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Abs t rac t 

This paper presents a statistical approach to 
collaborative filtering and investigates the use 
of latent class models for predicting individ­
ual choices and preferences based on observed 
preference behavior. Two models are discussed 
and compared: the aspect model, a proba­
bilistic latent space model which models indi­
vidual preferences as a convex combination of 
preference factors, and the two-sided clustering 
model, which simultaneously partitions persons 
and objects into clusters. We present EM algo­
rithms for different variants of the aspect model 
and derive an approximate EM algorithm based 
on a variational principle for the two-sided clus­
tering model. The benefits of the different mod­
els are experimentally investigated on a large 
movie data set. 

1 In t roduc t i on 

The rapid growth of digital data repositories and the 
overwhelming supply of on-line information provided by 
today's communication networks bears the risk of con­
stant information overload. Information filtering refers 
to the general problem of separating useful and impor­
tant information from nuisance data. In order to support 
individuals wi th possibly different preferences, opinions, 
judgments, and taste, in their quest for information, an 
automated filtering system has to take into account the 
diversity of preferences and the relativity of information 
value. One commonly distinguishes between (at least) 
two major approaches [Resnik et a/., 1994]: (i) content-
based filtering organizes information based on properties 
of the object of preference or the carrier of information 
such as a text document, while (i i) collaborative filtering 
[Goldberg et al., 1992] (or social filtering) aims at ex­
ploiting preference behavior and qualities of other per­
sons in speculating about the preferences of a particular 
individual. 

1.1 Information Fi l ter ing 
Most information filtering systems have been designed 
for a particular application domain, and a large fraction 
of the research in this area deals wi th problems of sys­
tem architecture and interface design. In contrast, this 
paper wi l l take a more abstract viewpoint in order to 
clarify some of the statistical foundations of collaborative 
filtering. In particular, the presupposition is made that 
no external knowledge beyond the observed preference 
or selection behavior is available, neither about proper­
ties of the objects (such as documents, books, messages, 
CDs, movies, etc.) nor about the involved persons (such 
as computer users, customers, cineasts, etc.). This work­
ing hypothesis is not as unrealistic as it may seem on first 
sight since, for example, many computer systems which 
interact with humans over the Web do not collect much 
personal data for reasons of privacy or to avoid t ime-
consuming questionnaires. The same is often true for 
properties of objects where it is sometimes difficult to ex­
plicit ly determine those properties that make it relevant 
to a particular person. Moreover, one might integrate 
information from both sources in a second step, e.g., by 
deriving prior probabilities from person/object features 
and then updating predictions in the light of observed 
choices and preferences. 

1.2 Dyad ic D a t a 
We thus consider the following formal setting: Given are 
a set of persons j and a set of objects 

We assume that observations are 
available for person/object pairs (x,y), where and 

this setting has been called dyadic data in [Hof-
mann et al, 1999]. In the simplest case, an observation 
wi l l just be the co-occurrence of x and y, representing 
events like "person x buys product y" or "person x par­
ticipates in y". Other cases may also provide some addi­
tional preference value v wi th an observation. Here, we 
wi l l only consider the simplest case, where 
corresponds to either a negative or a positive example of 
preference, modeling events like "person x likes/dislikes 
object y". 

Two fundamental learning problems have to be ad­
dressed: (i) probabilistic modeling and (i i) structure dis-
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covery. As we wi l l argue, different statistical models are 
suitable for either task. The aspect model presented in 
Section 2 is most appropriate for prediction and recom­
mendation, while the two-sided clustering model intro­
duced in Section 3 pursues the goal of identifying mean­
ingful groups or clusters of persons and objects. A l l 
discussed models belong to the family of mixture mod­
els, i.e., they can be represented as latent variable mod-
els wi th discrete latent variables. The main motivation 
behind the introduction of latent variables in the con­
text of filtering is to explain the observed preferences 
by some smaller number of (typical) preference patterns 
which are assumed to underly the data generation pro­
cess. In probabilistic modeling, this is mainly an attempt 
to overcome the omnipresent problem of data sparseness. 
Models wi th a reduced number of parameters wil l in gen­
eral require less data to achieve a given accuracy and are 
less sensitive to overfitting. In addition, one might also 
be interested in the structural information captured by 
the latent variables, for example, about groups of people 
and clusters of objects. 

