
A Case Based Approach to the Generation of Musical Expression 

Taizan Suzuki Takenobu Tokunaga H o z u m i Tanaka 
Department of Computer Science 

Tokyo Institute of Technology 
2-12-1, Oookayama, Meguro, Tokyo 152-8552, Japan. 

E-mail: {taizan, take, tanaka}@cs.titech.ac.jp 

Abs t rac t 
The majority of naturally sounding musical 
performance has musical expression (fluctua­
tion in tempo, volume, etc.). Musical ex­
pression is affected by various factors, such as 
the performer, performative style, mood, and 
so forth. However, in past research on the 
computerized generation of musical expression, 
these factors are treated as being less signifi­
cant, or almost ignored. Hence, the majority of 
past approaches find it relatively hard to gen­
erate multiple performance for a given piece of 
music with varying musical expression. 
In this paper, we propose a case-based ap­
proach to the generation of expressively mod­
ulated performance. This method enables the 
generation of varying musical expression for a 
single piece of music. We have implemented the 
proposed case-based method in a musical per­
formance system, and, we also describe the sys­
tem architecture and experiments performed on 
the system. 

1 In t roduc t i on 
Almost all musicians play music with musical expression 
(varying of tempo, volume, etc.). They consider how the 
target pieces should be played, and they elaborate upon 
it with tempo curves and change in volume. Thus, mu­
sical expression is a highly significant element in making 
performance pleasant and attractive. 

Many past research efforts have focused on the com­
puterized generation of musical expression. The major­
ity of them employ musical expression rules, which de­
fine relations between phrase characteristics and musi­
cal expression (Figure 1). Past approaches have used 
rules of musical expression manually acquired by hu­
man researchers ([Fryden and Sundberg, 1984], [Friberg 
and Sundberg, 1986], [Friberg, 1991], and [Noike et a/., 
1992]). Here, expressively modulated performance is 
generated by applying these rules to the target piece. 
Some recent research efforts have introduced learning 
mechanisms into the acquisition of rules ([Bresin et a/., 
1992 , [Chafe, 1997], [Widmer, 1993b], [Widmer, 1993a], 
and [Widmer, 1995]). These approaches extract rules of 
musical expression from sample performance data played 
by human musicians. Since the above methods generate 
and apply rules of musical expression, they are called 
rule-based approaches. 

One advantage of rule-based approaches is, once the 
rule set is established, it is applicable to any piece of mu­
sic. Another advantage is transparency in that users can 

Figure 1: The basic mechanism employed by rule-based 
approaches 

access rules for musical expression used in the generation 
process. These rules are useful for cognitive research. 

On the other hand, rule-based approaches have some 
drawbacks. The most serious one is that these ap­
proaches are hard to adapt to the generation of perfor­
mances with different styles. 

Generally, musical expression has vast freedom and 
a broad range of tolerance. Musical expression varies 
according to various factors, for instance, the performer, 
style (e.g. "Baroque", "Romantic", etc.), mood (e.g. 
"lively", "calm", etc.), and so forth. We call these factors 
performance conditions. 

To generate suitable musical expression by computer, 
these performance conditions must be taken into consid­
eration. However, as was seen for rule-based approaches, 
it is hard to introduce these factors into the process of 
generation. Besides, performance conditions are difficult 
to describe in term of rules of musical expression, since 
they consist of various elements and each element con­
tinuously changes. Thus, there is l itt le research which 
has considered such factors ([Canazza et a/., 1997]). 

On the other hand, there is very l i tt le research which 
has employed non-rule-based approaches. Arcos, et al. 
applied case based reasoning (CBR) to the generation 
of musical expression ([Arcos et a/., 1997]). Their ap­
proach uses a performance data set as a musical expres­
sion knowledge base. For each note in the target piece, it 
retrieves similar notes from the knowledge base, analyzes 
musical expression in these similar notes, and applies to 
the target piece. However, Arcos, et al. do not take 
any kind of performance conditions into account, such 
that, their approach cannot generate performance vari­
ety, similarly to rule-based approaches. 

