
Decomposi t ion Search: A Combina to r ia l Games Approach to Game
Tree Search, w i t h Appl ica t ions to Solving Go Endgames

M a r t i n M u l l e r
Electrotechnical Laboratory

Tsukuba, Japan
mueller@etl.go.jp

Abs t rac t

We develop a new method called decomposi­
tion search for computing min imax solutions to
games that can be partit ioned into independent
subgames. The method does not use t radi t ional
minimax search algorithms such as alpha-beta,
but relies on concepts from combinatorial game
theory to do locally restricted searches. This
divide-and-conquer approach allows the exact
solution of much larger problems than is possi­
ble wi th alpha-beta.

We show an application of decomposition
search to the game of Go, which has been tra­
di t ional ly regarded as beyond the range of ex­
act search-based solution methods. Our exper­
iments w i th solving endgames show that alpha-
beta searches already become impractical in po­
sitions w i th about 15 remaining moves. How­
ever, an endgame solver based on decomposi­
t ion search can solve a much larger class of
endgame problems wi th solution lengths ex­
ceeding 60 moves.

1 I n t r o d u c t i o n
In two-player games wi th perfect information, minimax-
based search methods have been very successful. Games
such as 4-in-a-row, gomoku or nine men's morris have
been solved, and heuristic game-playing programs have
reached world championship level in a number of pop­
ular games. In chess and checkers, endgame databases
constructed using retrograde analysis have uncovered a
wealth of new information and forced the rewri t ing of
the textbooks.

Today, the conditions under which these standard ap­
proaches are successful are well understood. One class of
games in which they have not succeeded is combinatorial
games. Such a game can be represented as a combinato­
rial sum of local games, called subgames.

Decomposition search is a new computational method
for solving combinatorial games. Decomposition search
decomposes a game into a sum of subgames, performs a
particular k ind of local search for each subgame, applies

combinatorial game theory to evaluate the resulting local
game graphs, and determines overall opt imal play f rom
the combinatorial game values of subgames.

By reducing the scope of searches f rom global to local,
the new method can compute min imax solutions and
determine opt imal play in such games much faster than
classical techniques such as alpha-beta, which can not
exploit the extra structure given by the decomposition.

The structure of this paper is as follows: Section 2
reviews several existing divide-and-conquer approaches
to solving games, including the combinatorial game-
theoretical approach to the analysis of games w i th de­
composable state. Section 3 introduces decomposition
search, a four step algor i thm for f inding the minimax
solution and opt imal play in combinatorial games. Sec­
t ion 4 applies decomposition search to Go endgames, and
Section 5 compares the performance of decomposition
search w i th standard alpha-beta game tree search, using
Go endgames as examples.

2 D iv ide -and -Conquer Approaches to
So lv ing Games

Research in game tree search follows two general goals:
reducing the size of the search space, and traversing the
space in clever ways in order to find solutions early.
For solving games w i th large state spaces, divide-and-
conquer approaches are attractive: the idea is to identify
simpler subproblems that can be solved more easily, and
can contribute to an overall solution.

2.1 Heuristic Problem Decomposition:
Identifying Subgoals

In complex games, the ul t imate goal of the game is
diff icult to reach directly. Therefore, players identify
subgoals and search specifically to achieve these goals.
For example, bridge players analyze single-suit play, and
chess players seek ways to capture a particular piece or
break through a pawn chain. A narrowly focused search
to achieve a subgoal is typical ly much easier than fu l l
w id th game search, yet achieving a subgoal can have a
significant impact on the outcome of the game.

578 COMPUTER GAME PLAYING

2 .2 S p l i t t i n g a G a m e V e r t i c a l l y : E n d g a m e
D a t a b a s e s

A very successful divide-and-conquer method in the com­
putat ional analysis of games has been the construction of
endgame databases. In this approach, a game is split ver­
t ically into progressively simpler games along the t ime
axis. Converging games such as checkers, nine men's
morris or chess can be split in this way, because they
simplify towards the end of the game when fewer and
fewer pieces remain on the board.

