
Visual Planning: A Practical Approach to Automated Presentation Design

Michelle X. Zhou
IBM T. J. Watson Research Center

30 Saw Mi l l River Rd. Rt. 9A
Hawthorne, NY 10532

mzhou@watson.ibm.com

Abstract^
Based on a set of design principles, automated

visual presentation systems promise to simplify an
application programmer's design tasks by automati­
cally constructing appropriate visual explanations for
different information. However, these automated pre­
sentation systems must be equipped with a powerful
inference approach to suit practical applications.
Here, we present a planning-based, practical infer­
ence approach that can design a series of connected
visual presentations in interactive environments. Our
emphasis here is on a set of important visual planning
features and how they facilitate visual design. This
set of features includes a knowledge-rich representa­
tion of visual planning variables and constraints, a
novel object-decomposition model that can be used
with action decomposition to simplify the visual syn­
thesis process, and practical temporal and spatial rea­
soning capabilities to facilitate coherent visual design
and presentation. In addition, we have implemented
our visual planning approach in a visual planner
called PREVISE, as part of our automated presentation
testbed system. A set of examples is also given to
illustrate the necessity and utility of our visual plan­
ning approach.

1 Introduction
Automated visual presentation systems rely on a power­

ful inference engine to generate desired presentations effi­
ciently. In this paper, we present a practical inference
method that uses a planning approach to infer visual designs
in interactive environments.

A visual design ultimately appears in the form of a
visual discourse that consists of sequences of temporally
ordered visual actions [Zhou, 1998]. Visual actions are
encoded visual techniques, which may render a collection of
graphics objects on the screen (e.g., action Display), or ani­
mate a graphical transformation (e.g., Enlarge). Since such a
pattern is reminiscent of the result produced by AI planning,
we model visual design as a planning problem. In particular,

t This work was conducted at Columbia University, as part of the
author's Ph.D. thesis in the Dept. of Computer Science.

the communicative goals are accomplished as planning
goals, visual design guidelines are maintained as planning
constraints, and visual actions are employed as planning
operators to construct a visual plan (a visual discourse).

The core of our visual planning is a least-commitment,
top-down hierarchical decomposition partial-order planning
approach [Young et al., 1994]. Combined with a set of visual
design heuristics [Zhou and Feiner, 1997], this approach
helps minimize costly redesign, eases knowledge encoding
by reusing visual actions, and ensures global and local
design coherency. Furthermore, we have equipped the core
approach with an additional set of features. Specifically, we
provide a versatile visual planning representation formalism
to express and manage progressively refined visual plans. To
simplify visual object synthesis and knowledge manage­
ment, we explicitly address object decomposition. We also
augment visual planning with temporal and spatial reasoning
capabilities to maintain temporal and spatial constraints
[Allen, 1983; Freeman-Benson, 1993]. In addition, we have
implemented our approach in a visual planner called PREVISE
(Planning in REactive VISual Environments), which is part
of an automated presentation testbed system.

In the rest of the paper, we focus on illustrating these
important features of our visual planning approach. But first
we briefly describe several related works, followed by an
example that is planned by PREVISE to illustrate the visual
planning problem. We then describe four important visual
planning features and explain how they facilitate automated
visual design. Finally, we present our conclusions and indi­
cate some future research directions in visual planning.

2 Related Work
While most automated presentation systems employ

simple search-based approaches (e.g., [Seligmann and
Feiner, 1991]), a few have used planning approaches (e.g.,
[Andre and Rist, 1993; Karp and Feiner, 1993; Bares and
Lester, 1997]). However, systems using planning approaches
either deal with static presentations I Andre and Rist, 1993]
or focus on planning camera movements [Karp and
Feiner, 1993; Bares and Lester, 1997]. Furthermore, these
systems usually handle premade graphics objects at a high
level without worrying about low-level visual object compo­
sition (e.g., composing a visual object using basic visual ele-

634 KNOWLEDGE-BASED APPLICATIONS

Figure 1. Present patient overview to nurse (annotated)

ments such as color and shape).
Aiming to create a coherent visual discourse from

scratch, our work involves both visual composition and
transformation. Thus, we have designed a more sophisticated
visual planning approach. This approach, implemented in
PREVISE, is based in part on two planning systems: DPOCL
[Young etal. , 1994] and SIPE IWilkins, 1988; Wilkins
et al., 1994]. DPOCL is the first system to explicitly address
top-down action decomposition with partial-order planning,
while SIPE can plan in a reactive environment. From DPOCL,
PREVISE inherits the top-down action-decomposition strategy
and amplifies it to accommodate object-decomposition; and
from SIPE, PREVISE partly adopts its plan and action repre­
sentation formalisms, but further expands them to allow
more knowledge rich representations.