We aim to develop a method of computerized genera­
tion of natural musical expression which incorporates a 
range of performance conditions. To overcome the prob-
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lems faced by conventional methods, we propose a new 
case-based method for the generation of musical expres­
sion. The advantage of this method is that it can easily 
consider performance conditions, to be able to gener­
ate various kinds of musical expression for a single piece 
of music in accordance with performance condition set­
tings. We have implemented the case-based method pro­
posed in this paper in a music performance system. In 
the remainder of this paper, we present our case-based 
method for the generation of musical expression, and 
discuss the architecture of the performance system in­
corporating this method, and experiments on it. 

2 Case-based method for musical 
expression generat ion 

2.1 Concept 
Figure 2 shows a rough outline of our method. Our 
method uses a performance data set consisting of pre-
analyzed musical pieces, from which an example data set 
is extracted for use as the musical expression knowledge 
base. An example data set is acquired for each inputted 
target piece. Moreover, we evaluate the significance of 
each example piece to the input piece by considering the 
structural resemblance of the two pieces and similarity 
between performance conditions for the input and exam­
ple piece. The resultant performance is generated based 
on the example data set and the various significance val­
ues. Hence, even if the example pieces are fixed, the 
generated performance will change according to the in­
put performance conditions. This mechanism realizes 
our aim of generating varying musical expression. 

Figure 2: Rough outline of our case-based method for 
musical expression generation 

2.2 Algor i thm 
This section describes the basic architecture used in our 
case-based method. Figure 3 shows the algorithm of our 
method. 

Our method requires a performance data set, which is 
a set of musical performance data performed by human 
musicians. Each data component has not only a record of 
the event sequence (note on, note off, pedal control, etc.) 
but also the musical score of the performed piece and 
the performance conditions under which the data was 

Figure 3: Overview of the case-based method for musical 
expression generation 

recorded. This performance data set must be collected 
beforehand. 

Our method comprises the following stages: 1) input 
the musical score of the target piece and performance 
condition settings, 2) extract similar parts (called the 
example segment set) from the performance data set, 
3) analyze musical expression in each example segment, 
4) evaluate the significance of each example segment, 5) 
compose the musical expression pattern for the target 
piece, and, 6) apply the musical expression pattern to 
the target piece. 

Input data consists of information about the target 
piece taken from the musical score and performance con­
dition settings. The musical score information is not 
only the information about note sequence but also ac­
companying information (e.g. beats, bars, repetitions, 
pauses, etc.). The performance condition settings are 
parameters which decide the characteristics and mood 
of the generated performance. A description of the per­
formance condition settings is presented in Section 3.2. 

In the extraction stage, our method divides both the 
target piece and each example piece in the performance 
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data set into segments (e.g. parts, phrases, bars, etc.) 
(see Section 3.1 for details). Then, the similarity be­
tween each segment of the target piece and all sample 
segments is evaluated, and similar sample segments are 
obtained as the example data set for the target piece. 

In the analysis stage, our method compares the record 
of the performance sequence and the musical score for 
each example segment, and analyzes variances in tempo, 
volume, and so on. Variance in musical expression is 
represented as a curve of the relative diversity, called 
the musical expression pattern (MEP) (see Section 3.3 
for details). Patterns for all example data segments are 
stored in the MEP set 

In the evaluation stage, our method calculates a sig­
nificance score for each example segment. This score in­
dicates how useful the example data is expected to be in 
the generation of musical expression for the target piece. 
It is determined principally from similarity in musical 
score and performance conditions. 

As a result of the analysis and evaluation stages, an 
MEP set with significance scores is obtained. In the com­
position stage, these MEPs are integrated into a musical 
expression value for the whole target piece (see Section 
3.3 for details). The first step of this stage is the calcu­
lation of the MEPs for each segment of the target piece. 
This is achieved through the average of example MEPs 
for that segment. The average is weighted by the signifi­
cance of each MEP. The second step is the integration of 
segments MEPs. In this step, averaged MEPs for each 
target piece segment are unified as the integrated MEP. 

