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A b s t r a c t 

This paper argues that the reuse of domain 
knowledge must be complemented by the reuse 
of problem-solving methods. Problem-solving 
methods (PSMs) provide a means to struc­
ture search, and can provide tractable solu­
tions to reasoning wi th a very large knowl-
edge base. We show that PSMs can be used 
in a way which complements large-scale rep­
resentation techniques, and optimisations such 
as those for taxonornie reasoning found in 
Cyc. Our approach illustrates the advantages 
of task-oriented knowledge modelling and we 
demonstrate that the resulting ontologies have 
both task-dependent and task-independent el­
ements. Further, we show how the task ontol­
ogy can be organised into conceptual levels to 
reflect knowledge typing principles. 

1 I n t r o d u c t i o n 
Developing reusable ontologies which specify the struc­
ture and content of domain knowledge has become a 
central problem in the construction of large and scal­
able knowledge based systems. For example, a key 
step in KBS construction using the Cyc system [Lenat 
and Guha, 1990] is to extend the existing upper-level 
ontology by creating new classes and representations. 
Methodologies for ontology development, have been pro­
posed [Lenat and Guha, 1990; Usehold and Gruninger, 
1996; Blazquez ct a/., 1998]. However, many unsolved 
problems remain. Other important issues concern the 
relationship between the domain representation and its 
intended use [Wielinga ct a/., 1994; van Heijst ct a/., 
1997]. We shall concentrate on the representational and 
performance issues focusing ini t ial ly on the reasoning 
processes, and reflect on the implications for domain rep­
resentation in the light of these findings. 

Versions of Cyc are currently being used as an integra­
t ion platform by the DARPA-funded High Performance 
Knowledge Bases (HPKB) program. Key issues on the 
H P K B program are the sca lab i l i t y , robus tness , and 
r e u s a b i l i t y of knowledge-based system solutions. Cyc 

is unique in that it, has potential solutions to each of 
these problems. 

Cyc uses a resolution-based inference procedure that 
has a number of optimisations that improve the scalabil­
i ty of the architectures For example, a specialised taxo­
nornic reasoning module replaces the application of the 
logical rule for t ransi t iv i ty of class membership. Where 
specialised modules are not implemented, Cyc makes use 
of weak search methods to perform inference. Cyc lacks 
any principles for structuring inference at a conceptual 
level. Problem-solving methods provide precisely this 
structure, hence the importance of integrating structur­
ing principles into a scalable KBS architecture. 

Robustness and reusability are related properties of 
the knowledge representation scheme and the inference 
rules: Predicates such as bordersOn and between, defined 
in the upper-level ontology, can be reused in many dif­
ferent contexts. The combination of predicate properties 
(such as symmetry) and existing inference rules means 
that the use of these predicates is robust. Reconciling 
units of measure is a similar problem. In this case, Cyc 
has sufficient, knowledge to prove (greaterThan (Meter I) 
(Centimeter 2)) using its existing definitions and rules 
about units of measure. Reusability is also an impor­
tant motivation for defining a upper-level ontology as 
the basis of knowledge representation. The upper-level 
ontology can be shared among more specialised reason­
ing contexts or applications. Extensions to the upper-
level can themselves be shared, and can be regarded as 
ontologies in their own right. 

We describe the implementation of a PSM for fault 
diagnosis in Cyc. The diagnostic method was applied 
to two different domains to investigate whether the po­
tential for method reuse was actually achievable. As 
implementation was preceded by a significant amount of 
domain and task analysis, this work allows us to review 
the value of the methodological approach and to investi­
gate issues such as the task-dependence of the ontologies 
constructed. This paper begins wi th an introduction to 
the component, technologies used—CommonKADS and 
Cyc— and then describes the implementation of the PSM 
and the associated knowledge modelling. 
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2 Componen t Technologies 
2.1 PSMs: The CommonKADS View 
In CommonKADS, problem-solving methods are the 
product of expertise analysis - one of several analysis 
steps which are specified by the methodology. PSMs are 
also used in Protege [Puerta et al., 1992], and in Ex­
pect [Gil and Melz, 1996] (although in different forms). 
PSMs define distinct methods for performing a task, for 
example, diagnosis can be modelled as involving a heuris­
tic association between observations and solutions, or as 
a process of decomposing a system and testing its sub­
components for correct operation. In addit ion to speci­
fying an inference procedure, PSMs require that domain 
knowledge be modelled in particular ways, i.e. a method 
ontology is associated wi th a PSM. 