3 Example
We use one complex example, shown in Figure 1 and

Figure 2, to illustrate the characteristics of visual planning.
In this example, our task is to present a patient's information
to a nurse after the patient's coronary artery bypass graft
(CABG) operation. As the final presentation contains coordi­
nated text, speech, and graphics, here we only concentrate on
how the graphics presentations are planned.

Figure 3. Present patient overview to nurse (annotated)

In this task, PREVISE must accomplish two goals. The
first goal is to create an overview of patient information, and
the second is to elaborate the patient information details
based on the created overview. To achieve the first goal, PRE-
VISE plans to construct a structure diagram (Figure 1) that
organizes various information (e.g., IV lines) around a core
component (e.g., represented by the patient's body). This
decision is made based on the fact that nurses prefer to see
all information arranged relative to the patient's body. In a
top-down design manner, PREVISE first creates an "empty"
structure diagram. This empty diagram is then defined
through its individual components by recursively partition­
ing and encoding the patient information into different
groups. As shown in Figure 1, the patient's demographics
information, including name, age, and gender as a group, is
encoded as the heading of the diagram; the patient's physical
body serves as the core, and the rest of the information is
arranged around the core as diagram elements. To express
the partial designs and their refinement, PREVISE uses vari­
ables and constraints to represent the progressively refined
diagram at different levels of detail. In addition, PREVISE
must formulate and satisfy a set of spatial constraints to
determine the sizes and locations of various diagram compo­
nents (Figure 3).

ZHOU 635

To accomplish the second goal, PREVISE plans a series of
visual actions to allow certain information to be reinforced
or revealed based on the overview. Figure 2(a-b) are created
to reinforce the patient's demographics information and ivs
using the visual action Highlight, while Figure 2(c-d) are
planned to reveal the drip (intravenously administered drug)
and lab report details. To introduce new information (e.g.,
drip details) into an existing display, PREVISE reasons about
the spatial arrangement of existing objects and the placement
of new objects. Finally, PREVISE ensures that all visual
actions are temporally coordinated to produce a coherent
presentation; for example, the highlighting on the demo­
graphics in Figure 2(a) should be turned off before the ivs
are highlighted in Figure 2(b).

4 Visual Planning
In this section, we concentrate on illustrating four dis­

tinct visual planning features and explain how they aid visual
design. 7b facilitate a flexible and efficient planning environ­
ment, we first present a knowledge-rich and object-oriented
representation formalism for visual planning. Using this rep­
resentation, we describe how to explicitly employ object
decomposition with action decomposition to simplify visual
synthesis. To create both temporally and spatially coherent
presentations, we address temporal and spatial reasoning
issues in visual planning.

4.1 V isua l P lann ing Representa t ion F o r m a l i s m
Using a top-down design strategy, a visual planning pro­

cess must deal with partially specified visual plans at multi­
ple levels of abstraction. To capture and manage these
complex partial plans, we have developed a knowledge-rich
object-oriented representation formalism based on previous
work (e.g., [KRSL, 1993; Wilkins and Myers, 1995;
Tate, 1996J). Specifically, our representation formalism per­
mits the efficient usage of complex planning variables and
constraints, and allows a rich expression of planning opera­
tors (visual actions). For illustration purpose, all examples
given below are presented in a simplified frame-like repre­
sentation formalism, where brackets [] are added around
symbols to indicate object instances.

Planning Variables and Constraints
Unlike any of other planning variables used in complex

planning systems (e.g., [Curric and Tate, 1991; Wilkins and
Myers, 1995]), visual planning variables are first declared in
s-expressions, and are then created and managed as object

Figure 4. Variable declaraction and creation

instances. Figure 4 shows how a PREVISE variable may be
declared with a symbolic id, a specific binding type, and a set
of constraints. The symbolic id can either be in a form of ?x or
$?y to distinguish a single valued variable (x) from a multi­
valued one (y). When created, a variable instance is assigned
a binding property to indicate how it should be managed
[KRSL, 1993]. For example, a REQUIRED variable must be
bound during planning, while an OPTIONAL variable may not
be bound at all through the entire planning process. A vari­
able may be created with or without a binding, a set of binding-
Candidates, or even a defaultBinding. Moreover, this variable
instance may refer to another variable instance or be referred
by others during planning.

Having a separate variable declaration and creation
eases both knowledge encoding and planning. In particular,
variables are declared in s-expressions during knowledge
encoding without dealing with the details of object creation
and management. On the other hand, variables are easily
handled as objects in planning without repeatedly processing
complex symbolic representations. In addition, our visual
planner can rely on various variable attributes described
above, including variable property and references, to effi­
ciently decide when and how to update variables. For exam­
ple, using the variable reference information, if a variable
binding is updated, so are all the variables that refer to this
one.