Finally, in the application stage, our method applies 
the integrated MEP to the musical score of the target 
piece, and outputs the resultant performance data. 

3 C o m p o n e n t t e c h n o l o g i e s 

3 .1 S e g m e n t a t i o n o f m u s i c a l p ieces 
Generally speaking, one possible serious problem faced 
by the case-based method is shortfalls in the example 
data set. Our methods extracts available example seg­
ments from the example data set, analyzes them, and 
applies them to the target piece. Thus, if the size of 
available example data is insufficient, the proceeding 
processes will not function satisfactorily. 

Arcos et al. used single notes as their segment granu­
larity, and introduced cognitive musical structure to re­
late neighboring notes. This is based on Narmour's im­
plication/realization model ([Narmour, 1990]), and Ler-
dahl and Jackendoff's generative theory of tonal music 
([Lerdahl and Jackendoff, 1983]). This is a good way to 
avoid shortfalls in the example data set. However, such 
an approach is insufficient to generate musical expression 
variance over longer stretches of music. Therefore, as 
mentioned above, our method extracts sequence of notes 
instead of single notes as the example data, and does not 
rely on the cognitive musical structure. It is obvious that 
the cognitive structure has a good effect on the gener­
ation of musical expression. However, since there may 
be individual differences between some of these struc­
tures, it is undesirable to rely solely on this knowledge 
type. Moreover, we think that the cognitive structure 
can equally be acquired with a case-based method simi­
lar to that proposed here. So, in this research, we chose 
the more challenging path, that is the generation with­
out cognitive musical structure. 

In our method, the most desirable example type is per­
formance data on the target piece. However, it is unreal­

istic to expect that such examples can be obtained, and 
close-fitting examples for all portions of the target piece 
are also rarely found. In other words, it is likely that 
enough examples could not be found simply by querying 
a piece which is similar throughout. 

To avoid this problem, as briefly mentioned above (cf. 
Section 2.1), we divide the target piece into segments, 
and extract an example data set for each segment. 

So as to extract examples extensively for all parts of 
the target piece, queries should be made at various gran­
ularities of division. Ideally, all possible methods of di­
vision should be tried. However, the number of plausible 
segment lengths reaches exponential order on the num­
ber of notes which appear in the target piece, making 
such exhaustive computation unrealistic from the view­
point of computational cost. Hence, our method uses a 
number of consistent approaches to division, which are 
based on the musical structure described in the musical 
score. 

Most music pieces have a hierarchical musical struc-
ture consisting of musically meaningful segments (e.g. 
motives, repetitions, phrases, bars, etc.). The musical 
structure mentioned in this paper is not cognitive, but 
a combination of parts which constitute musical pieces. 
This structure consists of multiple layers of variably sized 
segmentation units. The segmentation unit at the bot-
torn layer is the smallest sized segments, i.e. the single 
note. The segmentation unit at the next layer up is one 
size larger, which is usually a beat. Still higher layers 
consist of much larger segments, such as a half bar, bar, 
phrase, sequence of phrases, repetition, motive, and so 
on. The top layer is composed of the whole piece. The 
segmentation of a musical piece is described in the mu­
sical score to some extent, and likely to be unaffected by 
factors other than musical score information. In dividing 
the target piece into segments, the possibility of finding 
appropriate examples increases. 

3.2 P e r f o r m a n c e c o n d i t i o n s 

This section explains performance conditions and the as­
sociated method of comparison. 

Performance conditions are described as a set of fea­
tures. Each feature is made up of key and value. The 
key indicates the particular feature in the form of a key­
word. The value is the degree of the feature, and given 
as a real number in the range -1 to 1. For instance, "an 
elegant and bright performance" has two features. One 
feature has the key "elegant", and the other has the key 
"bright". The value of each feature is between 0 and 1. 
In the case of "elegant and very bright performance", 
the value of the feature "bright" is close to 1. In con­
trast, in the case of "somewhat bright performance", the 
value of the feature "bright" is close to 0. In the case 
of "non-bright performance", the feature "bright" has 
a negative value. If the feature "bright" is not given, 
it is considered that this performance implicitly has the 
feature "bright" with value 0. 