CommonKADS is a methodology for KBS develop­
ment which addresses not only the desired problem-
solving performance of the end system, but the context 
in which it wi l l operate. A number of models are con­
structed in the analysis phase: an organisational model 
represents the processes, structure, and resources of the 
organisation which is to use the KBS, a task model 
describes the activities of the process of interest, an 
agent model represents the agents involved in the process 
and their capabilities, a communication model describes 
agent (human and machine) communication, an exper­
tise model defines domain and problem-solving knowl­
edge, and, finally, a design model describes the struc­
ture and function of the system that wi l l implement the 
knowledge-based task. More details of the various mod­
els, and appropriate modelling techniques can be found 
in [Kingston et a/., 1997]. 

CommonKADS is relatively neutral on questions of 
implementation. However, expertise modelling does 
make a number of assumptions about knowledge rep­
resentation constructs and their interaction. The exper­
tise model has three layers: the domain layer represents 
knowledge about the domain, the inference layer defines 
the procedures applied during problem solving, and the 
task layer specifies the ordering of inference steps. As 
the expertise model is the only CommonKADS model 
that captures expert problem-solving behaviour, we shall 
l imi t our attention to representing this model in Cyc. 

2.2 Cyc 
Cyc is a very large, mult i-contextual knowiedge-based 
system which is currently being used commercially by 
C y c o r p . Cyc is also used for research purposes, and, in 
the HP KB program, Cyc is being used as a platform for 
technology integration. 

The arguments for Cyc proposed in Lenat and Guha 
[1990] remain the cornerstones of the Cyc project; 
namely, the need to overcome the brittleness of t radi­
t ional expert systems, and the means of achieving this 
through the development of a shared ontology represent­
ing 'consensus reality'. The upper-level ontology, which 
constitutes the basis of knowledge representation in Cyc, 
has been made publicly available. However, this repre­

sents only a fraction of the knowledge which has been 
entered into Cyc. 

The upper-level ontology is represented in a variant 
of first-order logic known as CycL. The ontology in­
cludes: classes used for constructing representations, 
for example Set OrCollection and Predicate; classes for 
high-level concepts such as Event and Agent; and more 
specific classes representing commonly occurring objects 
and events such as Book and BirthEvent. 

Assertions in CycL are always associated w i th a mi -
crotheory context. The BaseKB contains the upper-level 
ontology and new contexts can be defined which spe­
cialise this theory. Mul t ip le inheritance of microtheory 
contexts is allowed. Al ternat ive specialisations of a mi ­
crotheory need not be consistent w i th each other: a mi ­
crotheory can contain ontology extensions and assertions 
which are inconsistent w i th those defined in a different 
theory - providing neither context is defined as subsum­
ing the other. The microtheory mechanism plays an im­
portant role in structur ing inference. 

Cyc performs inferencing in response to a query by the 
user (by backward chaining) or in response to an asser­
t ion (by forward chaining wi th rules which are explicit ly 
specified to be forward rules). Queries are made in a 
specific microtheory which forms the local search con­
text. Typically, a microtheory wi l l be a specialisation of 
one or more theories and in this case search wi l l progress 
out to wider contexts should a solution not be found lo­
cally. Queries are treated in a purely logical manner: 
the order of conjuncts is not considered to be significant 
and may be changed by optimisations operating at the 
clause-form level. The preconditions of rules are also 
treated in this way - prohibi t ing the user from influenc­
ing the search process in a predictable way. The depen­
dencies between derived facts, rules and assertions are 
recorded and maintained by a t r u th maintenance mech­
anism. 