Endgame databases are bui l t bot tom-up, start ing
f rom the simplest subgames, by retrograde analysis
[Thompson, 1986]. The opt imal play outcome, and op­
t ionally the distance to a win or conversion to another
subgame, is computed for all positions in the subgame.
Databases are used dur ing heuristic search: whenever
search hits a database posit ion, the exact value can be
used in place of the heuristic evaluation.

2 .3 T h e M a t h e m a t i c s o f D e c o m p o s i t i o n :
T h e C o m b i n a t o r i a l G a m e A p p r o a c h t o
t h e A n a l y s i s o f G a m e s

Combinatorial game theory [Conway, 1976; Berlekamp
et al., 1982] provides the mathematical basis for a more
radical divide-and-conquer method: it breaks up game
positions into pieces and analyzes the overall game in
terms of these smaller local subgames.

Figure 1: A three heap Nim position and its subgames

Each move in the game corresponds to a move in one
subgame and leaves all other subgames unchanged. A
game ends when all subgames have ended, and the final
outcome of the game can be determined f rom the sub-
game outcomes. A well-known example of a combinato­
r ial game is Nim, shown in Figure 1, which is played wi th
heaps of tokens. At each move, a player removes an arbi­
trary number of tokens from a single heap, and whoever
runs out of moves first loses. Each N im heap constitutes
one subgame. Whi le winning a single subgame is t r iv ia l ,
winning the sum of several heaps requires either exhaus­
tive analysis, or, much more efficiently, a computat ion
using the calculus of combinatorial games.

3 Decomposi t ion Search
This section develops decomposition search as a frame-
work for solving games through decomposition, a partic­
ular k ind of local search named local combinatorial game
search (LCGS) and the analysis of the resulting local
game graphs by applying combinatorial game theory.

3 . 1 D e f i n i t i o n o f D e c o m p o s i t i o n S e a r c h

Let G be a game that decomposes into a sum of subgames
Let the combinatorial game evaluation

of G be Decomposition search is defined as the
following four step algor i thm for determining opt imal
play of G:

1. Game decomposition and subgame identif ication:
given G, find an equivalent sum of subgames

2. Local combinatorial game search (LCGS): for each
G,, perform a search to find its game graph

3. Evaluation: for each game graph evaluate
all terminal positions, then find the combinatorial
game evaluation of all interior nodes, leading to the
computat ion of

4. Sum game play: through combinatorial game anal­
ysis of the set of combinatorial games select
an opt imal move in

The following subsections describe the four steps of
decomposition search in more detail, discuss how to use
the results of decomposition search during game play,
and describe l imitat ions of the method.

3 .2 G a m e D e c o m p o s i t i o n a n d S u b g a m e
I d e n t i f i c a t i o n

The precondition for applying decomposition search to a
game position is that it can be split into subgames which
fit the combinatorial games model outlined in Section
2.3. The specific decomposition procedure depends on
the game rules.

In some games, such as N i m , Amazons and many of
those analyzed in the book Winn ing Ways [Berlekamp
et a/., 1982], a suitable decomposition follows directly
f rom the rules of the game. Figure 1 shows the decom­
position of a N i m position. In other games, such as Go,
more game-specific knowledge is necessary to find a good
decomposition of a given position.

3 .3 L o c a l C o m b i n a t o r i a l G a m e S e a r c h

Local combinatorial game search (LCGS) is the main
information gathering step of decomposition search. It
is performed independently for each subgame. LCGS
generates a game graph representing all relevant move
sequences that might be played locally in the course
of a game. LCGS works differently f rom minimax tree
search in a number of ways, including move generation
and recognition of terminal positions.

D i f fe rences B e t w e e n L C G S a n d M i n i m a x Search
The game graph bui l t by LCGS differs f rom the tree
generated by min imax search. In the case of minimax,
players move alternately, so each position is analyzed
wi th respect to the player on move. In contrast, there is
no player-to-move-next in a subgame. A l l possible local
move sequences must be included in the analysis, includ­
ing sequences w i th several successive moves by the same

MULLER 579

player, because players can switch between subgames at
every move.