Not only the information on the feel to the perfor­
mance but also information on the performer and perfor­
mance style are also described in this form. For example, 
performance data from musician "A" has feature "per­
former A" . The value of this feature is 1. In the case of 
musician A imitating musician B, the performance con­
ditions consist of feature "performer A" and "performer 
B", with values slightly closer to 0 than in the previous 
case. 
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Now, considering the key and value of each feature as 
unit vector and the norm of that vector, respectively, 
performance conditions are the sum of vectors on a vec­
tor space which covers each unit vector key. This sum­
mation of the vectors is named the performance condi­
tion vector. Equation 1 shows performance condition 
vector v 

(1) 
where V is the set of keys of features which constitute 

the performance conditions, and ai is the value of key t. 
By introducing the concept of the performance con­

dition vector, similarity in performance conditions can 
be evaluated through the distance between the perfor­
mance conditions vectors. Equation 2 shows the resem­
blance value of performance condition vectors v and u. 
The numerator is the dot product of the performance 
vectors. The denominator is the square of the length of 
the larger vector, hence normalizing the degree of resem­
blance. 

(4 bars) or a half phrase (2 bars). The parent is de­
cided in accordance with the segmentation strategy. In 
the case of tempo, the MEP is calculated from the sec­
onds/crotchet value, instead of the tempo value, since 
the tempo value is inconsistent in some calculations (e.g. 
the mean of tempo values and the average tempo value 
usually differ). 

Figure 4: An example of MEP calculation for tempo 

(2) 

3.3 Mus ica l expression p a t t e r n 
This method uses musical expression patterns (MEPs) in 
the generation process. This section describes analysis 
and composition of MEPs. 

Analysis o f M E P s 
This method uses the ratio of "the musical expression 
value (tempo, volume, and so on) of the target exam­
ple segment" to "the average value of the next segment 
up (parent segment)" as a representation of variance in 
musical expression. The MEP of an example segment is 
the set of the ratios for each type of musical expression 
(tempo, volume, etc.). Equation 3 shows this calcula­
tion, (s) is the MEP of musical expression type exp 
(seconds/crotchet (see below), volume, etc.) for a seg­
ment s, Si j is a segment of the target piece, t is the depth 
of the segmentation layer (c.f Section 3.1), j and k are 
segment indices within the given segmentation layer, Si,j 
is a sub-phrase of Si-1,k,and exp(s) is the musical ex­
pression value of segment s. The average MEP over all 
segments composing one segment size up is always 1. 

(3) 

The following example shows the calculation of MEP 
for a performance data segment of a 4 bar phrase (Fig­
ure 4). This performance data is played at an average 
tempo of 120 (0.5 seconds/crotchet). In the case of hu­
man performance, the tempo varies with musical expres­
sion, so that the tempo of most notes in the phrase will 
be other than 120. In this example, the average tempo 
of each bar is, respectively, 115 (0.52 seconds/crotchet), 
133 (0.45 seconds/crotchet), 150 (0.4 seconds/crotchet), 
and 95 (0.63 seconds/crotchet). (Note that the average 
of these tempos will not be 120, since the average tempo 
is the reciprocal of total performance time.) As men­
tioned above, MEP is the ratio of the expression value 
of the target segment to the value of the next segment 
up. In this case, target segments are made up of each 
bar, and the parent will generally be the whole phrase 

Assuming that the next segment up is the whole 
phrase, the tempo MEP for each segment (each bar) 
is the ratio of the seconds/crotchet tempo of each bar 
(0.52, 0.45, ...) to the seconds/crotchet tempo of the 
whole phrase (0.5). In this way, the MEP for the bars 
are 1.04, 0.9, 0.8, and 1.26, respectively. 

