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Abs t rac t 

This paper presents a novel statistical latent 
class model for text mining and interactive 
information access. The described learning 
architecture, called Cluster-Abstraction Model 
(CAM), is purely data driven and utilizes 
contact-specific word occurrence statistics. In 
an intertwined fashion, the C A M extracts hi­
erarchical relations between groups of docu­
ments as well as an abstractive organization 
of keywords. An annealed version of the 
Expectation-Maximization (EM) algorithm for 
maximum likelihood estimation of the model 
parameters is derived. The benefits of the C A M 
for interactive retrieval and automated cluster 
summarization are investigated experimentally. 

1 In t roduc t i on 
Intelligent processing of text and documents ultimately 
has to be considered as a problem of natural language un­
derstanding. This paper presents a statistical approach 
to learning of language models for context-dependent 
word occurrences and discusses the applicability of this 
model for interactive information access. The proposed 
technique is purely data-driven and does not make use 
of domain-dependent background information, nor does 
it rely on predefined document categories or a given list 
of topics. 

The Cluster-Abstraction Model (CAM), is a statistical 
latent class or mixture model [McLachlan and Basford, 
1988] which organizes groups of documents in a hierar­
chy. Compared to most state-of-the-art techniques based 
on agglomerative clustering (e.g., [Jardine and van Rijs-
bergen, 1971; Croft, 1977; Wi l let t , 1988]) it has several 
advantages and additional features: As a probabilistic 
model the most important advantages are: 

• a sound foundation in statistics and probabilistic 
inference 

• a principled evaluation of generalization perfor­
mance for model selection, 

• efficient model fitting by the EM algorithm, 

• an explicit representation of conditional indepen­
dence relations. 

Addit ional advantages are provided by the hierarchical 
nature of the model, namely: 

• multiple levels of document clustering, 
• discriminative topic descriptors for document 

groups, 
• coarse-to-fine approach by annealing. 
The following section wi l l first introduce a non-

hierarchical probabilistic clustering model for docu­
ments, which is then extended to the ful l hierarchical 
model. 

2 Probabi l is t ic C luster ing of 
Documents 

Let us emphasize the clustering aspect by first in­
troducing a simplified, non-hierarchical version of the 
C A M which performs 'f lat ' probabilistic clustering and 
is closely related to the distributional clustering model 
[Pereira et a/., 1993] that has been used for word cluster­
ing and text categorization [Baker and McCallum, 1998]. 
Let denote documents and 

denote words or word stems. 
Moreover let wd refer to the vector (sequence) of words 
Wdt constituting d. Word frequencies are summarized 
using count variables n(d,w) which indicate how often 
a word w occurred in a document 
denotes the document length. 

Following the standard latent class approach, it is as­
sumed that each document d belongs to exactly one clus-
ter where the number of clus­
ters is assumed to be fixed for now. Introducing class 
conditional word distributions and class prior 
probabilities P(c) (stacked in a parameter vector the 
model is defined by and 

The factorial expression reflects conditional indepen­
dence assumptions about word occurrences in wd (bag-
of-words model). 
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Starting from (1) the standard EM approach [Demp­
ster et ai, 1977] to latent variable models is employed. 
In EM two re-estimation steps are alternated: 

• an Expectation (E)-step for estimating the posterior 
probabilities of the unobserved clustering variables 

for a given parameter estimate 
• a Maximization (M)-step, which involves maximiza­

tion of the so-called expected complete data log-like­
lihood for given posterior probabilities wi th respect 
to the parameters. \ 

The EM algorithm is known to increase the observed 
likelihood in each step, and converges to a (local) maxi­
mum under mi ld assumptions. 

An application of Bayes' rule to (1) yields the follow­
ing E-step re-estimation equations for the distributional 
clustering model 

The M-step stationary equations obtained by differenti­
ating C are given by 

1 

These equations are very intuitive: The posteriors 
encode a probabilistic clustering of doc­

uments, while the conditionals . represent average 
word distributions for documents belonging to group c. 
Of course, the simplified flat clustering model defined 
by (1) has several deficits. Most severe are the lack of 
a multi-resolution structure and the inadequacy of the 
'prototypical' distributions P(w\c) to emphasize discrim­
inative or characteristic words (they are in fact typically 
dominated by the most frequent word occurrences). To 
cure these flaws is the main goal of the hierarchical ex­
tension. 

