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Abstract^ 
Based on a set of design principles, automated 

visual presentation systems promise to simplify an 
application programmer's design tasks by automati­
cally constructing appropriate visual explanations for 
different information. However, these automated pre­
sentation systems must be equipped with a powerful 
inference approach to suit practical applications. 
Here, we present a planning-based, practical infer­
ence approach that can design a series of connected 
visual presentations in interactive environments. Our 
emphasis here is on a set of important visual planning 
features and how they facilitate visual design. This 
set of features includes a knowledge-rich representa­
tion of visual planning variables and constraints, a 
novel object-decomposition model that can be used 
with action decomposition to simplify the visual syn­
thesis process, and practical temporal and spatial rea­
soning capabilities to facilitate coherent visual design 
and presentation. In addition, we have implemented 
our visual planning approach in a visual planner 
called PREVISE, as part of our automated presentation 
testbed system. A set of examples is also given to 
illustrate the necessity and utility of our visual plan­
ning approach. 

1 Introduction 
Automated visual presentation systems rely on a power­

ful inference engine to generate desired presentations effi­
ciently. In this paper, we present a practical inference 
method that uses a planning approach to infer visual designs 
in interactive environments. 

A visual design ultimately appears in the form of a 
visual discourse that consists of sequences of temporally 
ordered visual actions [Zhou, 1998]. Visual actions are 
encoded visual techniques, which may render a collection of 
graphics objects on the screen (e.g., action Display), or ani­
mate a graphical transformation (e.g., Enlarge). Since such a 
pattern is reminiscent of the result produced by AI planning, 
we model visual design as a planning problem. In particular, 

t This work was conducted at Columbia University, as part of the 
author's Ph.D. thesis in the Dept. of Computer Science. 

the communicative goals are accomplished as planning 
goals, visual design guidelines are maintained as planning 
constraints, and visual actions are employed as planning 
operators to construct a visual plan (a visual discourse). 

The core of our visual planning is a least-commitment, 
top-down hierarchical decomposition partial-order planning 
approach [Young et al., 1994]. Combined with a set of visual 
design heuristics [Zhou and Feiner, 1997], this approach 
helps minimize costly redesign, eases knowledge encoding 
by reusing visual actions, and ensures global and local 
design coherency. Furthermore, we have equipped the core 
approach with an additional set of features. Specifically, we 
provide a versatile visual planning representation formalism 
to express and manage progressively refined visual plans. To 
simplify visual object synthesis and knowledge manage­
ment, we explicitly address object decomposition. We also 
augment visual planning with temporal and spatial reasoning 
capabilities to maintain temporal and spatial constraints 
[Allen, 1983; Freeman-Benson, 1993]. In addition, we have 
implemented our approach in a visual planner called PREVISE 
(Planning in REactive VISual Environments), which is part 
of an automated presentation testbed system. 

In the rest of the paper, we focus on illustrating these 
important features of our visual planning approach. But first 
we briefly describe several related works, followed by an 
example that is planned by PREVISE to illustrate the visual 
planning problem. We then describe four important visual 
planning features and explain how they facilitate automated 
visual design. Finally, we present our conclusions and indi­
cate some future research directions in visual planning. 

2 Related Work 
While most automated presentation systems employ 

simple search-based approaches (e.g., [Seligmann and 
Feiner, 1991]), a few have used planning approaches (e.g., 
[Andre and Rist, 1993; Karp and Feiner, 1993; Bares and 
Lester, 1997]). However, systems using planning approaches 
either deal with static presentations I Andre and Rist, 1993] 
or focus on planning camera movements [Karp and 
Feiner, 1993; Bares and Lester, 1997]. Furthermore, these 
systems usually handle premade graphics objects at a high 
level without worrying about low-level visual object compo­
sition (e.g., composing a visual object using basic visual ele-
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Figure 1. Present patient overview to nurse (annotated) 

ments such as color and shape). 
Aiming to create a coherent visual discourse from 

scratch, our work involves both visual composition and 
transformation. Thus, we have designed a more sophisticated 
visual planning approach. This approach, implemented in 
PREVISE, is based in part on two planning systems: DPOCL 
[Young etal. , 1994] and SIPE IWilkins, 1988; Wilkins 
et al., 1994]. DPOCL is the first system to explicitly address 
top-down action decomposition with partial-order planning, 
while SIPE can plan in a reactive environment. From DPOCL, 
PREVISE inherits the top-down action-decomposition strategy 
and amplifies it to accommodate object-decomposition; and 
from SIPE, PREVISE partly adopts its plan and action repre­
sentation formalisms, but further expands them to allow 
more knowledge rich representations. 