It is worth noting that we also allow a special type of
dynamic variables in visual planning. During planning, these
variables may be continuously updated by a numerical con­
straint solver called STM [Gleicher, 1994]. Hence we refer to
them as to STM-VAR. Unlike dynamic variables in other sys­
tems (e.g., [Wilkins and Myers, 1995]), a STM-VAR is more
flexible in use (e.g., we do not need to explicitly specify its
rebinding), and more efficient in representation. For exam­
ple, a STM-VAR, used to represent a 3D bounding box, can be
used to capture the changing geometry of a 3D object
through five other variables (center, objCenter, width, height,
and depth).

In visual planning, a PREVISE variable is usually accom­
panied by a set of constraints, which are also handled in the
similar fashion as variables. In other words, visual planning
constraints are specified initially in s-expressions, and are
instantiated and managed as object instances during plan­
ning. To facilitate constraint management, we classify con­
straints based on their origination (e.g., META or SUFFICIENCY
constraints in [Tate, 1996]) and duration (e.g., ONE-TIME or
ALWAYS constraints in [KRSL, 1993]). Moreover, we assign
constraints with strength (e.g., REQUIRED or PREFERRED) and
type (ATOMIC or ABSTRACT) to organize them into a hierarchy
[Borning etal. , 1992). This constraint hierarchy not only
allows object relationships to be expressed at multiple levels
of abstraction, but also allows for a more efficient constraint
management (see Sections 4.3 and 4.4).

Visual Act ion
In visual planning, a visual action captures both the

properties of a planning operator and a visual technique. As
a visual technique, a visual action can be a formational
action that creates a visual object from scratch (Figure 5a),

636 KNOWLEDGE-BASED APPLICATIONS

DesignTableChart (is-a FORMATION-ACTION) (a)
(operands (?x (type DOMAIN-OBJECT) (?t (type TABLE-CHART)))

(localParameters (?heading (type VISUAL-UNITY)

(property OPTIONAL)) . . .)
(purposes ENCODE I TABULATE)

(effects (effectl (Encode ?x ?t)) (effect2 (Table ?t)))...

Move (is-a TRANSFORMATION-ACTION) (b)
(operands (?v (type VISUAL-OBJECT)))

(localParameters (?src (type VECTOR)) (?dest (type VECTOR)))

(purposes TRANSFORM I REPOSITION)

(preconditions (condl (Existing ?v)) (cond2 (At ?v ?src))...)
(effects (effectl (At ?v ?destination)))...

Figure 5. A visual action definition

or a transformational action that modifies an existing visual
object (Figure 5b). Since formational actions do not actually
perform graphics rendering, they are not included in the final
plan but their results might be. For example, the formational
action, DesignTableChart, itself does not appear in the final
plan, but its result—the created table chart may appear in the
final plan with a Display action.

We also assign purposes to each visual action to summa­
rize its functions at different levels of abstraction. For exam­
ple, the purposes specified in the action Move indicate that it
can be used to transform a visual object in general, specifi­
cally to reposition a visual object (Figure 5b). In addition,
we use the purposes to index visual actions and create parti­
tioned search space to reduce search time. This helps us cope
with a large number of visual actions efficiently during plan­
ning. For example, when searching for a proper visual action
to accomplish a transformation task, PREVISE only searches
among the visual actions that have Transform as one of their
purposes. Otherwise, PREVISE must examine the postcondi­
tions of all visual actions to find a match.

Much like a SIPE operator [Wilkins and Myers, 1995],
visual action arguments are represented as variables with
constraints on their binding types or properties. For example,
the variable ?heading is optionally bound to a particular
visual object (Figure 5a). But unlike SIPE, visual action argu­
ments are separated into two groups: operands and local
parameters. Whereas operands provide the uniform interface
to access an action, local parameters describe a set of
attributes specific to that action. In particular, formational
actions use operands to specify their input and output (e.g., ?x
is the input and ?t is the output of DesignTableChart in
Figure 5a), and transformational actions use operands to indi­
cate their recipients (e.g., ?v of Move in Figure 5b). On the
other hand, both formational and transformational actions
use localParameters to record all needed parameters to com­
plete the action (e.g., ?heading of DesignTableChart, or ?dest of
Move). Separating the operands from local parameters simpli­
fies the action instantiation process since PREVISE needs to
consider only the operands during this stage. This allows the
instantiations of local parameters to be delayed; for example,
PREVISE is not concerned with local parameters, such as
?dest (the destination of the movement) in Move, at a high

level of the design.