2 T h e A s p e c t M o d e l 
2.1 M o d e l Specif icat ion 
In the aspect model [Hofmann et al., 1999], a latent class 
variable is associated with each ob­
servation (x, y). The key assumption made is that x and 
y are independent, conditioned on z. The probability 
model can thus simply be written as 

where and are class-conditional mult i -
nominal distributions and P(z) are the class prior prob-
abilities. Notice that the model is perfectly symmet­
ric wi th respect to the entities x and y. Yet, one may 
also re-parameterize the model in an asymmetric man­
ner, e.g., by using the identity 

which yields 

A dual formulation can be obtained by reversing the role 
of x and y. Eq. (3) is intuitively more appealing than 
(1) since it explicitly states that conditional probabilities 

are modeled as a convex combination of aspects 
or factors In the case of collaborative filtering, 
this implies that the preference or selection behavior of 
a person is modeled by a combination of typical pref-
erence patterns, represented by a distribution over ob­
jects. Notice that it is neither assumed that persons form 
'groups', nor is stipulated that objects can be partitioned 
into 'clusters'. This offers a high degree of flexibility in 
modeling preference behavior: Persons may have a mul­
titude of different interests, some of which they might 

share with some people, some with others, a fact which 
can be expressed perfectly well in the aspect model. It is 
also often the case that objects are selected by different 
people for different reasons. In this case, one might have 
a number of aspects with high probability P(y\z) for a 
particular object y. 

2-2 M o d e l F i t t i n g b y E M 
The standard procedure for maximum likelihood estima­
tion in latent variable models is the Expectation Max­
imization (EM) algorithm [Dempster et al., 1977]. EM 
alternates two steps: (i) an expectation (E) step where 
posterior probabilities are computed for the latent vari­
ables z, based on the current estimates of the parame­
ters, (ii) an maximization (M) step, where parameters 
are updated for given posterior probabilities computed 
in the previous E-step. 

For the aspect model in the symmetric parameteriza­
tion Bayes' rule yields the E-step 

By standard calculations one arrives at the following M-
step re-estimation equations 

where n(x, y) denotes the number of times the pair (x, y) 
has been observed. Alternating (4) with (5) and (6) 
defines a convergent procedure that approaches a local 
maximum of the log-likelihood. 

Implici t in the above derivation is a multinomial sam­
pling model, which in particular implies the possibility 
of multiple observations. This may or may not be appro-
priate and one might also consider hypergeometric sam­
pling without replacement, although according to sta­
tistical wisdom both models are expected to yield very 
similar results for large populations. 

2.3 Extens ion to Preference Values 
Let us now focus on extending the aspect model to cap-
ture additional binary preferences We 
distinguish two different cases: (I.) situations where the 
selection of an object is performed by the person, which 
then announces her or his preference in retrospect, (II) 
problems where the selection of y is not part of the be­
havior to be modeled, for instance because it is controlled 
or triggered by some other external process. 

1The presented models can be further generalized to han­
dle arbitrary preference values, but this requires to specify 
an appropriate likelihood function based on assumptions on 
the preference scale. 
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Figure 1: Graphical model representation of the aspect model (a) and its extensions to model preference values 
(b)-(d) (case I) and (e),(f) (case I I ) . 

Case I. In the first case, there are three different ways 
to integrate the additional random variable v into the 
model, as shown by Figure 1 (b)-(d). In (b) v is con­
ditionally independent of x and y given z, which is a 
very strong assumption. One implication is that aspects 
are typically employed to either model positive or nega­
tive preferences. In variant (c) and (d), v also depends 
on either x or y which offers considerably more flexibil­
i ty, but also requires to estimate more parameters. It is 
straightforward to modify the EM equations appropri­
ately. We show the equations for model (c), the other 
variants require only minor changes. For the E-step one 
obtains 

where n(x, y, v) denotes the number of times a particu­
lar preference has been observed (typically n(x ,y , v) 
{0 ,1 } ) . From P(y, v\z) one may also derive . and 
P(v\y, z), if necessary. The M-step equation for P{x\z) 
does not change. Effectively the state space of y has 
been enlarged to 

Notice that one might also consider to combine the 
model variants in Figure 1 by making different condi-
tional independence assumptions for different values of z. 
The resulting combined model corresponds to a Bayesian 
multinet [Geiger and Heckerman, 1996]. 