M E P composi t ion 
In the composition stage, these MEPs are integrated into 
a single MEP for the whole target piece. As mentioned in 
Section 2.1, the composition stage consists of two steps. 
The first step is the calculation of the MEP for each 
segment of the target piece. The MEP of each segment 
of the target piece is the weighted mean of MEPs of all 
examples for that. Equation 4 is a formalization of this 
process. In this equation, Si,j refers to a segment of tar­
get piece, Ei,j is the overall example data set for segment 
si,j and W(s) is the weight of example segment s, which 
is calculated from the significance of each segment. 

(4) 

The second step is the integration of the individual 
MEPs. In this step, for each note of the target piece, 
the MEPs of all ancestral segments are multiplied. An 
ancestral segment of a note is any segment which con­
tains that note. Equation 5 shows the integrated MEP 
for the mth note n m . Si is the set of segments in tth 
layer, and n is number of layers, where the segmentation 
unit of the nth layer is a single note (i.e. sn,m = nm ) . 

Figure 5 shows a simple example of this calculation. 
The MEP for a half bar segment is the ratio of the value 
of the half bar to the value of full length containing bar, 
and the MEP for a bar segment is the ratio of the bar 
value to the whole 4 bar phrase value. Thus, the inte­
grated MEP indicates the ratio of the value of each note 
to the value of the whole phrase. 
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Figure 5: An example of MEP generation for a 4 bar 
phrase 

4 Musica l expression generat ion system 
4.1 Outline 
We have been developing a musical expression genera­
tion system called Kagurame, which uses the case-based 
method described above. Kagurame Phase-I, the first 
stage of Kagurame, is intended to estimate the system 
capability and possibilities of our method. For the sake 
of simplicity, the types of musical pieces and performance 
conditions the system can handle have been limited. For 
example, the target piece and sample data are limited to 
single note sequences. 

4.2 A r c h i t e c t u r e 
Figure 6 shows the architecture of Kagurame Phase~-I. 
The following section describes the basic mechanism and 
algorithm for each component. 

I npu t 
As input, this system uses: 1) musical score information 
of the target piece, 2) the musical structure of the tar­
get piece, and 3) performance condition settings. The 
musical score information is a sequence of detailed pa­
rameters for each note (e.g. position, beat length, key 
value, etc.). The musical structure is information on 
segment boundaries, used to divide the target piece into 
segments (cf. Section 3.1). The performance condition 
settings are given in the form of a performance condition 
vector (cf. Section 3.2). This combined information is 
given in an originally formatted text file. 

Performance data set 
Each performance data set consists of: 1) musical score 
information, 2) musical structure, 3) performance condi­
tions, and 4) performance data. The musical score infor­
mation, musical structure, and performance conditions 
are given in the same format as described for the system 
input. The performance data is a sequential record of 
a human performance. It is given as a standard MID I 
format file (SMF). The SMF is a sequence record of note 
event information, which consists of the time, key value, 
and strength ("velocity"). This format file is easily ob­
tained from a computer and electronic keyboard. Each 
data type is divided into segments beforehand for con­
venience of calculation at the extraction stage. 

Ex t r ac t i on o f examples 
In the extraction process, first of all, the target piece is 
divided into segments according to the musical structure 
information. The similarity score between a given tar­
get segment and each performance data segment is then 

Figure 6: The system architecture of our performance 
system 

calculated, and high scoring segments are used as the ex­
ample data set for the target segment. This extraction 
process is carried out for all segments of the target piece. 