Another difference between local and ful l state search
is the treatment of cycles. To prevent infinite games,
the repetit ion of a game position is forbidden in most
games, or l imi ted to a small number as in chess. How­
ever, the same local position can re-occur repeatedly as
long as the whole game keeps changing. Combinator ial
game evaluation is defined only for games wi thout cycles.
Therefore, decomposition search deals only w i th locally
acyclic games, and w i th those cyclic games where cycles
do not enter into opt imal play.

M o v e G e n e r a t i o n
LCGS must generate all legal local moves for both play­
ers, except in a terminal position or if moves can prov-
ably be pruned. Such exact pruning rules are game-
specific. Examples are restricting the number of equiva­
lent moves generated to a single one, or pruning locally
bad moves which are dominated by other moves.

T e r m i n a l Pos i t i ons a n d L o c a l S c o r i n g
Termination rules decide when a position can be evalu­
ated wi thout further expanding the game graph. LCGS
defines the fol lowing terminat ion rules:

• No legal moves

• No good move, game recognized as constant

• Value of posit ion already known

The first two cases represent local terminal positions,
which evaluate to an integer. This number, the local
score, is game-specific and computed according to the
rules of the game.

In the th i rd case, if the value of a position is already
known from another source, such as a transposition ta­
ble, game-specific knowledge, or a precomputed local po­
sit ion database, LCGS can be terminated as well. The
value retrieved for such a position is a combinatorial
game, which has previously been computed by local eval­
uation as discussed in the next section.

3 .4 L o c a l E v a l u a t i o n : M a p p i n g G a m e
G r a p h s t o C o m b i n a t o r i a l G a m e s

Local evaluation computes the combinatorial game value
of a given acyclic local game graph wi th evaluated leaf
nodes. Let the players be Black and Whi te , wi th positive
scores good for Black. If from a local position p Black
can move to and Whi te can move to
and if the evaluations of these follow-up positions are
already known, then the evaluation C(p) is given by the
combinatorial game expression

This expression can be brought into a canonical form
using standard rules of combinatorial game theory. Re­
peated bot tom-up application of the formula eventually
yields an evaluation of each node in the game graph.

Cyc les t h a t d o n o t A f f e c t t h e G a m e V a l u e
Cycles can occur during LCGS, even if they have no
effect on opt imal play. If evaluation fails due to cy­
cles, bounds are computed by forbidding one player all
moves that would repeat a posit ion. This transforms
the game graph into an acyclic graph, a different one for
each player. If both bounds coincide, opt imal play does
not depend on cycles. Otherwise, decomposition search
stops and indicates a local evaluation failure.

3.5 Sum Game Play
To find an opt imal move in a sum game, the final step
of decomposition search selects a move which most im­
proves the position. This improvement is measured by a
combinatorial game called the incentive of a move. The
incentives of all moves in all subgames are computed lo­
cally. If one incentive dominates all others, an opt imal
move has been determined. This is the usual case for
games w i th a rich set of values such as Go.

Since incentives are combinatorial games and therefore
only part ial ly ordered, it can happen that more than one
nondominated candidate move remains. In this case, an
opt imal move is found by a more complex procedure in­
volving the combinatorial summation of games [Conway,
1976].

Since such a summation can be an expensive opera­
t ion, there is no worst case guarantee that decomposition
search is always more efficient than m in im ax search. In
practice, it seems to work much better. The algori thm
presents many opportunities for complexity reduction of
intermediate expressions dur ing local evaluation as well
as during summation.

Even though all search and most analysis is local, de­
composition search yields globally opt imal play, which
can switch back and forth between subgames in very
subtle ways, as in the example of Figure 8.

