
Verifying Integr i ty Constraints on Web Sites

Mary Fernandez
A T & T Research

180 Park Ave.

Florham Park, N.J 07932 USA

m f f r e s e a r c h . a t t . c o m

Daniela Florescu
INRIA

HP. 105 Rocquencourt

be Chesnay cedex, Prance

d a n a @ r o d i n . i n r i a . f r

Alon Levy
Dept. of Computer Science

University of Washington

Seattle, WA. 98195 USA

alon@cs.Washington.edu

Dan Suciu
A T & T Research

180 Park Ave.

Florham Park, NJ 07932 USA

sueiu@research.att .com

Abstract

Data-intensive Web sites have created a new form
of knowledge base, as richly structured bodies of
data. Several novel systems for creating data-
intensive Web sites support declarative specifica­
tion of a site's structure and content (i.e., the pages,
the data available in each page, and the links be-
tween pages). Declarative systems provide a plat­
form on which A1 techniques can be developed that,
further simplify the tasks of constructing and main­
taining Web sites. This paper addresses the prob­
lem of specifying and verifying integrity constraints
on a Web site's structure. We describe a language
that can capture many practical constraints and
an accompanying sound and complete verification
algorithm. The algorithm has the important prop­
erty that if the constraints are violated, it proposes
fixes to either the constraints or to the site defini­
tion. Finally, we establish tight bounds on the com­
plexity of the verification problem we consider.

1 Introduct ion
Data- intensive Web sites have created a new form of
knowledge base. They typ ica l ly contain and integrate
several bodies of da ta about the enterprise they are de­
scr ib ing, and these bodies of da ta are l inked into a rich
structure. For example, a company's internal Web site
may contain data about i ts employees, l inked to data
about the products they produce and /o r to the cus­
tomers they serve. The data in a Web site and the
structure of the l inks in the site can be viewed as a r ichlv
s t ructured knowledge base.

The management of data- intensive Web sites has re­
ceived signif icant a t tent ion in the database commu­
ni ty [Fernandez et al., 1998; Atzeni et a l . , 1998; Aroccna
and Mendelzon, 1998; Chiet et al., 1998; Paol in i and
Fraternal] , 1998]. The key insight of recent systems is to
specify the st ructure and content of sites dedarat ive ly .
These systems separate and provide direct support for
the three p r imary steps of site creat ion: (1) ident i fy­
ing and accessing the da ta served at the site, (2) def in­
ing the site's s t ructure (i.e., the pages, the da ta in each
page, and the l inks between pages), and (3) specifying

the H T M L rendering of the site's pages. Step 2 is usually
supported by a declarat ive, specif ication language.

Web-site management systems based on declarat ive
representations offer several benefits. F i rs t , since a site's
st ructure and content are defined dedarat ive ly , not pro­
cedural ly by a p rogram, it is easy to create mu l t ip le
versions of a site. For example, it is possible to bu i ld
internal and external views of an organizat ion's site or
to bu i ld sites ta i lored to novice or expert users. Cur­
rent ly, creat ing mu l t i p l e versions requires w r i t i ng mu l t i ­
ple sets of programs or manua l ly creat ing different sets
of H T M L f i les. Second, these systems support the evo­
lu t ion of a site's s t ructure. For example, to reorganize
pages based on frequent usage patterns or to extend the
site's content, we s imply rewr i te the site's specif ication.
Another advantage is efficient update of a site when its
da ta sources change.

Declarat ive Web-site management systems also al low
us to view a site's def in i t ion and its content as a knowl ­
edge base. A natura l next step is to consider how reason­
ing techniques can fur ther improve the process of bu i ld ­
ing and ma in ta in ing Web sites. We consider the reason-
ing problem of ver i fy ing integr i ty constraints over Web
sites. Specifically, when the s t ructure of a site becomes
complex, it is hard for a designer to ensure that the site
w i l l satisfy a set of desired propert ies. For example, we
may want to enforce tha t al l pages are reachable f rom the
root , every organizat ion homepage points to the home-
pages of i ts sub-organizat ions, or propr ie tary data is not
displayed on the external version of the site. A study on
the usabi l i ty of on- l ine stores [Lohse and Spil ler, 1998]
provides other constraints tha t i f fo l lowed, would i m ­
prove the site design.