Case I I . In the second case, the mult inomial sampling 
model of selecting y or a (y, v) pair conditioned on z is no 
longer adequate. We thus propose a modification of the 
aspect model starting from (3) and replace multinomials 
P(y\z) w i th Bernoulli probabilities P(v\y, z), assuming 
that y is always conditioned on (cf. Figure 1 (e)). This 
modification results in the E-step 

Comparing (9) wi th (7) one observes that i 
is now replaced by since y is treated as 
a fixed (observation-dependent) conditioning variable. 
Note that by conditioning on both, x and y, one gets 

which reveals the asym­
metry introduced into the aspect model by replacing 
one of the class-conditional multinomials wi th a vector 
of Bernoulli probabilities. The presented version is the 
"collaborative" model. Reversing the role of x and y 
yields the dual counterpart in Figure 1 ( f ) , where the 
prediction of v depends directly on x and only indirectly 
on y (through z). Again combining both type of depen­
dency structures in a multinet might be worth consider­
ing. 

3 T h e T w o - S i d e d C l u s t e r i n g M o d e l 

3.1 M o d e l Speci f icat ion 
In the two-sided clustering model the strong assump­
tion is made that each person belongs to exactly one 
group of persons and that each object belongs to exactly 
one group of objects. Hence we have latent mappings 

which part i t ion X into K groups and y into L groups, 
respectively. This is very different in spirit from the as­
pect model, where the leitmotif was to use convex com­
binations of prototypical factors. While we expect the 
clustering model to be less flexible in modeling prefer­
ences and less accurate in prediction (a fact which could 
be verified empirically), it might nevertheless be a valu­
able model for structure discovery which has applications 
of its own right. To formalize the model, let us intro-
duce the following sets of parameters: P(x) and P(y) 
for the marginal.probabilities of persons and objects, 
P(c) and P(d) for the prior probabilities of assigning 
persons/objects to the different clusters, and, most im­
portantly, cluster association parameters 
between pairs of cluster (c,d). Now we may define a 
probabilistic model by 

A factorial prior on the latent class variables 
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Star Trek IV 0.024 

Star Trek.II 0.023 

Star Trek VI 0.023 

Star Trek I I I 0.021 

The Fif th Element 0.018 

The Rock 0.553 

Eraser 0.232 

Independence Day (ID4) 0.089 

Mission: Impossible 0.077 

Trainspotting 0.021 

Dr. Strangeiove 0.029 

A Clockwork Orange 0.020 

Delicatessen 0.018 

Cinema Paradiso 0.018 

Brazil 0.017717 

The Piano 0.288 

The Remains of the Day 0.077 

In the Name of the Father 0.067 

Forrest Gump 0.052 

Shadowlands 0.047 

Pinocchio 0.281 

The Aristocats 0.213 

Snow White and the Seven Dwarfs 0.211 

The Jungle Book 0.049 

The Lion King 0.020 

Ready to Wear 0.097 

What's Love Got To Do Wi th It? 0.091 

Circle of Friends 0.070 

Dolores Claiborne 0.037 

When a Man Loves a Woman: 0.030 

Richard I I I 0.160 

Les Miserables 0.124 

The Madness of King George 0.113 

In the Name of the Father 0.076 

The Visitors (Les Visiteurs) 0.043 

Como Agua Para Chocolate 0.132 I 

Three Colors: Red: 0.086 

Three Colors: Blue: 0.079 

Three Colors: White: 0.068 

The Piano: 0.064 

Figure 2: Movie aspects extracted from EachMovie along with the probabilities 

completes the specification of the model. The associa­
t ion parameters increase or decrease the probability 
of observing a person/object pair (x,y) wi th associated 
cluster pair (c, d) relative to the unconditional indepen­
dence model P (x ,y ) = P(x)P(y). In order for (11) to 
define a proper probabilistic model, we have to ensure a 
correct global normalization, which constrains the choice 
of admissible values for the association parameters 