3 Example 
We use one complex example, shown in Figure 1 and 

Figure 2, to illustrate the characteristics of visual planning. 
In this example, our task is to present a patient's information 
to a nurse after the patient's coronary artery bypass graft 
(CABG) operation. As the final presentation contains coordi­
nated text, speech, and graphics, here we only concentrate on 
how the graphics presentations are planned. 

Figure 3. Present patient overview to nurse (annotated) 

In this task, PREVISE must accomplish two goals. The 
first goal is to create an overview of patient information, and 
the second is to elaborate the patient information details 
based on the created overview. To achieve the first goal, PRE-
VISE plans to construct a structure diagram (Figure 1) that 
organizes various information (e.g., IV lines) around a core 
component (e.g., represented by the patient's body). This 
decision is made based on the fact that nurses prefer to see 
all information arranged relative to the patient's body. In a 
top-down design manner, PREVISE first creates an "empty" 
structure diagram. This empty diagram is then defined 
through its individual components by recursively partition­
ing and encoding the patient information into different 
groups. As shown in Figure 1, the patient's demographics 
information, including name, age, and gender as a group, is 
encoded as the heading of the diagram; the patient's physical 
body serves as the core, and the rest of the information is 
arranged around the core as diagram elements. To express 
the partial designs and their refinement, PREVISE uses vari­
ables and constraints to represent the progressively refined 
diagram at different levels of detail. In addition, PREVISE 
must formulate and satisfy a set of spatial constraints to 
determine the sizes and locations of various diagram compo­
nents (Figure 3). 
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To accomplish the second goal, PREVISE plans a series of 
visual actions to allow certain information to be reinforced 
or revealed based on the overview. Figure 2(a-b) are created 
to reinforce the patient's demographics information and ivs 
using the visual action Highlight, while Figure 2(c-d) are 
planned to reveal the drip (intravenously administered drug) 
and lab report details. To introduce new information (e.g., 
drip details) into an existing display, PREVISE reasons about 
the spatial arrangement of existing objects and the placement 
of new objects. Finally, PREVISE ensures that all visual 
actions are temporally coordinated to produce a coherent 
presentation; for example, the highlighting on the demo­
graphics in Figure 2(a) should be turned off before the ivs 
are highlighted in Figure 2(b). 

4 Visual Planning 
In this section, we concentrate on illustrating four dis­

tinct visual planning features and explain how they aid visual 
design. 7b facilitate a flexible and efficient planning environ­
ment, we first present a knowledge-rich and object-oriented 
representation formalism for visual planning. Using this rep­
resentation, we describe how to explicitly employ object 
decomposition with action decomposition to simplify visual 
synthesis. To create both temporally and spatially coherent 
presentations, we address temporal and spatial reasoning 
issues in visual planning. 

4.1 V isua l P lann ing Representa t ion F o r m a l i s m 
Using a top-down design strategy, a visual planning pro­

cess must deal with partially specified visual plans at multi­
ple levels of abstraction. To capture and manage these 
complex partial plans, we have developed a knowledge-rich 
object-oriented representation formalism based on previous 
work (e.g., [KRSL, 1993; Wilkins and Myers, 1995; 
Tate, 1996J). Specifically, our representation formalism per­
mits the efficient usage of complex planning variables and 
constraints, and allows a rich expression of planning opera­
tors (visual actions). For illustration purpose, all examples 
given below are presented in a simplified frame-like repre­
sentation formalism, where brackets [ ] are added around 
symbols to indicate object instances. 