For a veri f icat ion tool to be useful, if must verify con­
straints against a site de f in i t ion , not a par t icu lar in ­
stance of the site, because (1) we do not want to verify
the constraints every t ime the site instance changes, and
(2) if a Web site is dynamica l l y generated, an instance is
never completely mater ia l ized mak ing it is impossible to
check the constraints. Ver i fy ing the constraints on the
site def in i t ion ensures tha t as long as the site is generated
according to the def in i t ion , the constraints w i l l be sat­
isfied. For this reason, the ver i f icat ion problem requires
reasoning, and not j us t app ly ing a procedure to the site.
Fur thermore, when the in tegr i ty constraints are not ver-

614 KNOWLEDGE-BASED APPLICATIONS

i f ied, the system should au tomat ica l l y propose a set of
candidate modi f icat ions to the site def in i t ion. Th is raises
a search prob lem in the space of possible modi f icat ions.

Th is paper makes the fo l lowing cont r ibut ions. F i rs t ,
we ident i fy an i m p o r t a n t class of in tegr i ty constraints
relevant to Web sites. Second, we describe a sound and
complete a lgor i thm for ver i fy ing the in tegr i ty constraints
and an analysis of their complex i ty . The key feature of
our a lgor i thms is tha t they consider only the specifica­
tion of the site's s t ructure and content, not a part icular
instance of a site. Hence, the ver i f icat ion is independent
of changes to the under ly ing site, as long as they are gen­
erated by the same specif icat ion. F ina l ly , in cases where
the veri f icat ion a lgo r i t hm shows tha t the constraints may
be v io lated, it proposes a set of corrections to the Web
site's def in i t ion.

The problem we consider is closely related to the prob­
lem of knowledge-base veri f icat ion (see [V V T ' 9 8 , 1998]
for a recent workshop). We fol low the paradigm pro­
posed in [Levy and Rousset, 1998], where a lgor i thms for
verif ication are based on query conta inment . However,
whereas in [bevy and Rousset, 1998] there was a 1-1
t ranslat ion between the ver i f icat ion problem and query
conta inment , a challenge in our case is to per form the
appropr iate t rans fo rmat ion .

We believe tha t Web-site management tools based on
declarative specifications w i l l pose several impo r tan t AT
research problems in the near fu ture. Hence, one of the
cont r ibut ions of this paper is to br ing the problem to
the at tent ion of our commun i ty . In. the last section, we
ment ion other research problems in this context.

2 Declarat ive Management of Web
Sites

Declarat ive systems for Web-site management are based
on the pr inciple of separat ing three tasks: (1) the man­
agement, of the da ta under ly ing the site, (2) the def ini­
t ion of the site's s t ructure and the content, and (3) the
graphical presentation of the site. The first step requires
ident i fy ing the sources that conta in the site's data. We
refer to this da ta as the raw data. These sources may
include databases, s t ructured files, or pre-exist ing sites.
We assume tha t we interact w i t h each of these sources
v ia a wrapper program tha t produces the necessary data
in tabular f o rm . Here, we assume tha t the raw data is
stored in a single re lat ional database system. In the rest
of the paper, we use an example that, is a smal l f ragment
of a publ icat ion 's Web site. F ig . 1 contains the schema
of the raw data and sample data.

The second step in bu i ld ing a Web site requires spec­
i fy ing the site's s t ructure. We describe a formal ism
for specifying this s t ructure tha t captures features com­
mon to many declarat ive systems for Web-site man­
agement [Fernandez et a l . , 1998; Atzeni et a l . , 1998;
Arocena and Mendelzon, 1998; Cluet et a l . , 1998; Paol in i
and Fraterna l i , 1998]. We emphasize tha t the declara­
t ive specif ication is concerned w i t h the logical model of
the site as a set of nodes and l inks, not i ts graphical pre-

Figure 1: The schema and da ta under ly ing the publica­
t ion Web site.

sentat ion (i.e., how each node is t ranslated to H T M L) .
Wrhen using the systems above, the site designer also
specifies the graphical presentat ion of each page, usually
by a set of H T M L templates, each of which applies to a
group of related pages.