Eva lua t ion o f s im i la r i t y 
The similarity score used at the extraction stage is calcu­
lated by the similarity evaluation module. This estima­
tion is based on the resemblance of the characteristics of 
the concerned segments. The system currently uses three 
factors as segment characteristics: melody, harmony, and 
rhythm. Melody is the tendency for fluctuation in the 
melody. It is calculated as the difference between the 
average pitch of the first half of the segment and that of 
the latter half. Equation 6 shows the melody character­
istic function for segment s, where N is the set 
of notes in the first half of the segment, N1 is the set of 
notes in the latter half, and p(n) is the pitch of note n. 
The characteristic of harmony is the chord component 
of the segment. This is a set of 12 values. Each value 
is a count of given pitch note. Equation 7 shows the 
i th value of the harmony characteristic function 
The characteristics of rhythm is the beat length of the 
segment. 
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For each factor, the system evaluates the characteris­
tic parameters of target segments, calculates the resem­
blance of these parameters, and normalizes them. Re­
semblance of melody is the difference between Cm(s) for 
two segments. Resemblance of harmony is the summa­
tion of the difference of for each i (Equation 8). 
Resemblance of rhythm is the ratio of beat length. If 
this value calculates to less than 1, the inverse is used. 
The summation of these resemblances is used as the sim­
ilarity between segments. 

Analysis o f M E P s 
Then, this system analyzes the MEP of each example 
segment. Details of this process are given in Section 3.3. 

Evaluat ion of signif icance 
The significance of each example segment is the prod­
uct of similarity with the target segment, similarity with 
neighbor segments, similarity with ancestral segments, 
and resemblance of performance conditions. The simi­
larity of target segments is calculated in the same way 
as for the extraction process, and likewise for the sim­
ilarity of neighbor or ancestral segments. Resemblance 
of performance conditions is the dot product of the per­
formance condition vectors in question (cf. Section 3.2). 

Compos i t ion of musical expression 
The application process consists of: 1) calculation of 
MEP for the each segment of the target piece, 2) in­
tegration of segment MEPs for the whole target piece, 
and 3) generation of expressive performance data for the 
target piece. Details of the calculation and integration 
process are given in Section 3.3. The weight for the cal­
culation of MEP of each segment (W(s) in Equation 4) 
is an exponential function on the significance of that seg­
ment. As a result of this process, the integrated MEPs 
for the overall target piece are generated. 

In the generation process, the system multiplies the 
integrated MEPs by the average for each musical expres­
sion over the whole piece. For example, in the case of 
tempo, the average seconds/crotchet value for the piece 
is multiplied in its entirety with each integrated MEP. 
The overall average value is based on example data for 
segments of the overall piece and notation on the musi­
cal score of target piece. Al l types of musical expression 
are generated in same way. Finally, the system applies 
the overall musical expression to each note of the target 
piece, and outputs the resultant performance data as an 
SMF file. 

Hand l ing of musical expression 
Kagurame Phase I handles three types of musical ex­
pression: local tempo, duration, and volume. Local 
tempo is the tempo of each note. Duration is the ratio of 
the time from note on until note off to the given length 
of the note. Duration of 1 means the note is played for 
its full length, (there is no pause or overlap). In the 
case of staccato, the duration will be close to 0, and in 
the case of legato, it wil l exceed 1. Volume is a measure 
of the strength of sound. These parameters are easily 
accessible from the SMF file. 

5 Evaluat ion 
We generated some expressive performance data with 
Kagurame Phase-I, and evaluated the resultant per­
formance. This section describes the experiments and 

evaluation of the performance generated by Kagurame 
Phase-I. 

5 .1 E x p e r i m e n t s 
A relatively homogeneous set of 21 short etudes 
from Czerny's "160 Kurze Ubungen" and "125 Pas-
sageniibungen" were used for the experiment. Perfor­
mance data was prepared for each piece. Al l performance 
data was derived from a performance by an educated hu­
man musician, and each piece was played in two different 
styles: 1) Romantic style and 2) Classical style. The per­
formance conditions for each piece has the single feature 
of "Romantic" or "Classical" with a value of 1. 

Out of the 21 pieces, one piece was selected as test 
data, and performance data for all the remaining pieces 
(20 pieces) was used as the performance data set. As 
such, the human performance data for the test piece 
was not included in the sample data set (i.e. evalua­
tion is open). Two styles (those described above) of 
performance data were generated for the test piece by 
Kagurame Phase~I based on the performance data set. 
The test piece was varied iteratively (similar to cross-
validation), and performance data was generated for all 
the pieces. Al l generated SMF data was played with a 
YAMAHA Clavinova CLP 760 and recorded on an audio 
tape for the listening experiments. 