Planning Variables and Constraints 
Unlike any of other planning variables used in complex 

planning systems (e.g., [Curric and Tate, 1991; Wilkins and 
Myers, 1995]), visual planning variables are first declared in 
s-expressions, and are then created and managed as object 

Figure 4. Variable declaraction and creation 

instances. Figure 4 shows how a PREVISE variable may be 
declared with a symbolic id, a specific binding type, and a set 
of constraints. The symbolic id can either be in a form of ?x or 
$?y to distinguish a single valued variable (x) from a multi­
valued one (y). When created, a variable instance is assigned 
a binding property to indicate how it should be managed 
[KRSL, 1993]. For example, a REQUIRED variable must be 
bound during planning, while an OPTIONAL variable may not 
be bound at all through the entire planning process. A vari­
able may be created with or without a binding, a set of binding-
Candidates, or even a defaultBinding. Moreover, this variable 
instance may refer to another variable instance or be referred 
by others during planning. 

Having a separate variable declaration and creation 
eases both knowledge encoding and planning. In particular, 
variables are declared in s-expressions during knowledge 
encoding without dealing with the details of object creation 
and management. On the other hand, variables are easily 
handled as objects in planning without repeatedly processing 
complex symbolic representations. In addition, our visual 
planner can rely on various variable attributes described 
above, including variable property and references, to effi­
ciently decide when and how to update variables. For exam­
ple, using the variable reference information, if a variable 
binding is updated, so are all the variables that refer to this 
one. 

It is worth noting that we also allow a special type of 
dynamic variables in visual planning. During planning, these 
variables may be continuously updated by a numerical con­
straint solver called STM [Gleicher, 1994]. Hence we refer to 
them as to STM-VAR. Unlike dynamic variables in other sys­
tems (e.g., [Wilkins and Myers, 1995]), a STM-VAR is more 
flexible in use (e.g., we do not need to explicitly specify its 
rebinding), and more efficient in representation. For exam­
ple, a STM-VAR, used to represent a 3D bounding box, can be 
used to capture the changing geometry of a 3D object 
through five other variables (center, objCenter, width, height, 
and depth). 

In visual planning, a PREVISE variable is usually accom­
panied by a set of constraints, which are also handled in the 
similar fashion as variables. In other words, visual planning 
constraints are specified initially in s-expressions, and are 
instantiated and managed as object instances during plan­
ning. To facilitate constraint management, we classify con­
straints based on their origination (e.g., META or SUFFICIENCY 
constraints in [Tate, 1996]) and duration (e.g., ONE-TIME or 
ALWAYS constraints in [KRSL, 1993]). Moreover, we assign 
constraints with strength (e.g., REQUIRED or PREFERRED) and 
type (ATOMIC or ABSTRACT) to organize them into a hierarchy 
[Borning etal. , 1992). This constraint hierarchy not only 
allows object relationships to be expressed at multiple levels 
of abstraction, but also allows for a more efficient constraint 
management (see Sections 4.3 and 4.4). 

Visual Act ion 
In visual planning, a visual action captures both the 

properties of a planning operator and a visual technique. As 
a visual technique, a visual action can be a formational 
action that creates a visual object from scratch (Figure 5a), 
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DesignTableChart (is-a FORMATION-ACTION) (a) 
(operands (?x (type DOMAIN-OBJECT) (?t (type TABLE-CHART))) 

(localParameters (?heading (type VISUAL-UNITY) 

(property OPTIONAL)) . . .) 
(purposes ENCODE I TABULATE) 

(effects (effectl (Encode ?x ?t)) (effect2 (Table ?t)))... 

Move (is-a TRANSFORMATION-ACTION) (b) 
(operands (?v (type VISUAL-OBJECT))) 

(localParameters (?src (type VECTOR)) (?dest (type VECTOR))) 

(purposes TRANSFORM I REPOSITION) 

(preconditions (condl (Existing ?v)) (cond2 (At ?v ?src))...) 
(effects (effectl (At ?v ?destination)))... 

Figure 5. A visual action definition 

or a transformational action that modifies an existing visual 
object (Figure 5b). Since formational actions do not actually 
perform graphics rendering, they are not included in the final 
plan but their results might be. For example, the formational 
action, DesignTableChart, itself does not appear in the final 
plan, but its result—the created table chart may appear in the 
final plan with a Display action. 

We also assign purposes to each visual action to summa­
rize its functions at different levels of abstraction. For exam­
ple, the purposes specified in the action Move indicate that it 
can be used to transform a visual object in general, specifi­
cally to reposition a visual object (Figure 5b). In addition, 
we use the purposes to index visual actions and create parti­
tioned search space to reduce search time. This helps us cope 
with a large number of visual actions efficiently during plan­
ning. For example, when searching for a proper visual action 
to accomplish a transformation task, PREVISE only searches 
among the visual actions that have Transform as one of their 
purposes. Otherwise, PREVISE must examine the postcondi­
tions of all visual actions to find a match. 