2.1 Specifying Web-site Structure

In order to specify a site's s t ructure, we need to state (1)
what pages exist, (2) what, da ta is available in each page,
and (3) what l inks exist between pages. We specify the
structure of site in a site definition. Given a site defi­
n i t ion and a database instance, app ly ing the def in i t ion
to the database produces an instance of the site, called
a site graph. F ig . 2 contains our example site def in i t ion
and Fig. 3 contains the resul t ing site graph.

Figure 2: The site def in i t ion for our example site

Figure 3: T h e example site graph.

A site def in i t ion is a graph whose nodes are labeled by
variables or by func t iona l terms of the fo rm f(X), where

FERNANDEZ, FLORESCU, LEVY, AND SUCIU 615

X is a (possibly empty) tuple of variables. Functional
nodes in the site definit ion represent sets of pages in the
site graph. In our example, the node PersonPage(Y) rep­
resents the set of pages PersonPage(p) where p is a con­
stant in the database. Non-functional nodes are leaves
and have one incoming edge. They represent the data
contained in the page that points to thern. For example,
the node N represents the name of the person Y. Func­
t ional nodes that have no arguments represent unique
pages, such as the root.

Each functional node is labeled wi th a Horn rule that
defines the conditions for the existence of instances of the
node. A rule's head is an atom of the form Node(f(X)),
where Node is a special predicate. For example, the rule
for YearPage specifies that there wi l l be a node for a year
Z if some article was published in year Z. The rules for
our example site are:

Edges in the site definit ion represent sets of links in the
site graph. Each edge has an associated a Horn rule,
which specifies the conditions for existence of a l ink be­
tween instances of source and destination nodes. The
Horn rules use the special predicate Link. For example,
the rule fourth below specifies that there is a l ink in the
site graph between the page PersonPage(Y) and the page
ArticlePage(X) if Y is an author of paper X. The th i rd
argument of the predicate Link is the l ink's label in the
site graph.1 We assume that in all of the rules this ar­
gument is always a constant. The rules for the links in
our example are given below.

Link(Root(), Publications(), "publications'1) : —true.
Link(Root(), People(), "people") : —true.
Link(Publications(),YearPage(Z), "year") : -Ar t ic le(- ,^Z) .
Link(Peoplc(), PersonPage(Y), "person") : -Person(Y, _).
Link(Per8onPage(Y),ArticlePage{X), "article") : -

Author(V, A'), Article(X, _, _.).
Link(YearPage(Z), ArticlePage(X), "article") : -

Article(X, _, Z).
Link(ArticlePage(X), PersonPage(Y), "author") : —

Author(Y, X) , Person(Y, _).

Finally, the data contained in each page is also specified
by Horn rules. For every leaf associated with afunct ional
node, we associate a Horn rule defining the contents of
the leaf. The first rule below specifies that the name of a
person wi l l be contained in the appropriate person page:

Ltnk(PersonPage(Y), N, "name") : -PersoniY, N).
Link(ArticlePage(X)J\ "title") : -Article(XJ\ _).
Link{ArticlePage(X),PS, "ps") : -Article(A', _, .),

PsFilc(X,PS).

1 This string denotes the name of the relationship between
the nodes in the site graph, and not the anchor that will
appear on the link in the actual site. Anchors are omitted
for clarity.

Declarative specification of a Web site offers many ad­
vantages: rapid modif ication of the site's structure; cre­
ation of mult ip le versions of the site for different classes
of users; and, as we explore next, the abi l i ty to reason
globally about the site's structure. In principle, restruc­
tur ing a site or bui ld ing another version requires mod­
ifying the set of rules that define the site, instead of
modify ing each page and its hard-wired links.