To simplify the planning process, plan goals in PREVISE
are also specified similar to actions. For example, the com­
municative goal to create a summary of patient information,
achieved in Figure 1, is notated as a rhetorical act, Summa-
rize<?patient-info>. Based on the domain-specific nurse prefer­
ence rule, this general act is then refined to a visual goal
Structure<?patient-info> that requires all information to be
structured in a specific way. This visual goal is in fact an
abstract visual act, which can be accomplished by other
visual actions (e.g., action DesignStructureDiagram) [Zhou and
Feiner, 1998].

4.2 Object Decomposition
As a planning operator, a visual action may be a primi­

tive action that can be directly executed by a plan agent, or a
composite action that contains a set of partially specified
subplans and must be replaced by the subplans during plan­
ning, PREVISE usually uses composite actions to sketch a
design at a high level, and refines the vague parts of the
design into more detailed ones using primitive visual actions.
During such a design refinement, action and object decom­
position may both be required. For example, a DesignTable­
Chart action may be decomposed into a set of subactions that
define individual table components. In the meantime, the
input (the data ?x) used to produce the table chart must also
be decomposed into smaller units that can be used by the
subactions. Although in certain cases object decomposition
could be implicitly handled by action decomposition, entan­
gled action and object decomposition makes visual planning
extremely difficult (e.g., a data object may be decomposed
into different subparts under different situations). Thus, we
explicitly introduce object decomposition in visual planning

DesignTableChart (is-a FORMATION-ACTION)

(actionDecomSchemata [actD1]...)
(objDecomSchemata [objD1] [objD2] [objD3]...)
(objDecompPreferences

(preference! (:condition (is-itemize ?x)) (:prefer [objD1]))
(preference2 (:conditlon (is-overview ?x)) (:prefer [ob|D2]))
(always [objD3]))

[actD1] of ACT-DECOMPOSITION-SCHEMA

(subactions (:loop ?i (:range 1 ?n)(:update (bind ?i (+ 1 ?i)))
(Subaction<?i> (:expr (DesignVisRep ?x<?i> ?t<?i>)))))

[objDl] of OBJECT-DECOMPOSITION-SCHEMA

(objld ?x) (numParts ?n = :(get-numOflndividual))
(subParts (:loop ?i (:range 1 ?n) ?x<?i> = :(get-individual ?i)))

[obJD2] of OBJECT-DECOMPOSITION-SCHEMA

(objld ?x) (numParts ?n = :(get-numOfGroup))
(subParts (:loop ?i (:range 1 ?n) ?x<?i> = :(get-group ?i)))

[ob|D3] of OBJECT-DECOMPOSITION-SCHEMA

(ob|ld ?t)
(subParts (:loop ?i (:range 1 ?n)

IF (is-identifier ?x<?i>)) THEN (put-heading ?t ?t<?i>)
ELSE (put-cells ?t ?t<?i>)))

Figure 6. A visual action and its decomposition schemata

ZHOU 637

using a set of object decomposition schemata.
An object decomposition schema uses objectld to identify

the object to be decomposed, subParts to specify a set of
components that the object is decomposed to, and numParts
to indicate the total number of subparts (Figure 6). Unlike
action decomposition where only one decomposition schema
can be used at one time, more than one object decomposition
schemata may be applied simultaneously. For example, PRE­
VISE may use [objDl] in Figure 6 to decompose the data ?x,
but always uses [objD3] to determine the structural relation­
ships between the table chart itself (?t) and its components
(?t<?i>). To determine which and when an object decomposi­
tion schema should be used, PREVISE uses preference con­
straints stored in objDecompPreferences. Moreover, variables
are used extensively in decomposition schemata to express
partial plans and objects, or to represent unknown situations
(e.g., ?n).

In general, two types of object decomposition occur in
visual planning. In the first case, a completely specified
object (e.g., a piece of data to be conveyed) needs to be
decomposed into smaller units to be manipulated (e.g.,
decomposition schemata [objDl] and [objD2] in Figure 6). In
the second case, a partially specified object (e.g., a visual
object to be defined) must be decomposed into subparts so it
can be refined through the subparts (e.g., [objD3]). Both types
of object decomposition promote a simpler and more general
knowledge encoding and management.

Using the first type of object decomposition, we can eas­
ily handle the uncertainty involved in action decomposition.
For example, during knowledge encoding, the number of
subactions in [actD1] may be unknown, depending on how the
data (?x) wi l l be processed in the actual planning process. In
this case, before instantiating subactions in [actD1], PREVISE
can establish the needed variables (e.g., ?n) by selecting an
object decomposition schema (e.g., [objDl]) based on objDe­
compPreferences (e.g., preference-!). This approach allows a
simple and general representation of action decomposition,
which only needs to specify the unknowns using variables
(e.g., ?n in [actDi]).