3 Document Hierarchies and 
Abs t rac t ion 

3.1 The Cluster-Abstraction Model 
Most hierarchical document clustering techniques utilize 
agglomerative algorithms which generate a cluster hier­
archy or dendogram as a by-product of successive cluster 
merging (cf. [Wil lett , 1988]). In the CAM we wi l l use an 
explicit abstraction model instead to represent hierarchi­
cal relations between document groups. This is achieved 
by extending the 'horizontal' mixture model of the pre­
vious section wi th a 'vertical' component that captures 
the specificity of a particular word w in the context of 
a document d. It is assumed that each word occurrence 
Wdt has an associated abstraction node a, the latter be­
ing identified wi th inner or terminal nodes of the cluster 
hierarchy (cf. Figure 1 (a)). 

To formalize the sketched ideas, additional latent vari­
able vectors ad wi th components adt are introduced 
which assign words in d to exactly one of the nodes 
in the hierarchy. Based on the topology of the nodes 
in the hierarchy the following constraints between the 
cluster variables cd and the abstraction variables adt are 
imposed: 

(5) 
The notation wi l l be used as a shortcut to refer 
to nodes a above the terminal node c in the hierarchy. 
Eq. (5) states that the admissible values of the latent 
abstraction variables adt for a particular document wi th 
latent class cd are restricted to those nodes in the hi ­
erarchy that are predecessors of cd. This breaks the 
permutation-symmetry of the abstraction nodes as well 
as of the document clusters. An abstraction node a at 
a particular place in the hierarchy can only be utilized 
to "explain" words of documents associated with termi­
nal nodes in the subtree of a. A pictorial representation 
can be found in Figure 1 (b): if d is assigned to c the 
choices for abstraction nodes for word occurrences Wdt 
are restricted to the 'active' (highlighted) vertical path. 
One may think of the C A M as a mixture model wi th 
a horizontal mixture of clusters and a vertical mixture 
of abstraction levels. Each horizontal component is a 
mixture of vertical components on the path to the root, 
vertical components being shared by different horizontal 
components according to the tree topology. 

Generalizing the non-hierarchical model in (1), a 
probability distribution over words is attached 
to each node (inner or terminal) of the hierarchy. After 
application of the chain rule, the complete data model 
(i.e., the joint probability of all observed and latent vari­
ables) can be specified in three steps 

and 

Note that additional document-specific vertical mixing 
proportions over abstraction nodes above clus­
ter c have been introduced, wi th the understanding that 

= 0 whenever it is not the case that a | c. 
If one makes the simplifying assumption that the same 
mixing proportions are shared by all documents assigned 
to a particular cluster the so-
lution degenerates to the distributional clustering model 
since one may always choose However, 
we propose to use this more parsimonious model and fit 
P(a|c) from held-out data (a fraction of words held out 
from each document), which is in the spirit of model 
interpolation techniques [Jelinek and Mercer, 1980]. 
3-2 E M A l g o r i t h m 
As for the distributional clustering model before, we wi l l 
derive an EM algorithm for model fitting. The E-step 
requires to compute (joint) posterior probabilities of the 
form After applying the chain 
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Figure 1: (a) Sketch of the cluster-abstraction structure, (b) the corresponding representation for assigning occur* 
rences to abstraction levels in terms of latent class variables. 

rule one obtains: 

The M-step re-estimation equations for the conditional 
word distributions are given by 

which is evaluated on the held-out data. Finally, it may 
be worth taking a closer look at the predictive word prob­
ability distribution P(w\d) in the C A M which is given 
by 

If we assume for simplicity that for 
some c (hard clustering case), then the word probability 
of d is modeled as a mixture of occurrences from different 
abstraction levels a. This reflects the reasonable assump­
tion that each document contains a certain mixture of 
words ranging from general terms of ordinary language 
to highly specific technical terms and specialty words. 