3 Specifying In tegr i t y Constraints
Although declarative specification can simplify the task
of creating complex sites, the specification of a richly
structured site can be long. For example, the specifica­
tion of a customer-bil l ing site using the Strudel specifi­
cation language [Fernandez et al., 1998] is 474 lines. The
specification is more concise than the equivalent imple­
mentation in a scripting language, but st i l l too large to
determine wi thout automated reasoning whether global
constraints on the site are satisfied. [Lohse and Spiller,
1998] describes Web sites for on-line stores. They argue
that enforcing integrity constraints on such sites is crit­
ical to customer satisfaction and describe a set of such
constraints. Our goal is to take advantage of a site's
declarative definition and develop algorithms for verify­
ing that, a given definit ion only produces sites that sat­
isfy the given set of constraints. For our example, some
possible constraints include:

1C1: A l l article pages are reachable from the root page.

IC2: For every article, there is a l ink from its article page
to its PostScript source.

1C3: If two articles have a common author, there is a
path between the corresponding article pages.

IC4: If two articles have been published in the same year,
there is a path between the corresponding article
pages.

We may also want to specify constraints that l im i t the
length of a path between two nodes, or that force every
path to a node to go through some distinguished set of
nodes. We define our language for specifying these kinds
of integrity constraints and formal ly define the verifica­
t ion problem.

Integrity constraints express properties we would like
the Web site to have. Since the Web site is modeled as
a graph, integrity constraints should be able to express
the existence of certain paths between pages in the site.
We express such paths using regular-path expressions. A
regular-path expression over the set of constants C is
formed by the fol lowing grammar (R, R1 and R2 denote
regular-path expressions):

In the grammar, a denotes a constant in C; not (a)
matches any constant in C different f rom a. An _ de­
notes any constant in C; a period denotes concatenation,
and | denotes alternation. R*, denotes 1 or more rep­
etitions of R. For example, a.b...c+ denotes the set of

616 KNOWLEDGE-BASED APPLICATIONS

paths beginning wi th ab, then an arbitrary element of C
and then any number of occurrences of c. We use * as a
shorthand for , meaning an arbitrary path of length
1 or more.

Regular-path expressions are used in path atoms of the
form X R Y, where R is a regular-path expression,
and X and Y are terms. The atom X R Y is
satisfied in a labeled directed graph G by each pair of
nodes XyY for which there is path from X to Y that
satisfies the regular path expression R.

In principle, we can express integrity constraints us-
ing arbitrary formulas in first-order logic. However, our
main goal here is to identify a more restricted language
for which it is possible to develop sound and complete
verification algorithms and which is expressive enough
to model integrity constraints that are of practical inter­
est. We consider integrity constraints that have the form

where and are conjunctions of path atoms,
atoms of the relations of the raw data, and atoms of the
relation Node. Variables that appear in both and
are assumed to be universally quantif ied, while the oth­
ers are existentially quantif ied. The following sentences
express the integrity constraints in our example.

101:

IC2:

1C3:

104:

Given a particular site graph, it is straightforward to
test whether an integrity constraint holds. However, our
goal is to verify at the intentional level whether an in­
tegrity constraint, is guaranteed to hold, i.e., given a site
definit ion test whether the integrity constraint wil l
hold for all Web sites that can be generated by 7v, for
any possible database state. Formally, our problem is
the following.

D e f i n i t i o n 1: be the relations in the
schema of the raw data, be a site definition. Let IC
be an integrity constraint. We say that satisfies IC
if for any given extension X of the relations
IC is satisfied in the site graph resulting frorn and I.

In our example, IC1 is satisfied, because every art i ­
cle has a year of publ icat ion, and therefore is reachable
through the YearPage. Similarly, 1C3 is also, satisfied.
IC2 is not satisfied, because some articles may not have
PostScript sources. Although IC4 is satisfied by the site
graph in Fig. 3, it is not necessarily satisfied for every
site graph.