The second type of object decomposition also helps gen­
eralize and simplify action decomposition. Without the
object decomposition schema [objD3], for example, we must
replace the general action DesignVisRep with more specific
subactions, such as DesignTableHeading and DesignTableCell, to
define various table constituents. In addition, we must con­
sider all the possible combinations of these specific subac­
tions to construct different subplans (e.g., a subplan may
require a subaction DesignTableHeading, but another may not).
This not only requires a number of different actions to be
defined, but also increases the complexity of knowledge
management. Considering the case of defining a new action
DesignBarChart, we need to introduce a set of new actions
(e.g., DesignAxes and DesignBar) for various bar chart constit­
uents. We must also ensure that each subaction is supplied
with the proper data components to guarantee the design cor­
rectness. For example, only quantitative data components
may be involved in the subaction DesignBar.

Therefore, separating the object decomposition from the
action decomposition allows simpler and more general rep­

resentations for action decomposition. More importantly,
these simpler and more general representations improve PRE-
VISE'S applicability by easing its tasks of knowledge encod­
ing and management.

4.3 Temporal Reasoning
During a visual presentation, visual actions can occur

concurrently or over extended time intervals. To create a
temporally coherent visual presentation, we have integrated
temporal reasoning into PREVISE to ensure that visual actions
are temporally coordinated. Compared to other systems (e.g.,
[Tate etal. , 1994; Wilkins and Myers, 1995; Andre and
Rist, 1996]), PREVISE uses multilevel topological and metric
time constraints to describe actions at a finer granularity dur­
ing planning generation. It also employs a novel scheduler to
ensure that all temporal constraints are met during planning
execution.

Temporal Constraint Specification
PREVISE deals with two types of temporal constraints:

Inter-action constraints specify temporal relations between
two visual actions, and intra-action constraints describe tem­
poral relations within a visual action.

Inter-Action Temporal Constraints. PREVISE uses topo­
logical constraints to represent temporal relationships
between two visual actions qualitatively. These constraints
can be represented as either time-point or time-interval con­
straints. In general, PREVISE allows three types of time-point
constraints: BeforeAt, AfterAt, and EquatAt; and permits time
interval constraints, containing any subset of the thirteen
basic temporal relations defined in [Allen, 19831. When
described in time-point constraints, visual actions may be
considered instantaneous. In contrast, visual actions have
distinct starting and finishing times when specified using
time-interval constraints.

Allowing both time-point and time-interval constraints
not only enables PREVISE to represent different temporal
relationships accurately, but also helps to handle temporal
constraints efficiently by exploiting a multilevel constraint
representation. Usually, we can use concise time-point con­
straints to specify incomplete temporal relations at a high
level, and employ time-interval constraints to express more
refined temporal relationships at a low level. For example,
PREVISE can use a simple time-point constraint to assert that
action A must start before B at a high level, without knowing
their finishing times:

(BeforeAt A B)

Later, this constraint can be refined using one of the three
more specific time-interval constraints based on their finish­
ing times:

1. A finishes before B: (Overlap A B)
2. A finishes after B: (Contain A B)
3. A and B finishes at the same time: (FinishedBy A B)

This multilevel temporal constraint representation helps
avoid computationally complex temporal reasoning at a high
level, hence improves planning efficiency.

Intra'Action Temporal Constraints. In addition to tem­
poral constraints between visual actions, we also describe

638 KNOWLEDGE-BASED APPLICATIONS

temporal relationships within an action. Unlike inter-action
temporal relationships, these relations are described quanti­
tatively using metric time constraints (usually in seconds).

In general, a PREVISE action has a startTime and an end-
Time to regulate when and how long the desired visual effects
should appear on the screen. But we add subtime intervals in
a transformational action to describe its animation subacts.
In particular, animOnDuration controls the time taken to turn
on the desired visual effects (e.g., gradually changing the
color of an object to highlight it), holdingDuration specifies
how long the current effect should remain on the screen (e.g.,
holding the highlighting effect), and animOffDuration limits
the time taken to reverse the visual transformation (e.g., turn­
ing off the highlighting). Using these subintervals, we can
describe and control a finer-grained visual action and its exe­
cution. Moreover, we can specify an animation with its
reverse without explicitly introducing a set of undo actions
(e.g., unhighlight).

To facilitate temporal media coordination (e.g., coordi­
nating a graphics animation with speech) in a multimedia
presentation, we also allow more flexible time-window con­
straints. For example, we may specify that a Highlight action
needs a minimum of 1s or maximum of 2s to turn on the
highlight, and another 3s to 4s to hold the highlighting. To
coordinate the highlighting with speech, a media coordinator
can use the time window to compute a time interval accept­
able for both graphics and speech.