Much like a SIPE operator [Wilkins and Myers, 1995], 
visual action arguments are represented as variables with 
constraints on their binding types or properties. For example, 
the variable ?heading is optionally bound to a particular 
visual object (Figure 5a). But unlike SIPE, visual action argu­
ments are separated into two groups: operands and local 
parameters. Whereas operands provide the uniform interface 
to access an action, local parameters describe a set of 
attributes specific to that action. In particular, formational 
actions use operands to specify their input and output (e.g., ?x 
is the input and ?t is the output of DesignTableChart in 
Figure 5a), and transformational actions use operands to indi­
cate their recipients (e.g., ?v of Move in Figure 5b). On the 
other hand, both formational and transformational actions 
use localParameters to record all needed parameters to com­
plete the action (e.g., ?heading of DesignTableChart, or ?dest of 
Move). Separating the operands from local parameters simpli­
fies the action instantiation process since PREVISE needs to 
consider only the operands during this stage. This allows the 
instantiations of local parameters to be delayed; for example, 
PREVISE is not concerned with local parameters, such as 
?dest (the destination of the movement) in Move, at a high 

level of the design. 

To simplify the planning process, plan goals in PREVISE 
are also specified similar to actions. For example, the com­
municative goal to create a summary of patient information, 
achieved in Figure 1, is notated as a rhetorical act, Summa-
rize<?patient-info>. Based on the domain-specific nurse prefer­
ence rule, this general act is then refined to a visual goal 
Structure<?patient-info> that requires all information to be 
structured in a specific way. This visual goal is in fact an 
abstract visual act, which can be accomplished by other 
visual actions (e.g., action DesignStructureDiagram) [Zhou and 
Feiner, 1998]. 

4.2 Object Decomposition 
As a planning operator, a visual action may be a primi­

tive action that can be directly executed by a plan agent, or a 
composite action that contains a set of partially specified 
subplans and must be replaced by the subplans during plan­
ning, PREVISE usually uses composite actions to sketch a 
design at a high level, and refines the vague parts of the 
design into more detailed ones using primitive visual actions. 
During such a design refinement, action and object decom­
position may both be required. For example, a DesignTable­
Chart action may be decomposed into a set of subactions that 
define individual table components. In the meantime, the 
input (the data ?x) used to produce the table chart must also 
be decomposed into smaller units that can be used by the 
subactions. Although in certain cases object decomposition 
could be implicitly handled by action decomposition, entan­
gled action and object decomposition makes visual planning 
extremely difficult (e.g., a data object may be decomposed 
into different subparts under different situations). Thus, we 
explicitly introduce object decomposition in visual planning 

DesignTableChart (is-a FORMATION-ACTION) 

(actionDecomSchemata [actD1]...) 
(objDecomSchemata [objD1] [objD2] [objD3]...) 
(objDecompPreferences 

(preference! (:condition (is-itemize ?x)) (:prefer [objD1])) 
(preference2 (:conditlon (is-overview ?x)) (:prefer [ob|D2])) 
(always [objD3])) 

[actD1] of ACT-DECOMPOSITION-SCHEMA 

(subactions (:loop ?i (:range 1 ?n)(:update (bind ?i (+ 1 ?i))) 
(Subaction<?i> (:expr (DesignVisRep ?x<?i> ?t<?i>))))) 

[objDl] of OBJECT-DECOMPOSITION-SCHEMA 

(objld ?x) (numParts ?n = :(get-numOflndividual)) 
(subParts (:loop ?i (:range 1 ?n) ?x<?i> = :(get-individual ?i))) 

[obJD2] of OBJECT-DECOMPOSITION-SCHEMA 

(objld ?x) (numParts ?n = :(get-numOfGroup)) 
(subParts (:loop ?i (:range 1 ?n) ?x<?i> = :(get-group ?i))) 

[ob|D3] of OBJECT-DECOMPOSITION-SCHEMA 

(ob|ld ?t) 
(subParts (:loop ?i (:range 1 ?n) 