3.2 Var ia t iona l E M for M o d e l F i t t i n g 
The main difficulty in the two-sided clustering model 
is the coupling between the latent mappings c(z) and 
d(y) via the cluster association parameters An 
additional problem is that the admissible range of also 
depends on c(x) and d(y). Since an exact EM algorithm 
seems to be out of reach, we propose an approximate 
EM procedure. First, since c(x) and d(y) are random 
variables we define the admissible range of to be the 
set of values for which 

where the expectation is taken w.r.t. the posterior class 
probabilities 

Secondly, the posteriors are approximated by a 
variational distribution of factorial form, 

where the Q distributions are free parameters to be de­
termined. In the (approximate) M-step one has to max­
imize [Hofmann and Puzicha, 1998] 

wi th respect to Technically, one introduces a La-
grange multiplier to enforce (13) and after some rather 

where and are marginals of the posteriors 
and n(x) , n(y) are marginal counts. Eq. (16) can be 
given a very intuitive interpretation by considering the 
hard clustering case of where it reduces to 
the expected mutual information between pairs of classes 
c and d in either spaces: the numerator in (17) then sim­
ply counts the number of times a person x belonging to 
a particular cluster c has been observed in conjunction 
with an object y from cluster d, while the denominator 
reduces to the product of the probabilities to (indepen­
dently) observe a person from cluster c and an object 
from d. 

It remains to perform the variational approximation 
and to determine values for the Q-distributions by 
choosing Q in order to minimize the KL-divergence to 
the true posterior distribution. Details on this method -
also known as mean-field approximation - can be found 
in [Jordan et a/., 1998; Hofmann and Puzicha, 1998]. For 
brevity, we report only the final form of the variational 
E-step equations: 

Notice that these equations form a highly non-linear, 
coupled system of transcendental equations. A solu­
tion is found by a fixed-point iteration which alternates 
the computation of the latent variables in one space (or 
more precisely their approximate posterior probabilities) 
based on the intermediate solution in the other space, 
and vice versa. However, the alternating computation 
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Four Weddings and a Funeral 

Home Alone 

Sleepless in Seattle 

Dave 

Pretty Woman 

The Piano 

Apollo 13 

Batman 

Batman Forever 

Star Trek: Generations 

Stargate 

Goldeneye 

E.T.: The Extraterrestrial 

Alice in Wonderland 

Cinderella 

Old Yeller 

Mary Poppins 

The Fox and the Hound 

M*A*S*H 

Full Metal Jacket 

The Bridge on the River Kwai 

Apocalypse Now 

Chinatown 

The Shining 

Kalifornia ! 

Short Cuts 

Smoke 

Red Rock West 

Romeo is Bleeding 

Crumb 

Figure 3: Movie clusters extracted from EachMovie. 

has to be interleaved wi th a re-computation of the 
parameters, because certain term cancelations have been 
exploited in the derivation of (18,19). The resulting al­
ternation scheme optimizes a common objective function 
and always maintains a valid probability distribution. 
To initialize the model we propose to perform one-sided 
clustering, either in the X or the y space. 

3.3 C lus te r ing w i t h Preference Values 
Like the basic aspect model, the two-sided clustering 
model is based on mult inomial sampling, i.e., it models 
independently generated occurrences of (x, y) pairs. To 
model preference values v conditioned on (x, y) pairs, we 
modify the model by replacing the association parame-
ters wi th Bernoulli parameters 

The assumption is that v is independent of x and y, 
given their respective cluster memberships.2 Although 
the latent mappings c and d are coupled, this model is 
somewhat simpler than the model in (11), since there is 
no normalization constraint one needs to take care of. 
The conditional log-likelihood is thus simply 

where of course In the 
M-step we have to maximize the expected log-
likelihood under the posterior distribution of the latent 
mappings c(x) and d{y) which yields the formula 