Next, we describe a sound and complete verification
algor i thm, and show how the complexity of the verifi­
cation problem changes wi th the form of the integrity
constraints considered.

4 Ver i f i ca t ion A l g o r i t h m

The crucial step of our verification algor i thm is to trans­
late the integrity constraint into a pair of Dat-
alog programs and Datalog [Ul lman, 1997] is
a database query language where queries are specified
by sets of Horn rules, and the meaning of the query is
given by the least fixpoint model of the database and
the rules. Our translation has the property that the in­
tegrity constraint is satisfied if and only if the datalog
program is contained in the program Informally,
given two queries and the query contains the
query if 's result is a superset of 's result for
any database instance. Algor i thms for query contain­
ment have been studied extensively in the database liter­
ature [Ul lman, 1997]. These algorithms can be viewed as
logical-entailment, algorithms for specific classes of logi­
cal sentences, which is why they are useful in our context.

Our algorithm has two steps.

1. Given the integrity constraint, and the site
definit ion, create a pair of Datalog queries
and

2. We use an extended query containment algori thm to
test whet her is contained in If the contain­
ment holds, then the integrity constraint is guar­
anteed to hold. If not, the containment algori thm
returns a set of candidate fixes.

We describe each step in more detai l .
The algori thm in Fig. 4 translates either or into a

Datalog program. This step relies heavily on the possi­
ble paths specified in the structure of the site definition
in order to generate and The subtle part of
the translation concerns the path atoms. Given a path
atom ,Y R Y, the translation builds in a bot tom-
up fashion a Datalog program that defines a relation
corresponding to each of the subexpressions of R. The
translation varies slightly depending on whether A' and
Y are variables, functional terms, and whether there is
another conjunct of the form Node(X) (Node(Y)). In
the figure, we show only the ease when A' and Y are
unary functional terms.

If our extended query-containment algori thm reports
that is contained in then then the integrity con­
straint is guaranteed to hold. Otherwise the containment
algori thm returns a set of candidate fixes. The algorithm
considers four kinds of fixes:

• Add conditions to in the integrity constraint,

• Remove conditions f rom the rules in the site defini­
t ion

• Modify by adding back arcs in the site definit ion,
and

• Suggest a set of integrity constraints to enforce on
the raw data, which guarantee that the constraints
on the site wi l l hold.

The fixes are reported to the site designer, who can then
decide how to proceed. Due to space l imitat ions, we

FERNANDEZ, FLORESCU, LEVY, AND SUCIU 617

only i l lustrate this phase of the algori thm through the
example below. Intui t ively, the fixes are generated by
searching through the possible modifications to and

such that for the modified queries, the containment
holds.

A l g o r i t h m IC- t rans la te
I n p u t : is either the LHS or RHS of an 1C.

is the site definition.
arc the universally quantified variables in the IC.

O u t p u t : a Datalog program defining the relation

Let be of the form
For 1 let be the set of Horn rules returned by

atomToProg with query predicate </*,,

II A(X) is an atom; R is a site definition.
A l g o r i t h m atomToProg(,4, R)
if A is of the form

then return the Datalog program:
if A is of the form f(X) R g(Y) then

re tu rn the Datalog program constructed as follows:
for every rule r R of the form
L ink (f1 (X1), f 2 (X 2) , V) : -body
where the rules for f1 and f2 have bodies
body1,body2 respectively, add the following rule:

: -body, body1, body2
Define an IDB predicate for R by structural induction on R:
if R is of the form "a", then

the query predicate of the Datalog program is defined by:
qA(X,Y):-QR(f,X,g,Y).
end atomToProg

Figure 4: A lgor i thm for translating the LHS or RHS of
an integrity constraint into a Datalog program.

Consider the constraint 1C1 in our example, that re­
quires a path f rom the root page to any article page.
The translation step produces the fol lowing two Datalog
programs, whose query predicates are Qths and Qrhs.
Since the RHS of the constraint involves a path atom
wi th the regular expression *, the Datalog program of
Qrhs defines a predicate Q* (A ' i , f1, X2, f2) (the transi­
tive closure of Q_), which describes the possible paths
in the site graph between nodes of the form f1 [X1) and
f2(X2)- We also use the rules defining Q* in the other
parts of the example.