3.3 Annealed E M A l g o r i t h m 
There are three important problems which also need to 
be addressed in a successful application of the C A M : 
First and most importantly, one has to avoid the prob­
lem of overfitting. Second, it is necessary to specify 

a method to determine a meaningful tree topology in­
cluding the maximum number of terminal nodes. And 
third, one may also want to find ways to reduce the 
sensitivity of the EM procedure to local maxima. An 
answer to all three questions is provided by a gener­
alization called annealed EM [Hofmann and Puzicha, 
1998]. Annealed EM is closely related to a technique 
known as deterministic annealing that has been applied 
to many clustering problems (e.g. [Rose et al.,1990; 
Pereira et al., 1993]). Since a thorough discussion of 
annealed EM is beyond the scope of this paper, the the­
oretical background is skipped and we focus on a pro­
cedural description instead. The key idea in determin­
istic annealing is the introduction of a temperature pa­
rameter _ Applying the annealing principle to 
the clustering variables, the posterior calculation in (7) 
is generalized by replacing n(d,w) in the exponent by 

For this dampens the likelihood con­
tr ibution linearly on the log-probability scale and wi l l in 
general increase the entropy of the (annealed) posterior 
probabilities. In annealed EM, T is utilized as a con­
trol parameter which is initialized at a high value and 
successively lowered unt i l the performance on the held-
out data starts to decrease. Annealing is advantageous 
for model fitting, since it offers a simple and inexpen­
sive regularization which avoids overfitting and improves 
the average solution quality. Moreover, it also offers a 
way to generate tree topologies, since annealing leads 
through a sequence of so-called phase transitions, where 
clusters split. In our experiments, T has been lowered 
unti l the perplexity (i.e., the log-averaged inverse word 
probability) on held-out data starts to increase, which 
automatically defines the number of terminal nodes in 
the hierarchy. More details on this subject can be found 
in [Hofmann and Puzicha, 1998]. 

4 Results and Conclusion 
Al l documents used in the experiments have been pre-
processed by word suffix stripping wi th a word stemmer. 
A standard stop word list has been utilized to elimi­
nate the most frequent words, in addition very rarely 
occurring words have also been eliminated. An exam-
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Saul, L.; Jordan, M.I . Learning in Boltnnann trees. 
Neural Computation, Nov. 1094, voL6, {no.6):1174~M. 

(a) Verbatim 
Introduces a large family of Boi t imann machines that can be trained by standard 
gradient descent. The networks can have one or more layers of hidden units, wi th 
tree-like connectivity. We show how to implement a supervised learning algorithm 
for these Boltzmann machines exactly, without resort to simulated or mean-field 
annealing. The stochastic averages that yield the gradients in weight space are 
computed by the technique of decimation. We present results on the problems of 
N-bit parity and the detection of hidden symmetries. 

(b) Word stems 
introdnc larg famili boltzmann machin t ra in 
standard gradient descent network layer hid­
den unit connect implem supervis learn algo­
rithm boltzmann machin exactli simul anneal 
stochast averag yield gradient weight space 
techniqu present result problem pari t i detec 
hidden symmetri 

(c) Ghost writer 
level 1 paper model base new method gener process differ effect approach provid set studi develop author 
level 2 function propos model error method input opt im gener neural paramet paper obtain shown appli output 
level 3 gener number set neural propos function perform method inform data given obtain approxim dynamic input 
level 4 neural pattern rule number process recogni rate perform classif propos gener input neuron time properti data 
level 5 converg neural opt im method rule rate dynamic process pattern paramet studi statist condition adapt l imi t 
level 6 perceptron exampl error gener rale onlin calcul deriv backpropag simpl output asymptot solution separ unsupervis 
level 7 error neural architectur perform entropi statist multilay activ backpropag gener number maximum pattern phase 
level 8 teacher delta output introdnc sampl replica decai nois projec correl student temperatur gain dynamic predic 

Figure 2: (a) Abstract from the generated LEARN document collection, (b) representation in terms of word stems, 
(c) words with lowest perplexity under the CAM for words not occurring in the abstract (differentiated according to 
the hierarchy level). 

Figure 3: Group descriptions for exemplary inner nodes by most frequent words and by the highest probability words 
from the respective C A M node. 

ple abstract and its index term representation is de­
picted in Figure 2 (a),(b). The experiments reported 
are some typical examples selected from a much larger 
number of performance evaluations. They are based on 
two datasets which form the core of our current pro-
totype system: a collection of 3609 recent papers with 
'learning' as a tit leword, including all abstracts of pa­
pers from Machine Learning Vol. 10-28 (LEARN), and 
a dataset of 1568 recent papers wi th 'cluster' in the t i t le 
(CLUSTER). 