In the hard clustering l im i t , this simplifies to counts of 
how many persons in cluster c like or dis­
like (v = —1) objects from cluster d (ignoring missing 
values). The denominator then corresponds to the to­
tal number of votes available between x's belonging to 
c and y's belonging to d. A factorial approximation of 

2 Refined models may also consider additional weights to 
account for individual preference averages. 

K(L) 

1(1) 
8(8) 

16 (16) 
32 (32) 
64(64) 
128(128) 

Aspect 
Co-occ. (a) 

442 
255 
241 

237 (228) 
234 (224) 
231 (219) 

Cluster 
Co-occ. 

442 
349 
335 
308 

341(301) 
380(298) 

Aspect 
Pref. (d) 

827 
475 
442 

434 (401) 
425 (395) 
418 (388) 

Table 1: Perplexity results on EachMovie for different 
model types (columns) and different model complexities 
(rows). 

the posterior probabilities along the same lines as 
discussed above, yields 

These equations are very similar to the ones derived in 
[Ungar and Foster, 1998]. The clustering model they 
present is identical to the Bernoulli model in (20), but 
the authors propose Gibbs sampling for model fitting, 
while we have voted for the computationally much faster 
variational EM algorithm.3 

4 Exper imenta l Results 
To demonstrate the ut i l i ty of latent class models for col­
laborative filtering, we have performed a series of ex­
periments wi th the EachMovie dataset which consists of 
data collected on the internet (almost 3 mil l ion prefer­
ence votes on a 0-5 scale which we have converted to 

preferences by thresholding).4 Table 1. summa-

3 For example, on the EachMovie database used in the 
experiments we were not able to train models with Gibbs 
sampling because of the immense computational complexity. 

4 For more information on this dataset see 
www/research.digital.com/SRC/EachMovie. 
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Data 1 

Star Trek: The Mot ion Picture 

Star Trek: Generations 

Star Trek I I 

| Star Trek I I I 

Star Trek V 

Star Trek VI 

Recommendations 

The Empire Strikes Back 

Star Trek: First Contact 

Raiders of the Lost Ark 

Stargate j 

The Terminator 

Return of the Jedi 

Data 2 

Pulp Fict ion 

Fargo 

Smoke 

Three Colors: Blue 

Four Weddings and a Funeral 

A2001: A Space Odyssey 

Recommendations 

The Silence of the Lambs 

Toy Story 

Dead Man Walking 

Batman 

Leaving Las Vegas 

The Piano 

Figure 4: Two exemplary recommendations computed with an aspect model (K = 128). 

rizes perplexity results5 obtained with the aspect model 
and the two-sided clustering model for different number 
of latent classes. As expected the performance of the as­
pect model is significantly better than the one obtained 
wi th the clustering model. The aspect model achieves a 
reduction of roughly a factor 2 over the marginal inde­
pendence model (baseline at K = 1). By using anneal-
ing techniques (cf. [Hofmann and Puzicha, 1998]) slightly 
better results can be obtained (numbers in brackets). 

To give an impression of what the extracted movie 
aspects and movie clusters look like, we have displayed 
some aspects of a K = 128 model in Figure 2 and clus­
ters of a K = L = 32 solution represented by their 
members with highest posterior probability in Figure 3. 
Notice that some movies appear more than once in the 
aspects (e.g. 'The Piano'). Both authors have also been 
subjected to a test run with the recommendation sys­
tem. The result - which was perfectly satisfying from 
our point of view - is shown in Figure 4. We hope the 
reader might also spot one or another valuable recom­
mendation. 

5 Conclusion 
We have systematically discussed two different types of 
latent class models which can be utilized for collabora­
tive filtering. Several variants corresponding to different 
sampling scenarios and/or different modeling goals have 
been presented, emphasizing the flexibility and richness 
of latent class models for both, prediction and struc­
ture discovery. Future work wi l l address alternative loss 
functions and wi l l have to deal wi th a more detailed per­
formance evaluation. 
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