IF (is-identifier ?x<?i>)) THEN (put-heading ?t ?t<?i>) 
ELSE (put-cells ?t ?t<?i>))) 

Figure 6. A visual action and its decomposition schemata 
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using a set of object decomposition schemata. 
An object decomposition schema uses objectld to identify 

the object to be decomposed, subParts to specify a set of 
components that the object is decomposed to, and numParts 
to indicate the total number of subparts (Figure 6). Unlike 
action decomposition where only one decomposition schema 
can be used at one time, more than one object decomposition 
schemata may be applied simultaneously. For example, PRE­
VISE may use [objDl] in Figure 6 to decompose the data ?x, 
but always uses [objD3] to determine the structural relation­
ships between the table chart itself (?t) and its components 
(?t<?i>). To determine which and when an object decomposi­
tion schema should be used, PREVISE uses preference con­
straints stored in objDecompPreferences. Moreover, variables 
are used extensively in decomposition schemata to express 
partial plans and objects, or to represent unknown situations 
(e.g., ?n). 

In general, two types of object decomposition occur in 
visual planning. In the first case, a completely specified 
object (e.g., a piece of data to be conveyed) needs to be 
decomposed into smaller units to be manipulated (e.g., 
decomposition schemata [objDl] and [objD2] in Figure 6). In 
the second case, a partially specified object (e.g., a visual 
object to be defined) must be decomposed into subparts so it 
can be refined through the subparts (e.g., [objD3]). Both types 
of object decomposition promote a simpler and more general 
knowledge encoding and management. 

Using the first type of object decomposition, we can eas­
ily handle the uncertainty involved in action decomposition. 
For example, during knowledge encoding, the number of 
subactions in [actD1] may be unknown, depending on how the 
data (?x) wi l l be processed in the actual planning process. In 
this case, before instantiating subactions in [actD1], PREVISE 
can establish the needed variables (e.g., ?n) by selecting an 
object decomposition schema (e.g., [objDl]) based on objDe­
compPreferences (e.g., preference-!). This approach allows a 
simple and general representation of action decomposition, 
which only needs to specify the unknowns using variables 
(e.g., ?n in [actDi]). 

The second type of object decomposition also helps gen­
eralize and simplify action decomposition. Without the 
object decomposition schema [objD3], for example, we must 
replace the general action DesignVisRep with more specific 
subactions, such as DesignTableHeading and DesignTableCell, to 
define various table constituents. In addition, we must con­
sider all the possible combinations of these specific subac­
tions to construct different subplans (e.g., a subplan may 
require a subaction DesignTableHeading, but another may not). 
This not only requires a number of different actions to be 
defined, but also increases the complexity of knowledge 
management. Considering the case of defining a new action 
DesignBarChart, we need to introduce a set of new actions 
(e.g., DesignAxes and DesignBar) for various bar chart constit­
uents. We must also ensure that each subaction is supplied 
with the proper data components to guarantee the design cor­
rectness. For example, only quantitative data components 
may be involved in the subaction DesignBar. 

Therefore, separating the object decomposition from the 
action decomposition allows simpler and more general rep­

resentations for action decomposition. More importantly, 
these simpler and more general representations improve PRE-
VISE'S applicability by easing its tasks of knowledge encod­
ing and management. 

4.3 Temporal Reasoning 
During a visual presentation, visual actions can occur 

concurrently or over extended time intervals. To create a 
temporally coherent visual presentation, we have integrated 
temporal reasoning into PREVISE to ensure that visual actions 
are temporally coordinated. Compared to other systems (e.g., 
[Tate etal. , 1994; Wilkins and Myers, 1995; Andre and 
Rist, 1996]), PREVISE uses multilevel topological and metric 
time constraints to describe actions at a finer granularity dur­
ing planning generation. It also employs a novel scheduler to 
ensure that all temporal constraints are met during planning 
execution. 

Temporal Constraint Specification 
PREVISE deals with two types of temporal constraints: 

Inter-action constraints specify temporal relations between 
two visual actions, and intra-action constraints describe tem­
poral relations within a visual action. 