Cyc's purely declarative treatment of rules differs from 
other approaches to logic-based knowledge representa­
t ion, such as Prolog, where the ordering of clauses, and 
of literals wi th in clauses, is used to determine the order 
of search. 

The Cyc system includes a number of tools for view­
ing and browsing the ontology. In common wi th other 
browsers, including that for Loom [MacGregor, 1994], 
terms in the ontology are hyperlinked in a web-based 
interface. This allows the user to explore the concepts 
which define, or are subsidiary to, the concepts currently 
being displayed. 

The Cyc system also gives the KBS developer access 
to a LISP-like environment where new procedures can 
be defined in the SubL language. The Cyc knowledge 
base and inference engine can be accessed via the SubL 
functions ask and assert. Due to the treatment of rules 
described above, imposing structure on the search pro­
cess necessarily requires SubL coding. 
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3 Systematic Diagnosis in Cyc 
This section describes the expertise modelling process 
and presents its products. The implementation of these 
models in Cyc is then outl ined. We begin wi th a brief 
introduct ion to the domain and the diagnostic task. 

The task of diagnosis was selected because a set of 
well understood methods for solving such tasks already 
exists [Wielinga et al, 1992]. An important part of 
expertise modelling is the selection between alternative 
methods - w i th their accompanying behaviours and as­
sumptions. The choice of a specific diagnostic method 
was not made prior to domain analysis. It is readily 
apparent that we have chosen a problem type that falls 
wi th in the scope of the methodology we intend to apply. 
However, it is not at all obvious that diagnosis—which 
is inherently an incremental procedure requiring infor­
mation gathering can be adequately implemented by 
backward chaining driven by a query-based interaction 
(i.e. by the default environment provided by Cyc). We 
shall return to this point below. 

Fault f inding in personal computers (PCs) was chosen 
as the primary task domain. This task can be modelled 
accurately, i.e. the actual behaviour of human experts is 
known and has been documented [Kozierok, 1998], yet 
the amount of electronics knowledge required is low as 
fault finding never progresses to a level where sophisti­
cated test equipment is required. The second domain 
chosen was fault f inding in an automobile ignition sys­
tem. This task ought to be soluble by the method devel­
oped for PC diagnosis, despite differences in the charac­
teristics of the domain and in the method ontology. 

3.1 Modelling Expertise 
The selection of a problem-solving method is one of the 
central modelling decisions in Commoi iKADS. This wi l l 
typically have an impact on domain representation. Fol­
lowing this approach, the PC-diagnosis problem was ad­
dressed by investigating candidate PSMs. As PSMs may 
be refined in several different, ways, alternative instanti-
ations were also investigated. This is a notable contrast 
w i th a domain-oriented approach which would focus on 
developing an ontology of the domain being reasoned 
about, PC systems and their components in this case. 

The systematic diagnosis PSM was found to match the 
expert reasoning process most closely. The generic model 
had to be adapted to reflect expert reasoning more faith­
fully. The central steps in systematic diagnosis are the 
decomposition of the system being diagnosed into sub­
systems, and the testing of the subsystems for correct 
operation by making tests and comparing the observed 
w i th the predicted outcomes. The subsystem currently 
being tested is said to play the role of the current hy­
pothesis. Testing may rule out this hypothesis, in which 
case another subsystem becomes the hypothesis. Test­
ing may yield an inconclusive result, in which case more 
tests are required, or testing may indicate a fault, in 
which case the diagnosis is concluded if the current 
hypothesis cannot be further decomposed (i.e. it is a 
component), or diagnosis continues at a lower level of 

Figure 1: PSM for systematic diagnosis 

system decomposition — if the current hypothesis can be 
decomposed (i.e. it is a system). The system model 
may describe how the system is decomposed into (phys­
ical) parts, or may describe the functional relationships 
between systems. 

