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Abs t rac t 
We present a new learning algorithm for pat­
tern recognition inspired by a recent upper 
bound on leave-one-out error [Jaakkola and 
Haussler, 1999] proved for Support Vector Ma­
chines {SVMs) [Vapnik, 1995; 1998]. The 
new approach directly minimizes the expression 
given by the bound in an attempt to minimize 
leave-one-out error. This gives a convex op­
timization problem which constructs a sparse 
linear classifier in feature space using the ker­
nel technique. As such the algorithm possesses 
many of the same properties as SVMs. The 
main novelty of the algorithm is that apart from 
the choice of kernel, it is parameterless - the 
selection of the number of training errors is in­
herent in the algorithm and not chosen by an 
extra free parameter as in SVMs. First experi­
ments using the method on benchmark datasets 
from the UCI repository show results similar to 
SVMs which have been tuned to have the best 
choice of parameter. 

1 In t roduc t i on 
Support Vector Machines (SVMs), motivated by mini­
mizing VC dimension, have proven to be very successful 
in classification learning [Vapnik, 1995; Scholkopf, 1997; 
Vapnik, 1998]. In this algorithm it turned out to be 
favourable to formulate the decision functions in terms 
of a symmetric, positive definite, and square integrable 
function k ( - , ) referred to as a kernel The class of 
decision functions — also known as kernel classifiers 
[Jaakkola and Haussler, 1999] — is then given by 

where training data and labels 
For simplicity we ignore classifiers which use an extra 
threshold term. 

Recently, uti l izing this particular type of decision rule 
(that each training point corresponds to one basis func­
tion) an upper bound on leave-one-out error for SVMs 

was proven [Jaakkola and Haussler, 1999]. This bound 
motivates the following new algorithm: find a decision 
rule of the form in Equation (1) that minimizes the 
bound. The paper is structured as follows: In Section 2 
we first review the SVM algorithm. In Section 3 we de-
scribe the leave-one-out bound and the Leave-One-Out 
Support Vector Machine (LOOM) algorithm motivated 
by the bound. In Section 4 we reveal the relationship 
between SVMs and LOOMs and in Section 5 results of 
a comparison of LOOMs wi th SVMs on artificial and 
benchmark datasets from the UCI repository are pre­
sented. Finally, in Section 6 we summarize and discuss 
further directions. 

2 Suppor t Vector Machines 
Support vector machines [Vapnik, 1995] aim to mini­
mize VC dimension by finding a hyperplane with mini-
mal norm that separates the training data mapped into 
a feature space via a nonlinear map To 
construct such a hyperplane in the general case where 
one allows some training error one minimizes: 

and then uses the decision rule: 

The tractability of this algorithm depends on the di ­
mensionality of F However, one can remove this depen­
dency by instead maximizing the dual form: 

where, util izing that 
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and that the decision rule is 
now in the form of Equation (1). 

Alternatively, one can also use the pr imal dual formu­
lation of the SVM algorithm (from (Osuna and Girosi, 
1998]) rather than the usual formulation, which we wil l 
describe because of its direct correlation to Leave-One-
Out SVMs, The SVM primal reformulation is the fol­
lowing: minimize 

where one again uses a decision rule of the form in Equa­
t ion (1). 

3 Leave-One-Out Suppor t Vector 
Machines 

Support Vector Machines obtain sparse solutions that 
yield a direct assessment of generalization: leave-one-out 
error is bounded by the expected ratio of the number of 
non-zero coefficients to the number of training exam­
ples [Vapnik, 1995]. In [Jaakkola and Haussler, 1999] a 
measure of generalization error is derived for a class of 
classifiers which includes SVMs but can be applied to 
non-sparse solutions. The bound is as follows: 

T h e o r e m 1 For any training set of examples 
and labels for a SVM trained by maximiz­
ing Equation (6) the leave-one-out error estimate of the 
classifier is bounded by 

where is the step function. 
This bound is slightly tighter than the classical SVM 

leave-one-out bound. This is easy to see when one con­
siders that all training points that have can­
not be leave-one-out errors in either bound. Vapnik's 
bound assumes all support vectors (all training points 
wi th are errors, whereas they only contribute as 
errors in Equation (11) if 

In practice this means the bound is tighter for less sparse 
solutions. 