Inter-Action Temporal Constraints. PREVISE uses topo­
logical constraints to represent temporal relationships 
between two visual actions qualitatively. These constraints 
can be represented as either time-point or time-interval con­
straints. In general, PREVISE allows three types of time-point 
constraints: BeforeAt, AfterAt, and EquatAt; and permits time 
interval constraints, containing any subset of the thirteen 
basic temporal relations defined in [Allen, 19831. When 
described in time-point constraints, visual actions may be 
considered instantaneous. In contrast, visual actions have 
distinct starting and finishing times when specified using 
time-interval constraints. 

Allowing both time-point and time-interval constraints 
not only enables PREVISE to represent different temporal 
relationships accurately, but also helps to handle temporal 
constraints efficiently by exploiting a multilevel constraint 
representation. Usually, we can use concise time-point con­
straints to specify incomplete temporal relations at a high 
level, and employ time-interval constraints to express more 
refined temporal relationships at a low level. For example, 
PREVISE can use a simple time-point constraint to assert that 
action A must start before B at a high level, without knowing 
their finishing times: 

(BeforeAt A B) 

Later, this constraint can be refined using one of the three 
more specific time-interval constraints based on their finish­
ing times: 

1. A finishes before B: (Overlap A B) 
2. A finishes after B: (Contain A B) 
3. A and B finishes at the same time: (FinishedBy A B) 

This multilevel temporal constraint representation helps 
avoid computationally complex temporal reasoning at a high 
level, hence improves planning efficiency. 

Intra'Action Temporal Constraints. In addition to tem­
poral constraints between visual actions, we also describe 
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temporal relationships within an action. Unlike inter-action 
temporal relationships, these relations are described quanti­
tatively using metric time constraints (usually in seconds). 

In general, a PREVISE action has a startTime and an end-
Time to regulate when and how long the desired visual effects 
should appear on the screen. But we add subtime intervals in 
a transformational action to describe its animation subacts. 
In particular, animOnDuration controls the time taken to turn 
on the desired visual effects (e.g., gradually changing the 
color of an object to highlight it), holdingDuration specifies 
how long the current effect should remain on the screen (e.g., 
holding the highlighting effect), and animOffDuration limits 
the time taken to reverse the visual transformation (e.g., turn­
ing off the highlighting). Using these subintervals, we can 
describe and control a finer-grained visual action and its exe­
cution. Moreover, we can specify an animation with its 
reverse without explicitly introducing a set of undo actions 
(e.g., unhighlight). 

To facilitate temporal media coordination (e.g., coordi­
nating a graphics animation with speech) in a multimedia 
presentation, we also allow more flexible time-window con­
straints. For example, we may specify that a Highlight action 
needs a minimum of 1s or maximum of 2s to turn on the 
highlight, and another 3s to 4s to hold the highlighting. To 
coordinate the highlighting with speech, a media coordinator 
can use the time window to compute a time interval accept­
able for both graphics and speech. 

Temporal Constraint Satisfaction 
We deal with temporal constraints in both plan genera­

tion and execution. In plan generation, we use a simple con­
straint solver to process qualitative time constraints based on 
transitive closures. Conversely, we use a constraint solver 
based on Metric/Allen Time System (MATS) [Kautz, 1991] to 
process quantitative temporal constraints. 

Execution Scheduler. In plan execution, we have imple­
mented a time queue to schedule visual actions. A l l visual 
actions are first entered in the time queue by their starting 
times. The scheduler then uses a global alarm clock to 
invoke actions when their starting times are reached. A local 
timer is also maintained within each visual action to signal 
its termination when its finishing time approaches. 

This approach works fine until this problem arises: Two 
closely scheduled actions (e.g., actions A and B in Figure 7a) 
may overlap as the scheduler cannot guarantee a full stop in 
previous action (e.g., A) when its local timer expires. This is 
because the local timer does not account for the time spent 
for executing various implicit finishing acts. For example, 

action A may call an instantaneous undo act (animOffDuration 
is 0.0s) when its local timer expires. Thus, there is no guaran­
tee that A's undo act wi l l be finished before B starts. 

To fix this problem, each action is required to signal the 
scheduler when it is truly finished. In addition, we insert a 
dummy finishing act for each action in the time queue by its 
finishing time to ensure that the global clock be stopped if 
the previous action is not finished. As shown in Figure 7(a), 
when the global clock reaches the dummy act Aend, it would 
not be advanced to action B8tart until it receives A's finishing 
signal. 