The first problem we consider is to estimate the prob­
ability for a word occurrence in a text based on the sta­
tistical model. Figure 2 (c) shows the most probable 
words from different abstraction levels, which did not 
occur in the original text of Figure 2 (a). The abstrac­
tive organization is very helpful to distinguish layers with 
t r iv ia l and unspecific word suggestions (like 'paper') up 
to highly specific technical terms (like 'replica'). 

One of the most important benefits of the CAM is 
the resolution-specific extraction of characteristic key­
words. In Figure 4 and 6 we have visualized the top 6 
levels for the dataset LEARN and CLUSTER, respec­
tively. The overall hierarchical organization of the doc­
uments is very satisfying, the topological relations be­
tween clusters seems to capture important aspects of the 
inter-document similarities. In contrast to most m u l t i -
resolution approaches the distributions at inner nodes 
of the hierarchy are not obtained by a coarsening pro-
cedure which typically performs some sort of averaging 
over the respective subtree of the hierarchy. The ab­
straction mechanism in fact leads to a specialization of 
the inner nodes. This specialization effect makes the 

probabilities P(w\a) suitable for cluster summarization. 
Notice, how the low-level nodes capture the specific vo­
cabulary of the documents associated with clusters in 
the subtree below. The specific terms become automat­
ically the most probable words in the component dis-
tr ibution, because higher level nodes account for more 
general terms. To stress this point we have compared 
the abstraction result wi th probability distributions ob­
tained by averaging over the respective subtree. Figure 3 
summarizes some exemplary comparisons showing that 
averaging mostly results in high probabilities for rather 
unspecific terms, while the C A M node descriptions are 
highly discriminative. The node-specific word distribu­
tion thus offer a principled and very satisfying solution 
to the problem of finding resolution-specific index terms 
for document groups as opposed to many circulating ad 
hoc heuristics to distinguish between typical and topical 
terms. 

An example run for an interactive coarse-to-fine re-
trieval with the CLUSTER collection is depicted in Fig­
ure 5, where we pretend to be interested in documents 
on clustering for texture-based image segmentation. In 
a real interactive scenario, one would of course display 
more than just the top 5 words to describe document 
groups and use a more advanced shifting window ap­
proach to represent the actual focus in a large hierarchy. 
In addition to the description of document groups by 
inner node word distributions, the C A M also offers the 
possibility to attach prototypical documents to each of 
the nodes (the ones with maximal probability P(a|d)), 
to compute most probable documents for a given query, 
etc. A l l types of information, the cluster summaries by 
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Figure 4: Top 6 levels of the cluster hierarchy for the LEARN dataset. Nodes are represented by their most probable 
words. Left/r ight successors of nodes in row 4 are depicted in row 5a and 5b, respectively. Similarly, left successors 
of nodes in row 5a/5b can be found in rows 6aa/6ba and right successors in rows 6ab/6bb. 

Figure 5: Example run of an interactive image retrieval 
for documents on 'texture-based image segmentation' 
wi th one level look-ahead in the CAM hierarchy. 

(locally) discriminant keywords, the keyword distribu­
tions over nodes, and the automatic selection of proto-
typical documents are particularly beneficial to support 
an interactive retrieval process. Due to the abstraction 
mechanism the cluster summaries are expected to be 
more comprehensible than descriptions derived by sim­
ple averaging. The hierarchy offers a direct way to refine 
queries and can even be utilized to actively ask the user 
for additional specifications. 

Conc lus ion : The cluster-abstraction model is a 
novel statistical approach to text mining which has a 
sound foundation on the likelihood principle. The dual 
organization of document cluster hierarchies and key­
word abstractions makes it a particularly interesting 
model for interactive retrieval. The experiments carried 
out on small/medium scale document collections have 
emphasized some of the most important advantages. 
Since the model extracts hierarchical structures and sup-
ports resolution dependent cluster summarizations, the 
application to large scale databases seems promising. 
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Figure 6: Top 6 levels of the cluster hierarchy for the CLUSTER dataset (cf. comments for Figure 4). 
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