3 .6 R e u s i n g D e c o m p o s i t i o n S e a r c h R e s u l t s
D u r i n g P l a y

The result of decomposition search is a complete descrip­
t ion and evaluation of all reasonable local play sequences,
which makes perfect overall play possible. Results of lo­
cal analysis can be saved in a database. Dur ing play,
each ful l board position corresponds to a set of match­
ing local positions, one f rom each subgame. Positions
and their combinatorial game values are retrieved from
the database.

As long as the opponent follows analyzed lines, fol-
lowup moves can be played f rom the informat ion stored
in the database, wi thout further search. If the opponent
plays a less-than-optimal move that was pruned during
LCGS and reaches an unevaluated posit ion, the corre­
sponding subgame is re-searched f rom the new posit ion.

3 . 7 L i m i t a t i o n s o f D e c o m p o s i t i o n S e a r c h

There are two types of l imitat ions for decomposition
search: cyclic subgames and bounded computat ional re­
sources. As discussed in Section 3.4, cyclic subgames

580 COMPUTER GAME PLAYING

can be handled only in the case where cycles don' t affect
opt imal play.

Resource exhaustion is detected dur ing algorithm exe­
cut ion if any of the fol lowing hold: game decomposition
fails or results in very large subgames, LCGS exceeds a
preset t ime or space l im i t , or intermediate combinatorial
game expressions become too complex. Practical l imits
are highly game-specific, and depend on the shape of
local game graphs bui l t dur ing LCGS and on the com­
plexity of the combinatorial games involved. For exam­
ple, impartial games such as N i m are generally easier to
evaluate than partizan games such as Go.

4 App l y i ng Decomposi t ion Search to
Go Endgames

This section discusses how to apply decomposition search
to the game of Go. Game decomposition is achieved
through the recognition of safe stones and territories and
the resulting board part i t ion. Other Go-specific aspects
are pruning moves during LCGS and scoring of terminal
positions.

4 . 1 S u b g a m e I d e n t i f i c a t i o n i n G o b y
B o a r d P a r t i t i o n

A Go position can be decomposed when parts of the
board are isolated f rom the rest by walls of safe stones.
Moves in one part have no effect on other parts across
such a wall . Figures 2 and 3 show the two decomposition
steps: first, finding safe stones and territories, and then
identi fying subgames as the connected components of the
remaining points on the Go board.

Figure 2: Recognition of safe stones and territories

Figure 3: Decomposition of Go endgame position

F i n d i n g Safe Stones a n d T e r r i t o r i e s
Safe territories are 'f inished' subgames: they can be
evaluated by a number, the size of the territory. Ar­
eas which are completely surrounded by one player are
candidate territories. Territories are found by goal-
directed search, applying the techniques of [Mii l ler, 1995;
1997] to prove the safety of candidate territories.

Play in territories that have been proven safe is sim-
ple. The player never plays first in any territory. If the
opponent attacks the player's terri tory, a goal-directed
search is performed to find a refutation which restores
the safety of the area.

4 . 2 L C G S i n G o

An endgame area consists of unsettled stones, and of
empty points which are not terr i tory. Safe stones, usu­
ally of both colors, surround each endgame area, as
shown in Figure 3. Dur ing endgame play, unsettled
stones either become safe or are captured. Empty points
wi l l either be occupied or become part of a safe territory.
A rare special case are shared empty points in seki.

S c o r i n g L o c a l T e r m i n a l Pos i t i ons i n G o
Scoring assigns an integer to each terminal posit ion. In
Chinese rules, scoring measures the difference between
how many stones and empty points belong to either
color. In Japanese rules, terr i tory and prisoners are
counted. Both kinds of scoring are straightforward in
a terminal position since the status of all stones and
empty points is known exactly.

P r u n i n g M o v e s
In contrast to the speculative pruning in selective search
methods, only moves that are provably worse-or-equal
than others can be el iminated. For example, if a move
achieves control of all points in the local area, it is op­
t ima l , and all other moves can be pruned. In almost
surrounded areas such as the one shown in Figure 4, the
move at the entrance at a is the only good move for
either player.