Temporal Constraint Satisfaction
We deal with temporal constraints in both plan genera­

tion and execution. In plan generation, we use a simple con­
straint solver to process qualitative time constraints based on
transitive closures. Conversely, we use a constraint solver
based on Metric/Allen Time System (MATS) [Kautz, 1991] to
process quantitative temporal constraints.

Execution Scheduler. In plan execution, we have imple­
mented a time queue to schedule visual actions. A l l visual
actions are first entered in the time queue by their starting
times. The scheduler then uses a global alarm clock to
invoke actions when their starting times are reached. A local
timer is also maintained within each visual action to signal
its termination when its finishing time approaches.

This approach works fine until this problem arises: Two
closely scheduled actions (e.g., actions A and B in Figure 7a)
may overlap as the scheduler cannot guarantee a full stop in
previous action (e.g., A) when its local timer expires. This is
because the local timer does not account for the time spent
for executing various implicit finishing acts. For example,

action A may call an instantaneous undo act (animOffDuration
is 0.0s) when its local timer expires. Thus, there is no guaran­
tee that A's undo act wi l l be finished before B starts.

To fix this problem, each action is required to signal the
scheduler when it is truly finished. In addition, we insert a
dummy finishing act for each action in the time queue by its
finishing time to ensure that the global clock be stopped if
the previous action is not finished. As shown in Figure 7(a),
when the global clock reaches the dummy act Aend, it would
not be advanced to action B8tart until it receives A's finishing
signal.

The above approach only fixes half of our problem: it
works for actions scheduled one after another (e.g., A and B
in Figure 7a), but not for actions scheduled right next to each
other (e.g., B and C). In this case, the plan agent is expected
to execute two tasks simultaneously: finishing the previous
action (B) and starting a new action (C). Since it is physically
impossible for uniprocessor machines to process two tasks at
the same time, the tasks wi l l be executed in a nondeterminis-
tic order. This may result in undesirable visual effects. Sup­
pose B and C are both highlighting actions, and B must finish
by removing its highlight before C starts to put on a new
highlight. Because of the nondeterministic execution order,
C might be started before B finishes to cause an undesired
visual effect: two objects highlighted at the same time
instead of in sequence.

To ensure desired visual effects, we add sub-order tem­
poral constraints to serialize simultaneous actions using heu­
ristics. For example, one heuristic rule in PREVISE asserts that
all dummy finishing acts precede any other action scheduled
at the same time. In the above example, the plan agent wi l l
process Bend before Cstart, as if the time point t is expanded
into a time interval [t, t+A] (Figure 7b). This ensures that all
objects in action B are unhighlighted before any new object
is highlighted in action C.

4.4 Spat ia l Reasoning
PREVISE performs spatial reasoning in two situations. In

spatial composition, PREVISE regulates the size and place­
ment of visual objects to ensure a valid visual composition.
In spatial transformation, PREVISE controls the spatial modi­
fication of existing visual objects and the integration of new
visual objects to maintain a coherent visual transformation.

Spatial Composition
A visual composition is considered valid if all syntactic

constraints are satisfied during visual object synthesis
[Zhou, 1998]. Among these syntactic constraints, some regu­
late spatial relationships between visual objects. Figure 3 is
annotated to show a set of spatial constraints that must be
satisfied in a structure diagram. Moreover, these constraints
are specified at different levels of abstraction to capture
multi-level spatial relationships. For example, constraint 1 is
an abstract spatial constraint, defined at a high level to
describe vague spatial relationships between complex visual
objects. In contrast, constraints 1.1 and 1.2 express more
concrete visual relationships. To be evaluated, an abstract
constraint (e.g., constraint 1), must be replaced by a set of
more concrete constraints (e.g., constraints 1.1 and 1.2). One

ZHOU 639

distinct advantage of using abstract constraints is to achieve
planning efficiency by postponing overwhelming details
involved in lower level constraints to a later time.

By evaluating a set of constraints, PREVISE can deter­
mine the size and placement of visual objects involved. For
example, the locations or sizes of various texts in Figure 3
can be determined. In PREVISE, we model spatial constraints
using mathematical equations and inequalities, which are
eventually solved by STM using a numerical optimization
method. Since the optimization method requires a set of
proper initial values, we must supply these values for STM to
start with. For example, we need to supply the proper initial
values for ?line-length and ?tab in constraints 2 and 4
(Figure 3). Currently, these values are obtained based on
empirical analyses of many existing graphical representa­
tions (e.g., hand-made or machine-made structure diagrams).
For example, to best illustrate the spatial ratio between the
patient body and the lines, we have learned that the length of
various lines in the picture is usually at least 1/3 of the diag­
onal length of the body's bounding box.