Since the containment check wi l l show that is con­
tained in the verification test succeeds. For IC2,
the algori thm produces the fol lowing two programs, for
which the containment fails.

However, in this case, the algori thm wi l l propose a cor­
rection to the integrity constraint, namely adding the
conjunct PsFile(X,Y) to the left hand side (meaning
that the constraint needs to hold only on articles that
have a PostScript source).

Finally, IC4 would result in the two programs:

In this case, the containment does not hold because
paths between article pages in the site only go through
the author pages, not through the year pages. Hence, the
algori thm wi l l suggest to add a l ink f rom ArticlePage to
either RootQ, the Publications(), or to the corresponding
YearPage, and would propose the appropriate query to
put on the new l ink.

5 Complexity of Verif ication
The algori thm described in the previous section provides
a sound and complete verification algori thm in many im­
portant cases. This section characterizes these cases and
establishes the complexity of the algor i thm and of the
verification problem. Note that in all of the results, the
complexity is measured in the size of the site definit ion
and not the size of the underlying raw data.

The fol lowing theorem considers the case in which
there are no cycles in the nodes in the site definit ion.

T h e o r e m 1: Let be a site definition and IC be an
integrity constraint of the form Assume that
there are no cycles between nodes in the site definition.
Then, our verification algorithm is sound and complete
and runs in non-deterministic polynomial time. The ver­
ification problem under these conditions is NP-complete.

The fol lowing theorem permits cyclic site definitions,
but requires that the left-hand side of the integrity con­
straint does not contain path atoms w i th Kleene star.

618 KNOWLEDGE-BASED APPLICATIONS

This is a common case, because the lef t -hand side usu­
al ly refers to condi t ions on the raw data , not on the site
graph.

T h e o r e m 2: Let be a site definition and IC be an
integrity constraint of the form where does
not contain path atoms with Kleene star. Then, our ver­
ification algorithm is sound and complete and it runs
in non-deterministic polynomial time. The verification
problem under these conditions is NP-complete.

The proof of the theorems is based on the fact tha t
the size of and is po lynomia l in the size of
and the complex i ty of the corresponding conta inment
a lgor i thms. Note tha t in general, conta inment of arb i ­
t rary recursive Data log is undecidable- [Shmuel i , 1993],
but in the cases considered above is always non-
recursive. Note tha t i f contains the interpreted pred­
icates then the complex i ty of the problems in
the theorems is

6 Conclusions and Related Work
Web-site management systems based on declarative rep­
resentations offer many oppor tun i t ies for app ly ing Al re­
search to improve the Web-site construct ion and ma in ­
tenance process. Th is paper considered the first such
prob lem, namely the specif ication and veri f icat ion of in­
tegr i ty constraints. We described a language for specify-
ing a wide class of constraints and a sound and complete
a lgor i thm for ver i f icat ion. In add i t ion , our a lgo r i thm
suggests fixes to the site def in i t ion when the integr i ty
constraint does not ho ld .

Our work can be viewed as an extension of verif i-
cat ion methods for rule-based knowledge-base systems.
Of tha t work, the most related. to ours is [Levy and
Rousset, 1998] which first showed how to use query con­
ta in merit techniques for knowledge-base ver i f icat ion. In
contrast to that work, where there was a direct map­
ping f rom the knowledge base to a query conta inment
prob lem, an added challenge in our context is to develop
the t rans la t ion to conta inment . [Sehmolze and Snyder,
1997] considers the ver i f icat ion problem where rules may
have side-effects, but those to not appear in our context.
[Ronsset, 1997] proposes an extensional approach to ver­
i fy ing constraints on snapshots of Web sites (i.e., d i rect ly
on the site graphs).