Figure 4: Area wi th unique best move at a

4 . 3 F u l l B o a r d M o v e S e l e c t i o n i n G o

Full board move selection in Go distinguishes three cases:

1. If the opponent just made a threat in player's ter­
r i tory, reply as in Section 4.1 to keep terr i tory and
stones safe.

2. Otherwise, if the combinatorial game is not finished
yet, play the sum game as in Section 3.5.

3. Otherwise, perform a cleanup phase: fill in the final
neutral points to finish the game.

MIILLER 581

5 E x p e r i m e n t s
The performance of decomposition search is compared
w i th standard fu l l board alpha-beta search on two rep­
resentative examples from a set of Go endgame puzzles
in [Berlekamp and Wolfe, 1994]. In the examples, terr i ­
tories have been slightly strengthened to make it easier
to prove their safety. The endgames are equivalent to the
original version. In each experiment, the ful l board prob­
lem was solved from scratch. No precomputed database
of subgames was used.

5.1 Full-board Minimax Search
The minimax implementation used a standard alpha-
beta search. The size of the transposition table was
32k entries for the small problems, 4M entries for the
big ones. Since naive full-board search would be too ex­
pensive, alpha-beta search was allowed to use the same
knowledge about safe territories and the same local prun­
ing rules as LOGS.

In contrast to LCGS, pass moves must be generated,
because in positions where there is no good move, play­
ers must be allowed to pass, instead of being forced to
damage their own posit ion.

5.2 First Example: 20 Point Problem
The first Go endgame example, on a 9 x 9 board, is based
on problem C.9 of [Berlekamp and Wolfe, 1994]. After
computing safe stones and territories, the total remain­
ing endgame area is 20 points. There are six regions
labeled A to F, w i th sizes ranging f rom 2 to 6.

Figure 5: Problem C.9 and its decomposition

This problem is t r iv ia l for decomposition search, yet
already challenging for minimax. For more detailed test­
ing, a series of simplified problems was created, in which
several local endgame situations were replaced by con-
stant territories. Figure 6 shows such a simplif ied prob-
lem of size 10 consisting of areas A, B and C. Areas D, E
and F have been 'played out ' and replaced by constant
territories, as shown by the markings in the figure.

Wh i te is to play first in all problems. Table 1 shows
the total node count for the LCGS phase of decomposi­
t ion search, followed by the node count and solution t ime
in seconds for alpha-beta, as measured on a Macintosh
G3/250. The solution times for decomposition search are
not shown, since they were all very similar at 0.2 - 0.3
seconds. The size of the transposition table (4M entries)
was insufficient for the fu l l 20 point problem, resulting in
an enormous increase in solution t ime to over 28 hours.

Figure 6: Problem C.9 reduced to areas A + B + C

Areas (Size) Nodes DS Node* aB T ime aB
A (4) 21 39 <0.1
A + B (7) 26 526 0 1
A + B + C (10) 31 5905 1 9
A + B + C + D (16) 42 1097589 295 9
A + B + O + D + E (18) 45 10243613 2461.0
A + B + C + D + E + F (20) 48 463941123 103406.2

Table 1: Comparison of decomposition search and alpha-
beta in problem C.9

5.3 Second Example : 89 Po in t P rob lem
The second example, C . l l of [Berlekamp and Wolfe,
1994], is a Go endgame problem on a 19 x 19 board.
Figure 7 shows the in i t ia l position and its par t i t ion into
subgames. After determining safe stones and territories,
89 unsettled points remain, part i t ioned into 29 distinct
endgame areas of sizes 1 to 6.

Figure 7: C . l l : an 89 point endgame problem

An opt imal 62 move solution sequence computed by
decomposition search is shown in Figure 8. On the sys­
tem described above, the complete solution takes 1.1 sec­
onds, including 0.4 seconds for LCGS searching a total
of 420 nodes in the 29 subgames. The remaining t ime
is taken up by proving the safety of territories and by
operations on combinatorial games. Alpha-beta search
behaved as in the first example. Node counts and so­
lut ion times for the first few subproblems are shown in
Table 2.

