviour is determined by the job profile and
the structure of the plant, but in contrast to
the previous scenario, also dispatching policies
for the other resources play an important role.
While we are examining the case of one learn­
ing agent and the other policies being fixed, in
future experiments we wil l examine situations
of multiple agents learning simultaneously.
In the training scenario, for example, when two
fixed agents are acting according to the FIFO
(First-in-First-Out) rule, than the performance
of the third agent can be improved from 12.2
(the case of also acting according to the FIFO

768 MACHINE LEARNING

Table 4: Average tardiness for different dispatching poli­
cies in the multi-resource case. The horizontal row de­
notes the fixed policies of resource 1 and 2, the vertical
row compares the policy of resource 3 for a fixed policy
and a neural learning policy •

principle) to 7.5 (when a learning policy is ap­
plied). In order to get an optimal behaviour,
the learning agent has to consider the future
processing policy of a candidate job, too. As
an additional difficulty, since circles may occur
during the lifetime of a job, the current decision
now also determines the future development of
the candidate set. As can be seen in table 4,
the learning agent is capable to deal with the
described difficulties. In all training cases (left
side) and all test cases (right side) the learn­
ing policy outperformed the fixed policy. The
agent has autonomously acquired a local policy
based on few relevant decision features, that is
able to perform well in a complex environment
with complex dynamics.

4 Conclusions

The paper describes a neural network based lo­
cal learning approach to job shop scheduling
problems. It is based on local learning agents,
associated to a resource. The agent has a re-
stricted view on the complete factory's state,
representing the most important features that
are needed for the local decision. The learning
rule relates a local value function with costs
depending on the overall performance of the
global plant. Doing so, the acquired local de­
cision policy is coordinated with the global op­
timization goal. The experiments on a one-
resource and a three-resource production plant
show the capability to learn local policies to op­
timize global behaviour from experience. Fur­
thermore, the agent's policy can be general­
ized to unknown situations without retrain­
ing. Therefore, the learned policies are more
tailored to the actual task than comparable
heuristic dispatching rules, but still are general
enough to be valid in a wide range of untrained
situations. In case of major changes in the or­
ganizational structure the proposed learning ar­
chitecture allows an easy reconfiguration of the
reactive scheduling policy.

5 Acknowledgments
A major part of this work was carried out dur­
ing a research visit at the Robotics Institute
at Carnegie Mellon University, Pittsburgh, PA.
The authors gratefully thank Stephen Smith,
Andrew Moore and Jeff Schneider for valuable
discussions. Special thanks to Dieter Spath,
Hartmut Weule, Juergen Schmidt and Wolfram
Menzel for giving us the opportunity and the
support for this stay.

References
[Barto and Crites, 1996] A. G. Barto and

R. H. Crites. Improving elevator perfor­
mance using reinforcement learning. In
M. E. Hasselmo D. S. Touretzky, M.
C. Mozer, editor, Advances in Neural In-
formation Processing Systems 8. M IT Press,
1996.

[Boyan and Lit tman, 1994] Justin Boyan and
Michael Littman. Packet routing in dynam­
ically changing networks - a reinforcement
learning approach. In J. Cowan, G. Tesauro,
and J. Alspector, editors, Advances in Neu­
ral Information Processing Systems 6, 1994.

[Brauer and Weiss, 1998] Wilfried Brauer and
Gerhard Weiss. Multi-machine scheduling -
a multi-agent learning approach. In Proceed­
ings of the 3rd International Conference on
Multi-Agent Systems, pages 42-48, 1998.

[Dietterich and Zhang, 1995] T. Dietterich
and W. Zhang. A reinforcement-learning ap­
proach to job-shop scheduling. In Proceed­
ings of the 14th International Joint Cofer-
ence on Artificial Intelligence, 1995.

[Mahadevan and Theocharous, 1998]
S. Mahadevan and G. Theocharous. Opti­
mization production manufacturing using re­
inforcement learning. In Proceedings of the
Eleventh International FLAIRS Conference,
pages 372 - 377. A A A I Press, 1998.

[Pinedo, 1994] M. Pinedo. Introduction to
Scheduling - Algorithms. 1994.

[Schneider et al., 1998] Jeff Schneider, Justin
Boyan, and Andrew Moore. Value func­
tion based production scheduling. In Inter­
national Conference on Machine Learning,
1998.

RIEDMILLER AND RIEDMILLER