Spatial Transformation
In addition to ensuring a valid visual composition, PRE­

VISE also uses spatial constraints to control the integration of
new information into an existing presentation. In one
approach, PREVISE directly adds the new information to the
existing scene as visual extensions of existing objects. For
example, to reveal drip details (Figure 2c), PREVISE directly
adds a pull-down menu as an extension of the drip button in
the overview (Figure 1). To determine the size and the place­
ment of new objects (e.g., the pull-down menu) in relation to
the existing objects (e.g., the button), PREVISE reasons about
the spatial geometry of the existing scene, including the
objects* size, orientation, and topology, by issuing queries. It
then formulates constraints based on design heuristics. In our
case, based on the current geometry of the drips button, PRE-
VISE formulates spatial constraints to regulate the size and
position of the added pull-down menu.

To avoid unnecessary spatial rearrangement, we also
assert a set of spatial constraints in advance to prepare Ibr
potential visual changes. For example, a button is usually
expected to bring up a pull-down menu when pressed. There­
fore, when a button is created, a spatial constraint is asserted
to ensure that there is enough room reserved below the but­
ton for placing a pull-down menu (e.g., the space below the
drips button in Figure 3).

In general, directly adding new objects to the existing
scene is relatively simple since PREVISE deals with a con­
fined space with rigid spatial constraints (e.g., placing a pull­
down menu near a button). However, in many cases, PREVISE
may need to modify the existing scene dramatically for inte­
grating new information. In this case, PREVISE must deter­
mine how to make spatial changes for the new objects. For
example, to produce Figure 2(d), PREVISE decides to keep
the table chart at the top (e.g., name, age, and gender) of
Figure 2(c) to provide the necessary context information,
while replaces the rest of representation with the lab report.

PREVISE currently deals with relatively simple space-
management cases. Our approach assumes that all existing
visual objects wi l l be replaced except the objects that must
be kept to provide necessary background or context informa­
tion. Once PREVISE determines what to keep or to remove, it
wi l l plan the size and the placement of the new objects (e.g.,
the table chart for lab report) using an iterative-adjustment
algorithm. To utilize space efficiently and produce a bal­
anced layout, the algorithm assumes that the kept objects
usually reside in the shaded area to leave the middle area for
the new objects (Figure 8).

The shaded areas are initially defined by a set of thresh­
old values to guarantee that at least 2/3 of the display area in
the middle be reserved for the new visual objects. The algo­
rithm then iteratively computes the bounding box for each
object kept in the scene and determines the region containing
this object. If the object falls in only one of the eight shaded
regions (e.g., objl and obj2 in Figure 8), the algorithm adjusts
the current boundaries by pushing them toward the center to
define unoccupied space. For example, the initial top bound­
ary is pushed down into line 1, and the initial left boundary
becomes line 2 in Figure 8. If the object does not completely
fall in any of the eight regions (e.g., obj3) and the threshold
values arc adjustable, the algorithm recursively increases the
current threshold values to recompute new boundaries. If the
threshold values are not adjustable, the current existing
objects may be modified to create enough room for new
objects. Eventually, the algorithm returns four boundaries to
define the dimension and position of the area for placing the
new objects.

5 Implementation
PREVISE is implemented using both CLIPS [JSC-

25012, 1993] and C++, currently running on SGIs and PCs
under Windows NT. The rendering component is written in
C++ and Open Inventor, an object-oriented 3D interactive
graphics toolkit [Wernecke, 1994). On a SGI Indigo 2 with a
250 MHz R4400 processor, it takes about 25 seconds to plan
the overview of patient record shown in Figure 1, and about
45 seconds to plan the entire detail view of patient record,
partly shown in Figure 2.

6 Conclusions & Future Work
In this paper, we have presented a practical visual plan­

ning approach to automated visual presentation design. In
particular, we model visual actions as planning operators,
and visual design principles as planning constraints. On top

640 KNOWLEDGE-BASED APPLICATIONS

of our core top-down hierarchical decomposition partial-
order planning approach, we add a set of visual planning fea­
tures. These features include a powerful visual planning rep­
resentation, an explicit object decomposition method, and
temporal and spatial reasoning capabilities. Moreover, this
approach is implemented in a planner, PREVISE, as part of our
automated visual presentation testbed system.

Currently, we are working in two areas to improve the
visual planning approach. To allow user interaction during
planning generation and execution, we are planning to incor­
porate reactive planning strategies [Wilkins et al., 1994]. For
example, users may suggest changes to the design decisions
made by PREVISE, or interactively alter the course of the exe­
cution to selectively view the presentation (e.g., executing
visual actions out of sequence). Thus, our current approach
must be extended to recognize the inadequacy of a current
plan, and correct it to meet the new conditions.

To perform spatial analysis and management for more
complicated situations, we would also like to enhance the
spatial reasoning capability. For example, developing a gen­
eral and efficient algorithm to query the spatial density of a
scene so we can place new objects on the location where the
spatial density is low to avoid possible object occlusions.