582 COMPUTER GAME PLAYING

Areas (Size) Node* DS Node* aB Time aB
A (3) 5 15 <0.1
A + B (6) 10 178 <0 1
A + B + C (8) 13 899 0.3
A + B + C + D (10) 16 2663 0.7
A + B + C + D + E (14) 21 45446 16.7
A + B + C + D + E + F (17) 26 209815 66.1
A + B + C + D + E + F + G (22) 35 10350151 3192.9
A + B + C + D + E + F + G + H (24) 38 78629573 25044 2

Table 2: Performance of alpha-beta on problem C . l l

Figure 8: An opt imal solution to problem C . l l

As a final test two games start ing from the init ial posi­
t ion of C . l l were played against the current world cham­
pion Go program The Many Faces of Co. Playing Black,
the decomposition search program gained one point over
the game-theoretically opt imal result. Playing Whi te , it
gained five points. Considering the small differences in
value of the endgame plays involved, the total gain of six
points in two experiments is significant.

5 .4 D i s c u s s i o n
The discussion compares decomposition search and
alpha-beta in terms of t ime requirements, results gen­
erated and information on alternative moves.

T i m e R e q u i r e m e n t
The fundamental disadvantage of alpha-beta relative to
decomposition search is clearly demonstrated by the re­
sults: alpha-beta requires t ime that is exponential in the
size of the whole problem, while LCGS' worst case t ime
is exponential in the size of the biggest subproblem. If
local combinatorial game evaluations can be computed
and compared without too much overhead, a dramatic
speedup results.

R e u s i n g P a r t i a l R e s u l t s
Another advantage of decomposition search over alpha-
beta is that it generates useful part ia l results in the form
of evaluated subgames. Frequently occurring games and
their combinatorial game evaluation can be stored in
a persistent database. If some local searches can be

avoided or terminated early by a database h i t , further
speedups result. This method works for any combi­
natorial game, whereas in the case of minimax search
databases can be bui l t only for the endgame phase of
converging games.

I n f o r m a t i o n o n A l t e r n a t i v e M o v e s
Alpha-beta returns the best move and the minimax score
of a position. Evaluating alternative moves requires
more search. On the other hand, data generated dur ing
decomposition search easily yields further information
such as other opt imal moves and the amount by which
a bad move is inferior to an opt imal one.

6 S u m m a r y
Decomposition search is a new computat ional method
to find minimax solutions of combinatorial games. The
method provides a framework to restrict search to sub-
games, and uses powerful mathematical techniques of
combinatorial game theory to combine the local results
and achieve globally opt imal play. As a divide-and-
conquer method, decomposition search results in vast
improvements compared to alpha-beta search.

An application of decomposition search to Go has
demonstrated perfect play in long endgame problems,
which far exceed the capabilities of conventional game
tree search methods.

References
[Berlekamp and Wolfe, 1994] E. Berlekamp and

D. Wolfe. Mathematical Go: Chilling Gets the Last
Point. A K Peters, Wellesley, 1994.

[Berlekamp et al, 1982] E. Berlekamp, J. Conway, and
R. Guy. Winning Ways. Academic Press, London,
1982.

[Conway, 1976] J. Conway. On Numbers and Games.
Academic Press, London/New York, 1976.

[Muller, 1995] M. Muller. Computer Go as a Sum
of Local Games: An Application of Combinatorial
Game Theory. PhD thesis, ETH Zurich, 1995.
Diss.Nr. 11.006.

[Muller, 1997] M. Muller. Playing it safe: Recognizing
secure territories in Computer Go by using static rules
and search. In H. Matsubara, editor, Proceedings of
the Game Programming Workshop in Japan '97, pages
80-86, Computer Shogi Association, Tokyo, Japan,
1997.

[Thompson, 1986] K. Thompson. Retrograde analysis of
certain endgames. ICC A Journal, 9(3): 131-139, 1986.

MULLER 583