F inal ly , we ment ion two add i t iona l oppor tun i t ies for
new Al problems in this context . The f irst, a general­
izat ion of the work we described here, is to specify the
structure of Web sites at an even higher level. Whereas
in our work we only checked whether certain integr i ty
constraints hold for a given site def in i t ion , there may be
cases tha t we would want to specify only in tegr i ty con­
straints for the site. The system would then consider the
constraints and would propose a def in i t ion of the struc­
ture for the Web site. The challenge is to choose among
mu l t ip le structures tha t satisfy the given constraints.

The second prob lem concerns au tomat ica l l y restruc­
tu r ing Web sites. The short experience in bu i ld ing Web

sites has already shown tha t it is a h ighly i terat ive pro­
cess. Even after the Web site is up, designers w i l l fre­
quent ly want to restructure i t after understanding the
patterns w i t h which users browse the site. Perkowitz
and Etz ioni [Perkowitz and E tz ion i , 1997] have proposed
the not ion of adaptive Web sites tha t restructure them­
selves automat ica l ly . We argue tha t declarat ive repre­
sentations of Web sites provide a basis on which to bu i ld
adaptive Web site techniques. In par t icu lar , once we
have a model of a Web site, we can analyze the user
browsing patterns and propose meaningfu l ways to re-
structure the model , and hence the site itself.

References
[Arocena and Mendelzon, 1998] Gustavo Arocena and Al ­

berto Mendelzon. WebOQL: Restructuring documents,
databases and webs. In Intl. Conf. on Data Engineering
(1CDE), Orlando, Florida, 1998.

[Atzeni et al., 1998] P. Atzeni, G. Mecca, and P. Mcrialdo.
Design and maintenance of data-intensive web sites. In
Conf. on Extending Database Technology (EDBT), Valen­
cia, Spain, 1998.

[Cluet et al., 1998] S. Cluet, C. Delobel, J. Simeon, and
K. Smaga. Your mediators need data conversion. In SIG-
MOD Conf. on Management of Data, Seattle, WA, 1998.

[Fernandez et al., 1998] M. Fernandez, 1). Florescu, J. Kang,
A. Levy, and 1). Suciu. Catching the boat with Strudel:
Experiences wi th a web-site management system. In SIG-
MOD Conf. on Management of Data, Seattle, WA, 1998.

[bevy and Rousset, 1998] A. Levy and M. Rousset. Verifi­
cation of knowledge bases based on containment checking.
Artificial Intelligence, 1()l(l-2):227-250, 1998.

[Lohse and Spiller, 1998] Gerald Lohse and Peter Spiller.
Electronic shopping. Cotnm. of the ACM, 41(7), July 1998.

[Paolini and Fraternali, 1998] P. Paolini and P. fraternali .
A conceptual model and a tool environment lor devel­
oping more scalable, dynamic, and customizable web ap
plications. In Conf. on Extending Database Technology
(EDBT), 1998.

[Perkowitz and Etzioni, 1997] Mike Perkowitz and Oren Et-
zioni. Adaptive web sites: an Al challenge. In Proc. of
the 15th International Joint Conference on Artificial In­
telligence, 1997.

[Rousset, 1997] Marie-Christine Rousset,. Verifying the web:
a position statement. In Proceedings of the 4th European
Symposium on the Validation and Verification of Knowl­
edge Based Systems (EUR.OVAV-97), 1997.

[Sehmolze and Snyder, 1997] J. Sehmolze and W. Snyder.
Detecting redundant production rules. In Proc. of the Na~
tional Conference on Artificial Intelligence, 1997.

[Shmueli, 1993] Oded Shmueli. Equivalence of datalog
queries is undecidable. Journal of Logic Programming,
15:231-211, 1993.

[Ullman, 1997] Jeffrey I). Ullman. Information integration
using logical views. In Intl. Conf. on Database 'Theory
(ICDT), Delphi, Greece, 1997.

[V V T 9 8 , 1998] Proceedings of the AAAI Workshop on Ver­
ification and Validation of Knowledge-Based Systems,
Madison, Wisconsin, July 1998.

FERNANDEZ, FLORESCU, LEVY, AND SUCIU 619