Although the leave-one-out bound in Theorem 1 holds 
for Support Vector Machines the motivation behind 
SVMs is to minimize VC bounds via Structural Risk 

Minimization [Vapnik, 1995]. To this end, the term 
in Equation (8) attempts to min­

imize VC dimension. If we wish to construct classi­
fiers motivated by Theorem 1 (that directly attempt to 
achieve a low value of this expression) we need to con­
sider a different learning technique. 

Theorem 1 motivates the following algorithm: directly 
minimize the expression in the bound. To do this, one in­
troduces slack variables following the standard approach 
in [Cortes and Vapnik, 1995; Vapnik, 1995] to give the 
following optimization problem: minimize 

where one chooses a fixed constant for the margin to 
ensure non-zero solutions. 

To make the optimization problem tractable, the 
smallest value for for which we obtain a convex ob­
jective function is = 1. This gives us a linear program­
ming problem, and, as in other kernel classifiers, one uses 
the decision rule given in Equation (1). 

Note that Theorem 1 is no longer valid for this learn­
ing algorithm. Nevertheless, let us study the resulting 
method which we call a Leave-One-Out Support Vector 
Machine (LOOM). 

4 Relat ionship to S V M s 
In this section, we wi l l describe the relationship between 
LOOMs and SVMs in three areas: the method of regu-
larization^ the sparsity induced in the decision function 
and the margin loss employed in training. 

4.1 Regu la r i za t ion 
The new technique appears to have no free regularization 
parameter. This should be compared with SVMs which 
control the amount of regularization wi th the free pa­
rameter C. For SVMs, in the case of C = one obtains 
a hard margin classifier wi th no training errors. In the 
case of noisy or linearly inseparable datasets1 (through 
noise, outliers, or class overlap) one must accept some 
training error (by constructing a so called soft margin). 
To find the best choice of training error/margin tradeoff 
one must choose the appropriate value of C. In LOOMs 
a soft margin is automatically constructed. This occurs 
because the algorithm does not attempt to minimize the 
number of training errors - it minimizes the number of 
training points that are classified incorrectly even when 

1Here we refer to linear inseparability in feature space. 
Both SVMs and LOOM Machines are essentially linear 
classifiers. 
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they are removed from the linear combination that forms 
the decision rule. However, if one can classify a train­
ing point correctly when it is removed from the linear 
combination then it wi l l always be classified correctly 
when it is placed back into the rule. This can be seen 
as is always the same sign as all train­
ing points are pushed towards the correct side of the 
decision boundary by their own component of the linear 
combination. 

4 .2 S p a r s i t y 
Like Support Vector Machines, the solutions of the new 
algorithm can be sparse; that is, only some of the co­
efficients are non-zero (see Section 5.2 
for computer simulations confirming this). As the coeffi­
cient of a training point does not contribute to its leave-
one-out error in constraint (13) the algorithm does not 
assign a non-zero value to the coefficient of a training 
point in order to correctly classify i t . A training point 
has to be classified correctly by the training points of 
the same label that are close to it (in feature space), but 
the training point itself makes no contribution to its own 
classification. 

4 . 3 M a r g i n loss 
Noting that 

where / ( x ) is given in Equation (1), one can see that the 
new algorithm can be writ ten as the following equivalent 
linear program: minimize 

In this setting of the optimization problem it is easy 
to see that a training point Xi is linearly penalized for 
failing to obtain a margin of 
In SVMs, a training point x i is linearly penalized for 
failing to obtain a margin of (see Equation 
(9)). Thus the margin in SVMs is treated equivalently 
for each training pattern. In LOOMs, the larger the 
contribution the training point has to the decision rule 
(the larger the value of the larger its margin must 
be. Thus, the LOOM algorithm, in contrast to SVMs 
controls the margin for each training point adaptively. 