The above approach only fixes half of our problem: it 
works for actions scheduled one after another (e.g., A and B 
in Figure 7a), but not for actions scheduled right next to each 
other (e.g., B and C). In this case, the plan agent is expected 
to execute two tasks simultaneously: finishing the previous 
action (B) and starting a new action (C). Since it is physically 
impossible for uniprocessor machines to process two tasks at 
the same time, the tasks wi l l be executed in a nondeterminis-
tic order. This may result in undesirable visual effects. Sup­
pose B and C are both highlighting actions, and B must finish 
by removing its highlight before C starts to put on a new 
highlight. Because of the nondeterministic execution order, 
C might be started before B finishes to cause an undesired 
visual effect: two objects highlighted at the same time 
instead of in sequence. 

To ensure desired visual effects, we add sub-order tem­
poral constraints to serialize simultaneous actions using heu­
ristics. For example, one heuristic rule in PREVISE asserts that 
all dummy finishing acts precede any other action scheduled 
at the same time. In the above example, the plan agent wi l l 
process Bend before Cstart, as if the time point t is expanded 
into a time interval [t, t+A] (Figure 7b). This ensures that all 
objects in action B are unhighlighted before any new object 
is highlighted in action C. 

4.4 Spat ia l Reasoning 
PREVISE performs spatial reasoning in two situations. In 

spatial composition, PREVISE regulates the size and place­
ment of visual objects to ensure a valid visual composition. 
In spatial transformation, PREVISE controls the spatial modi­
fication of existing visual objects and the integration of new 
visual objects to maintain a coherent visual transformation. 

Spatial Composition 
A visual composition is considered valid if all syntactic 

constraints are satisfied during visual object synthesis 
[Zhou, 1998]. Among these syntactic constraints, some regu­
late spatial relationships between visual objects. Figure 3 is 
annotated to show a set of spatial constraints that must be 
satisfied in a structure diagram. Moreover, these constraints 
are specified at different levels of abstraction to capture 
multi-level spatial relationships. For example, constraint 1 is 
an abstract spatial constraint, defined at a high level to 
describe vague spatial relationships between complex visual 
objects. In contrast, constraints 1.1 and 1.2 express more 
concrete visual relationships. To be evaluated, an abstract 
constraint (e.g., constraint 1), must be replaced by a set of 
more concrete constraints (e.g., constraints 1.1 and 1.2). One 
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distinct advantage of using abstract constraints is to achieve 
planning efficiency by postponing overwhelming details 
involved in lower level constraints to a later time. 

By evaluating a set of constraints, PREVISE can deter­
mine the size and placement of visual objects involved. For 
example, the locations or sizes of various texts in Figure 3 
can be determined. In PREVISE, we model spatial constraints 
using mathematical equations and inequalities, which are 
eventually solved by STM using a numerical optimization 
method. Since the optimization method requires a set of 
proper initial values, we must supply these values for STM to 
start with. For example, we need to supply the proper initial 
values for ?line-length and ?tab in constraints 2 and 4 
(Figure 3). Currently, these values are obtained based on 
empirical analyses of many existing graphical representa­
tions (e.g., hand-made or machine-made structure diagrams). 
For example, to best illustrate the spatial ratio between the 
patient body and the lines, we have learned that the length of 
various lines in the picture is usually at least 1/3 of the diag­
onal length of the body's bounding box. 

Spatial Transformation 
In addition to ensuring a valid visual composition, PRE­

VISE also uses spatial constraints to control the integration of 
new information into an existing presentation. In one 
approach, PREVISE directly adds the new information to the 
existing scene as visual extensions of existing objects. For 
example, to reveal drip details (Figure 2c), PREVISE directly 
adds a pull-down menu as an extension of the drip button in 
the overview (Figure 1). To determine the size and the place­
ment of new objects (e.g., the pull-down menu) in relation to 
the existing objects (e.g., the button), PREVISE reasons about 
the spatial geometry of the existing scene, including the 
objects* size, orientation, and topology, by issuing queries. It 
then formulates constraints based on design heuristics. In our 
case, based on the current geometry of the drips button, PRE-
VISE formulates spatial constraints to regulate the size and 
position of the added pull-down menu. 