It was discovered that the the part-of model, which lies 
at the heart of systematic diagnosis, had to be instan­
tiated to functional-part-of in the PC diagnosis domain. 
That is, problem solving requires a functional view of the 
system, rather than a component/subcomponent view. 
The functional-part-of predicate is clearly a representa­
tional construct at the domain level, and is one of several 
part-of views that might be taken of a system. In fact, 
there was no need to represent the physical-part-of rela­
t ion in order to solve this problem. 

Another important refinement of the generic model 
was the addit ion of theories of test ordering. Where there 
are several decompositions of a system, the model per­
mits any subsystem to play the role of hypothesis. How­
ever, in PC diagnosis it is important to establish first, 
for example, that the power system is operational, then 
that the video system is operational. Once the video 
system is known to work we can be sure that the re­
sults of BIOS system tests are being displayed correctly. 
Similar ordering constraints were found for all subsys­
tems, and at all levels of decomposition. Consequently, 
there is a need to impose an order on hypothesis se­
lection (or, equivalently, system decomposition) and we 
chose to represent this knowledge in a heuristic fashion 
via a testAfter predicate. Figure 1 shows the specialised 
PSM in a diagrammatic form. 

Determining the overall view of the desired problem-
solving behaviour aided knowledge acquisition, much of 
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Figure 2: Upper-Level ontology extensions - distin-
guished by level 

which concerned the extraction and structuring of in­
formation from an on-line source [Kozierok, 1998]. Our 
experience confirmed the claimed advantages of the mod­
elling approach. In addit ion to specifying an inference-
level procedure, knowledge acquisition also requires the 
content and scope of domain knowledge to be deter­
mined. The task of representing domain knowledge in 
Cyc followed the standard procedure of extending the 
ontology by defining new collections and predicates, and 
l inking these to existing constants. We now describe the 
Cyc implementation in more detail. 

3.2 Cyc Implementation 

Diagnosis requires interactive data gathering, and the 
subsequent evaluation of test results and updating of the 
current hypothesis. Such a procedure cannot be imple­
mented by logical inference alone, and so it is clearly 
necessary to use Cyc's LISP-like language, SubL, to im­
plement a control regime. In CommonKADS, control 
knowledge is divided between the inference layer, where 
knowledge roles and inference steps are defined, and the 
task layer, where the order of application of inference 
steps is specified. Our aim was to represent the levels 
of the expertise model in Cyc in as fai thful a manner as 
possible. We begin by considering domain knowledge. 

Domain knowledge was represented by extending ex­
isting collections where possible. Figure 2 shows a small 
i l lustrative set of the extensions made. The collection 
PCSubsystem was added as a subcollection of Composite-
TangibleAndlntangibleThing, and PCComponent was de­
fined as a specialisation of i t . Both types of object have 
a tangible component, and may carry information hence 
have an intangible component also. Test Act ion was de­
fined as a new collection of Purposeful Action, and the in­

stances of Remove, Replace, and ConfirmSensorially (i.e. 
confirm by observation) were added [Sklavakis, 1998]. 
functionalPartOf was introduced to represent the func-
t ional decomposition of a system, and stated to gener­
alise to parts, being the most general existing part-of 
predicate in the upper ontology1. Other specialisations 
of parts include physicalDecompositions and timeSlices. 

The predicates testFirst and testAfter were introduced 
as predicates to represent the test ordering theory. A 
test is defined by three components: a Test Act ion, a PC-
Subsystem and a PossibleObservable. The collections Pos-
sibleObservable, PossibleObservableValue, and ResultType 
were defined as subcollections of AttributeValue. The rep­
resentation of testing knowledge can be made more ro­
bust by grounding it extensively in the upper ontology. 
In contrast, part-of facts are not likely to be derivable 
by appeal to background knowledge. 