This method can be viewed in the following way: If 
a p o i n t i s an outlier (the values o f to 
points in its class are small and to points in the 
other class are large) then some where in 
Equation (13) have to be large in order to classify 
correctly. SVMs use the same margin for such points 

and they attempt to classify correctly. In 
LOOMs the margin is automatically increased to 1 + 

for these points and thus less attempt is made 
to correctly classify Thus the adaptive margin 
provides robustness. Moreover, it becomes clear that in 
LOOMs the points which are representatives of 
clusters (centres) in feature space, i.e. those which have 
large values of to points in their class, wi l l have 
non-zero 

5 Experiments 
In this section we describe experiments comparing the 
new technique to SVMs. We first describe artificial data 
to visualize the techniques, and then present results on 
benchmark datasets. 

5.1 A r t i f i c i a l D a t a 
We first describe some toy two dimensional examples to 
illustrate how the new technique works. Figure 1 shows 
two artificially constructed training problems (left and 
right) wi th various solutions (top to bottom of the page). 
We fixed the kernel to be a radial basis function (RBF) 

(19) 

wi th and then found the solution to the problems 
with Leave-One-Out Machines (LOOMs), which have no 
other free parameters, and wi th SVMs, for which one 
controls the soft margin wi th the free parameter C. The 
first solution (top of the page) for both training problems 
(left and right) is the solution given by LOOMs, and the 
other four solutions are SVMs wi th various choices of 
soft margin (parameter C). 

In the first problem (left) the two classes (crosses and 
dots) are almost linearly separable apart from a single 
outlier (a dot). The automatic soft margin control of 
LOOMs constructs a classifier which incorrectly clas­
sifies the far right dot, assuming that it is an outlier. 
Thick lines represent the separating hyperplane and dot­
ted lines represent the size of margin. Support Vec­
tors (training points wi th are emphasized wi th 
rings. Note also the large margin of the LOOM classi­
fication. The Support Vector solutions (second picture 
from top downwards) have parameters C = 1 (middle) 
and C = 100 (bottom). Constructing a hard margin w i th 
C = 100 overfits wi th zero training error whilst wi th de­
creasing C the SVM solution tends towards a decision 
rule similar to the one found by LOOMs. Note, however, 
even wi th C = 1 the non-smoothness of the decision rule 
by examining the margin (dotted line). Moreover, the 
outlier here is sti l l correctly classified. 

In the second training problem (right), the two classes 
occupy opposite sides (horizontally) of the picture, but 
slightly overlap. In this case the data is only separa­
ble wi th a highly nonlinear decision rule, as reflected 
in the hard margin solution by an SVM wi th parame-
ter C = 100 (bottom right). Again, a reasonable choice 
of rule (C = 1, middle right picture) can be found by 
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Figure 1: Two training problems (left and right pictures) 
are solved by Leave-One-Out SVMs (top left and top 
right) which have no soft margin regularization parame-
ter and SVMs for various of C (lower four pictures). For 
SVMs, the two problems are solved wi th (7 = 1 (middle 
row) and C = 100 (bottom row). 

SVMs wi th the correct choice of free parameter. The 
(parameterless) decision constructed by the LOOM (top 
right) however provides a similar decision to the SVM 
with C = 1. Note again, the smoothness of the LOOM 
solution in comparison to the SVM one, even though 
they are similar. 

Finally, Figure 2 gives some insight into how the soft 
margin is chosen by LOOMs. A simple toy training set is 
again shown. The first picture (left) has a small cluster 
of crosses in the top left of the picture and a single cross 
in the bottom right of the picture. The other class (dots) 
is distributed almost evenly across the space. LOOMs 
construct a decision rule which treats the cross in the 
bottom right of the picture as an outlier. In the second 
picture (right) we have almost the same problem but 
near the single cross we add another two training points 
so there are now two clusters of crosses. Now the LOOM 

solution is a decision rule wi th two clusters; because the 
single cross from the left hand picture now is close to 
other training points, it can be left out of the decision 
rule but sti l l be classified correctly in the constraints 
(13). When a training point is not close (in feature space) 
to any other points in the same class it is considered an 
outlier. 