Acknowledgments
1 would like to thank my thesis advisor, Professor Steven

Feiner, for his constant support on this work. I would also
like to thank Rahamad Dawood for implementing the sched­
uler, Blaine Bell for porting the entire system to PCs, and
Bil l Yoshimi, Keith Houck, and Po Yu for proofreading this
paper. This research was supported in part by DARPA Con­
tract DAAL01-94-K-0119, the Columbia University Center
for Advanced Technology in High Performance Computing
and Communications in Healthcare (funded by the New
York State Science and Technology Foundation), the Colum­
bia Center for Telecommunications Research under NSF
Grant ECD-88-11111, and ONR Contract N00014-97-1-
0838.

References
Allen, J. (1983). Maintaining knowledge about temporal in­

tervals. Communications of the ACM, 26(11):832-843.
Andre, E. and Rist, T. (1993). The design of illustrated docu­

ments as a planning task. In Maybury, M., editor, Intelli­
gent Multimedia Interfaces, chapter 4, pages 94-116.
A A A I Press/The M I T Press, Menlo Park, CA.

Andre, E. and Rist, T. (1996). Coping with temporal con­
straints in multimedia presentation planning. In Proc.
AAAI '96. A A A I .

Bares, W. and Lester, J. (1997). Realtime generation of cus­
tomized 3d animated explanations for knowledge-based
learning environments. In Proc. AAAI '97, pages 347-
354.

Borning, A., Freeman-Benson, B., and Wilson, M. (1992).
Constraint hierarchies. List and Symbolic Computation,
5(3):223-270.

Currie, K. and Tate, A. (1991). O-plan: The open planning ar­
chitecture. Artificial Intelligence, 51(l):49-86.

Freeman-Benson, B. (1993). Converting an exising user in­
terface to use constraints. In Proc. UIST '93, pages 207-
215. ACM.

Gleicher, M. (1994). A Differential Approach to Graphical
Interaction. PhD thesis, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA 15213-
3891.

JSC-25012 (1993). CLIPS Reference Manual. Software
Technology Branch, Lyndon B. Johnson Space Center.
CLIPS Version 6.0, JSC-25012.

Karp, P. and Feiner, S. (1993). Automated presentation plan­
ning of animation using task decomposition with heuris­
tic reasoning. In Proceedings of Graphics Interface '93,
pages 118-127.

Kautz, H. (1991). MATS (Metric/Allen Time System) Docu­
mentation. A T & T Bell Laboratories.

KRSL (1993). Knowledge Representation Specification Lan­
guage Reference Manual. DARPA/Romc Laboratory
Planning and Scheduling Initiative Knowledge Repre­
sentation and Architecture Issue Working Group. Ver­
sion 2.0.2.

Seligmann, D. and Feiner, S. (1991). Automated generation
of intent-based 3D illustrations. Computer Graphics,
25(4): 123-132.

Tate, A. (1996). Representing plans as a set of constraints: the
I-N-OVA model. In Proc. AIPS '96, Edinburgh, UK.
A A A I Press.

Tate, A., Drabble, B., and Kirby, R. (1994). 0-plan2: An
open architecture for command, planning and control. In
Fox, M. and Zweben, M., editors. Intelligent Scheduling.
Morgan Kaufmann.

Wernecke, J. (1994). The Inventor Mentor: Programming
Object-Oriented 3D graphics with Open Inventor. Addi­
son Wesley, Reading, MA.

Wilkins, D. (1988). Practical Planning: Extending Classical
AI Paradigm. Morgan Kaufmann, San Mateo, CA.

Wilkins, D. and Myers, K. (1995). A common knowledge
representation for plan generation and reactive execu­
tion. J. of Logic and Computation, 5:731-761.

Wilkins, D., Myers, K., Lowrance, J., and Wesley, L. (1994).
Planning and reacting in uncertain and dynamic environ­
ments. Journal of Experimental and Theoretical Al,
6:197-227.

Young, R., Pollack, M., and Moore, J. (1994). Decomposi­
tion and causality in partial-order planning. In 2nd Int.
Conf on Al Planning Systems: AIPS-94, pages 188-193.
Chicago, IL.

Zhou, M. (1998). Automated Generation of Visual Discourse.
PhD thesis, Columbia University, New York, NY.

Zhou, M. and Feiner, S. (1997). Top-down hierarchical plan­
ning of coherent visual discourse. In Proc. IUI '97, pages
129-136, Orlando, FL.

Zhou, M. and Feiner, S. (1998). Visual task characterization
for automated visual discourse synthesis. In Proc. CHI
'98, pages 292-299, Los Angeles, CA. ACM.

ZHOU 641