To avoid unnecessary spatial rearrangement, we also 
assert a set of spatial constraints in advance to prepare Ibr 
potential visual changes. For example, a button is usually 
expected to bring up a pull-down menu when pressed. There­
fore, when a button is created, a spatial constraint is asserted 
to ensure that there is enough room reserved below the but­
ton for placing a pull-down menu (e.g., the space below the 
drips button in Figure 3). 

In general, directly adding new objects to the existing 
scene is relatively simple since PREVISE deals with a con­
fined space with rigid spatial constraints (e.g., placing a pull­
down menu near a button). However, in many cases, PREVISE 
may need to modify the existing scene dramatically for inte­
grating new information. In this case, PREVISE must deter­
mine how to make spatial changes for the new objects. For 
example, to produce Figure 2(d), PREVISE decides to keep 
the table chart at the top (e.g., name, age, and gender) of 
Figure 2(c) to provide the necessary context information, 
while replaces the rest of representation with the lab report. 

PREVISE currently deals with relatively simple space-
management cases. Our approach assumes that all existing 
visual objects wi l l be replaced except the objects that must 
be kept to provide necessary background or context informa­
tion. Once PREVISE determines what to keep or to remove, it 
wi l l plan the size and the placement of the new objects (e.g., 
the table chart for lab report) using an iterative-adjustment 
algorithm. To utilize space efficiently and produce a bal­
anced layout, the algorithm assumes that the kept objects 
usually reside in the shaded area to leave the middle area for 
the new objects (Figure 8). 

The shaded areas are initially defined by a set of thresh­
old values to guarantee that at least 2/3 of the display area in 
the middle be reserved for the new visual objects. The algo­
rithm then iteratively computes the bounding box for each 
object kept in the scene and determines the region containing 
this object. If the object falls in only one of the eight shaded 
regions (e.g., objl and obj2 in Figure 8), the algorithm adjusts 
the current boundaries by pushing them toward the center to 
define unoccupied space. For example, the initial top bound­
ary is pushed down into line 1, and the initial left boundary 
becomes line 2 in Figure 8. If the object does not completely 
fall in any of the eight regions (e.g., obj3) and the threshold 
values arc adjustable, the algorithm recursively increases the 
current threshold values to recompute new boundaries. If the 
threshold values are not adjustable, the current existing 
objects may be modified to create enough room for new 
objects. Eventually, the algorithm returns four boundaries to 
define the dimension and position of the area for placing the 
new objects. 

5 Implementation 
PREVISE is implemented using both CLIPS [JSC-

25012, 1993] and C++, currently running on SGIs and PCs 
under Windows NT. The rendering component is written in 
C++ and Open Inventor, an object-oriented 3D interactive 
graphics toolkit [Wernecke, 1994). On a SGI Indigo 2 with a 
250 MHz R4400 processor, it takes about 25 seconds to plan 
the overview of patient record shown in Figure 1, and about 
45 seconds to plan the entire detail view of patient record, 
partly shown in Figure 2. 

6 Conclusions & Future Work 
In this paper, we have presented a practical visual plan­

ning approach to automated visual presentation design. In 
particular, we model visual actions as planning operators, 
and visual design principles as planning constraints. On top 
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of our core top-down hierarchical decomposition partial-
order planning approach, we add a set of visual planning fea­
tures. These features include a powerful visual planning rep­
resentation, an explicit object decomposition method, and 
temporal and spatial reasoning capabilities. Moreover, this 
approach is implemented in a planner, PREVISE, as part of our 
automated visual presentation testbed system. 

Currently, we are working in two areas to improve the 
visual planning approach. To allow user interaction during 
planning generation and execution, we are planning to incor­
porate reactive planning strategies [Wilkins et al., 1994]. For 
example, users may suggest changes to the design decisions 
made by PREVISE, or interactively alter the course of the exe­
cution to selectively view the presentation (e.g., executing 
visual actions out of sequence). Thus, our current approach 
must be extended to recognize the inadequacy of a current 
plan, and correct it to meet the new conditions. 

To perform spatial analysis and management for more 
complicated situations, we would also like to enhance the 
spatial reasoning capability. For example, developing a gen­
eral and efficient algorithm to query the spatial density of a 
scene so we can place new objects on the location where the 
spatial density is low to avoid possible object occlusions. 
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