Figure 2: Demonstration of soft margin selection by the 
Leave-One-Out SVM algorithm. A cluster of five crosses 
is classified correctly but the sixth (bottom right) is con­
sidered an outlier (left picture). When more crosses are 
placed near the point previously considered an outlier 
(right picture) the algorithm decides the training point 
is not an outlier and constructs a classifier wi th two clus­
ters instead of one. 

5.2 Benchmark Datasets 
We conducted computer simulations using 6 artificial 
and real world datasets from the UCI , DELVE and 
STATLOG benchmark repositories, following the same 
experimental setup as in [Ratsch et a/., 1998J. The au­
thors of this article also provide a website to obtain the 
data2. Briefly, the setup is as follows: the performance 
of a classifier is measured by its average error over one 
hundred partitions of the datasets into training and test­
ing sets. Free parameter(s) in the learning algorithm are 
chosen as the median value of the best model chosen by 
cross validation of the first five training datasets. 

Table 1 compares percentage test error of LOOMs 
to AdaBoost (AB) , Regularized AdaBoost and 
SVMs which are all known to be excellent classifiers3. 
The competitiveness of LOOMs to SVMs and 
(which both have a soft margin control parameter) is 
remarkable considering LOOMs have no free parame­
ter. This indicates that the soft margin automatically 
selected by LOOMs is close to optimal. AdaBoost loses 

The datasets have been pre-processed to have zero mean and 
standard deviation one, and the exact one hundred splits of 
training and testing sets used in the author's experiments can 
be obtained. 

3The results for AB, and SVMs were obtained by 
Raetsch, et al. 
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out to the three other algorithms, being essentially an 
algorithm designed to deal w i th noise-free data. 

Banana 
B. Cancer 
Diabetes 
Heart 
Thyroid 
Titanic 

AB 
12.3 
30.4 
26.5 
20.3 
4.4 
22.6 

ABR 
10.9 
26.5 
23.9 
16.6 
4.4 
22.6 

SVM~ 
11.5 
26.0 
23.5 
16.0 
4.8 
22.4 

LOOM 
10.6 
26.3 
23.4 
16.6 
5.0 
22.7 

Table 1: Comparison of percentage test error of Ad-
aBoost (AB), Regularized AdaBoost (AB R ) , Support 
Vector Machines (SVMs) and Leave-One-Out Machines 
(LOOMs) on 6 datasets. 

Finally, to show the behaviour of the algorithm we 
give two plots in Figure 3. The top graph shows the 
fraction of training points that have non-zero coefficients 
(SVs) plotted against (RBF width) on the thy­
roid dataset. Here, one can see the sparsity of the de­
cision rule (cf. Equation (1)), the sparseness of which 
depends on the chosen value of The bottom graph 
shows the number of training and test errors (train err 
and test err), the value of (slacks) and the value 
of the bound given in Theorem 1 One can 
see the training and test error (and the bound) closely 
match which would be natural for an algorithm which 
minimized leave-one-out error. The minimum of all four 
plots is roughly at indicating one could 
perform model selection using one of the known expres­
sions. Note also that for a reasonable range of different 
RBF widths the test error is roughly the same, indicating 
the automatic soft margin control overcomes overfitting 
problems. Moreover, the values of which give the best 
generalization error also give the most sparse classifiers. 

6 Discussion 
In this article, motivated by a bound on leave-one-out 
error for kernel classifiers, we presented a new learning 
algorithm for solving pattern recognition problems. The 
robustness of the approach, despite having no regular-
ization parameter, can be understood in terms of the 
bound (one must classify points correctly without their 
own basis function), in terms of margin (see Section 4.3), 
and through empirical study. We would also like to point 
out that if one constructs a kernel matrix 
then the regularization technique employed is to set the 
diagonal of the matrix to zero, which suggests that one 
can control regularization through control of the ridge, 
as in regression techniques. 
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Figure 3: The fraction of training patterns that are sup-
port vectors (top) and various error rates (bottom) both 
plotted against RBF kernel width for Leave-One-Out 
Machines on the thyroid dataset. 
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