5.2 E v a l u a t i o n o f p e r f o r m a n c e resu l t s 
We evaluated the resultant performance through a lis­
tening test and numerical comparison. In the listening 
test, the resultant performances were presented to sev­
eral human musicians for their comments. Some of them 
were players of sample data. In the numerical compari­
son, the difference between human performance and the 
generated performance was calculated, and rating was 
also made of the difference between performance data 
for the two styles. 

The following are comments from the listeners. From 
the viewpoint of satisfaction of performance, the resul­
tant performances sounded almost human-like, and mu­
sical expression was acceptable. There were some overly 
weak strokes caused by misplay in the sample data, but 
these misplays were not obvious in the resultant per­
formance. It is hard to determine which performance 
(human or system) is better, since it relies heavily on 
the listener's taste. But, if forced to say one way or the 
other, human performance was better than the system 
one. 

Figure 7: The tempo curve of the system and human 
performance of "No. 1, 160 Kurze Ubungen" 

Human listeners pointed out that the curve of the gen­
erated performance tended to be similar to that of the 
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human performance part icularly at characteristic points. 
(e.g. the end of each piece). Numerical comparison 
between the human performance and generated perfor­
mance also showed that fluctuations in musical expres­
sion for the system performance resembled human per­
formance in many respects. Figure 7 shows the compara­
t ive tempo curves for the generated performance and hu­
man performance of ' 'No. 1, 160 Kurze Ubungen" in the 
"Romantic" style (Of course, this is not the best resul­
tant data but an average case). In this graph, it observ­
able that the peaks of the graph coincide (e.g. around 65, 
100, the ending, and so on). In some portions, however, 
differences in the curve behavior are noticeable. Human 
listeners judged some of these differences to be permis­
sible and not crit ical errors. They seem to represent 
variance of musical expression w i th in the same style. 

The difference between the generated performance for 
the two styles was clear in each case. In the listening test, 
very high percentages of correct answers were obtained 
when listeners were asked to identify the performance 
style of the piece. Figure 8 shows the tempo curve of 
the "Romantic" and "Classical" styles for the generated 
performance. The target piece is "No. 1, 160 Kurze 
Ubungen". This graph also evidences differences in the 
generated tempo curve. The range of f luctuation for the 
"Romantic" style is much broader than the "Classical" 
style. Since a broad range of rubato is known as a typ­
ical characteristic of the "Romantic" style, the broader 
fluctuation seen for the "Romantic" performance seems 
to be appropriate. Based on this result, at least these 
two styles were discriminated in performance. 

Figure 8: The tempo curve of the "Romantic" and "Gas-
sical" style performances of "No. 1, 160 Kurze Ubungen" 

6 Conclusion 
This paper described a case-based method for the gener­
ation of musical expression, and detailed a music perfor­
mance system based on the case-based method proposed 
in this paper. The advantage of the proposed method is 
that it can model performance conditions during the gen­
eration process. This makes it easy to generate various 
kinds of musical expression for a single piece of music in 
accordance w i th the performance condition settings. 

According to a listening test, the resultant perfor­
mance of the described system was judged to be almost 
human-like and acceptable as a natural ly expressed per­
formance. Particularly, at characteristic points of the 
target piece, musical expression tended to be remark­
ably similar to human performance. By testing different 
styles of system performance, it was proved that our sys­
tem can generate different musical expression for a given 

piece of music. Moreover, most of the generated musical 
expression was judged to be appropriate for the given 
style. 

As a result of these experiments on the system, the 
case-based method presented in this paper can be seen to 
be useful for the generation of expressive performance. It 
was also confirmed that this method can generate vary­
ing musical expression for a single piece of music through 
changing the performance condit ion settings. 
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