At the inference level, knowledge roles are represented 
by predicates, and inference steps are rules which have 
knowledge roles as preconditions and conclusions. Fig­
ure 2 shows the introduct ion of the KnowledgeRole col­
lection, a specialisation of the Predicate class of the up­
per ontology. Instances of KnowledgeRole predicates take 
domain-level formulae or collections as arguments. Ex­
amples include; the unary predicate hypothesis - appli­
cable to PCSubsystem - denotes the current hypothesis, 
possibleTest holds of applicable tests, and the relation 
predictedTestOutcome holds of a test, PossibleObservabl­
eValue and a ResultType. More complex mappings to the 
inference level, and the definit ion of additional collec­
tions and terms, are also possible wi th in this approach. 
The CycL language is sufficiently expressive to allow 
complex mappings of the type described in [Wielinga et 
a/., 1994] where the inference-level ontology (in our ter­
minology) might define relations holding of domain-level 
ontology, e.g. we could express the fact that Physical-
PartOf is a relation: relation(PhysicalPartOJ). 

In a similar way, the currently invoked inference step 
(e.g. decompose, select) is also explicit ly asserted in the 
KB by predicates which belong to the inference level. 

Inference steps are invoked by querying or asserting 
knowledge roles. For example, the role hypothesis holds 
of the subsystem currently playing the role of the hy­
pothesised fault. The rules for selecting the test ordering 
theory depend on the current hypothesis, for example: 

F: ( impl ies (and (hypothesis PCSystem) 
(plausible lnference Decompose)) 

(and ( t e s t F i r s t PowerSystem) 
( tes tA f te r PowerSystem VideoSystem))). 

This is a forward rule which fires when hypothesis and 
plausiblelnference are asserted. The current hypothesis 
assertion must be deleted and replaced as diagnosis pro­
ceeds. These operations are implemented in SubL by 

'Note that terms defined in the ontology, or its extension, 
are written in sans-serif, following the Cyc convention, names 
of collections begin with a capital letter and predicates begin 
with a lower case letter. 
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Figure 3: Microtheory structure 

functional-interface functions, wi th in the larger struc­
ture of the systematic diagnosis task function. The user 
could make this series of deductions themselves, and in 
the implemented system, the user is able to inspect the 
state of the reasoning process as it progresses. As an 
example, the following SubL code is called at the start 
of diagnosis and simply asserts that the entire system 
is the hypothesis, and then calls another SubL function, 
s d - s e l e c t 2 - 3 , which performs system decomposition. 

(def ine s d - s e l e c t l (system) 
( f i - a s s e r t (#$hypothesis system) *de fau l tMt * ) 
( sd -se lec t2 -3 ) ) 

We have achieved an explicit representation of knowl­
edge roles and of inference steps in Cyc that reflects the 
knowledge typing principles advocated in [van Heijst et 
a/., 1997). Control over the search process is achieved by 
making a series of simple queries, structured to imple­
ment the pattern of inference of the PSM. We found no 
need to extend the functionali ty of Cyc, or the expres­
sivity of its representation language(s) in order to im­
plement the PSM. The central problem was to combine 
the available features into structured architecture, in or­
der to to take advantage of the model-based approach to 
problem solving. 

We tested the reusability of the domain and inference 
level definitions, and of the SubL code, by considering 
diagnosis in the domain of automobile ignit ion systems. 
This experience is discussed in the wider context of the 
reusability, scalability, and robustness of our approach. 

4 Representa t ion and Reasoning 
4.1 Domain Ontologies 
The view of domain ontology construction which results 
from the prior selection and adaption of an explicit prob­
lem solving method is more focussed on concepts relevant 
to problem solving than a task-neutral view would be. 
The resulting domain ontology is not task-specific in its 

formalisation, e.g. the definit ion of the functional-part-of 
relation has no intrinsic task-related properties. But , the 
coverage of the resulting ontology may only be part ial -
we did not need to elicit physical-part-of knowledge. 

Had we taken a view that focussed on the domain 
alone, we would have had no explicit guidance as to 
which concepts were or were not relevant to the on­
tology definition effort. We have gained experience of 
constructing ontologies where the pr imary aim was to 
represent the domain, wi th ontology definition only in­
formally guided by considering the task. Under these 
conditions it is difficult to determine the relevance of a 
potential domain concept, and the distinction between 
concepts that are intrinsic to the representation of the 
domain, and those that are related to the task to be 
performed was difficult to make. 

Reusability of domain knowledge is an important is­
sue, and our approach has been to use the microthe­
ory mechanism of Cyc to encapsulate the generic com­
ponents of the extended ontology. The resulting mir-
cotheory structure, shown in Figure 3, places the generic 
system models for PCs and automobile systems in dis­
t inct microtheories, that are extensions of the BaseKB, 
and are included in the specific diagnosis microtheories. 
Strict ly speaking, these microtheories are not extensions 
of the ontology as they make no new specifications. In­
stead, the BaseKB is extended by adding the definitions 
of the functionalPartOf predicate and the collections Sub­
system and Component as these concepts are sufficiently 
general to be reusable across domains. The method-
specific ontology, comprising domain and inference level 
components, is also a specialisation of the BaseKB, and 
this theory is shared by both PC and Automobile di­
agnosis theories. The microtheory structure shows that 
the generic system models can be used in any context 
which includes the (now extended) BaseKB, and that 
these theories can be thought of as parameters of the 
diagnosis microtheories. 

4.2 In fe rence K n o w l e d g e 
The application of systematic diagnosis to the automo­
bile domain required a change in system theory from 
functionalPartOf to physicalDecornposition. While this 
is a significant change in the modell ing of the diagnostic 
process (physical parts play the role of hypotheses) there 
were few implications for formalisation of the inference 
level as no new knowledge roles were found. Similarly, 
the SubL code was only modified to take the specific di­
agnosis microtheory as a parameter. In future, we aim 
implement other PSMs and this may permit us to gen­
eralise inference-level theories across PSMs. 

4.3 Scalability 
The domain and inference level knowledge representa­
tions that we have used are extensions of the basic rep­
resentation, and can make use of the existing opt imi­
sations for indexing large KBs, performing taxonomic 
reasoning and theory structur ing. Our approach to PSM 
implementation is based on structur ing a series of queries 
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and assertions to implement a problem-solving method. 
As the individual queries are simple, the space searched 
is small (we can specify the depth of search to be 1-
3 levels). This contrasts wi th the basic query mecha­
nism where the only means of getting an answer to query 
which requires many rules to be combined is to increase 
the depth of search - w i th the resulting exponential in­
crease in search space. 

4 . 4 R o b u s t n e s s 

At present we are unable to reason about inference struc­
tures or about the mappings from the domain to the in­
ference level wi th in Cyc. There are no rules which allow 
PSMs to be modified or to be configured. Consequently, 
the system lacks robustness as it cannot fall back to first 
principles when an existing method is not immediately 
applicable. The problems of PSM modification and con­
figuration are significant, even for human experts, but 
we believe that automatically specialising PSMs is a fea­
sible proposition. We also plan to explore the idea of 
fall ing back to more general methods, when more spe­
cific methods are inapplicable, to regain robustness. 

Inference steps (implemented by rules) require proving 
domain-level predicates, and robustness at the level of 
reasoning about domain knowledge occurs exactly as in 
Cyc. 

5 Discussion 
We have described an approach to implementing 
problem-solving methods in Cyc which makes use of the 
existing optimisations developed for large-scale knowl­
edge bases, and adds additional structure to the infer­
ence process. Extensions to the existing ontology distin­
guished generic extensions to the upper-level ontology, 
extensions to the knowledge base, and task-related ex­
tensions. Knowledge typing principles were used wi th in 
the task-related ontology to further structure problem-
solving knowledge. 

Our investigation of diagnostic problem solving has 
not only raised issues of knowledge reuse and scalabil­
ity, but also of system-environment interaction. Intel l i ­
gent systems cannot rely on large amounts of background 
knowledge alone as many classes of problems require in­
formation gathering or user interaction. If such interac­
t ion is to happen in an intelligent fashion then there is a 
requirement to represent and reason about the inferences 
which require interaction. 
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