
Domain-Dependent Single-Agent Search Enhancements

And reas J u n g h a n n s a n d J o n a t h a n Schaeffer
Department of Computing Science

University of Alberta,
Edmonton, Alberta
C A N A D A T6C 2111

Emai l : {anclreas, Jonathan}@cs.ualberta.ca

A b s t r a c t

Al research has developed an extensive collec­
t ion of methods to solve state-space problems.
Using the challenging domain of Sokoban, this
paper studies the effect of search enhancements
on program performance. We show that the
current state of the ar t in AT generally re­
quires a large p rog ramming and research effort
into domain-dependent: methods to solve even
moderately complex problems in such di f f icul t
domains. The appl icat ion of domain-specif ic
knowledge to exploi t propert ies of the search
space can result in large reductions in the size
of the search tree, often several orders of magni ­
tude per search enhancement. Understanding
the effect of these enhancements on the search
leads to a new taxonomy of search enhance­
ments, and a new f ramework for developing
single-agent search appl icat ions. Th is is used
to i l lust rate the large gap between what is por-
trayed in the l i terature versus what is needed
in practice.

K e y w o r d s : single-agent search, I D A * , Sokoban

1 I n t r o d u c t i o n
The AI research commun i t y has developed an impres­
sive suite of techniques for solv ing state-space problems.
These techniques range f rom general-purpose domain -
independent methods such as A * , to domain-specif ic en­
hancements. There is a strong movement toward devel­
op ing domain independent methods to solve problems.
Wh i l e these approaches require m in ima l effort to spec­
ify a problem to be solved, the performance of these
solvers is often l im i t ed , exceeding available resources on
even simple prob lem instances. Th is requires the devel-
opment of domain-dependent methods tha t explo i t addi-
t ional knowledge about the search space. These methods
can great ly improve the efficiency of a search based pro­
g r a m , as measured in the size of the search tree needed
to solve a problem instance.

Th is paper presents a study on solv ing chal lenging
single-agent search problems for the domain of Sokoban.

Sokoban is a one-player game and is of general interest
as an instance of a robot mo t ion p lann ing problem [Dor
and Zwiek, 1995]. Sokoban is analogous to the prob lem
of having a robot in a warehouse move specified goods
f rom their current locat ion to their f inal dest inat ion, sul>-
ject to the topology of the warehouse and any obstacles
in the way. Sokoban has been shown to be NP-hard
[Culberson, 1997; Dor and Zwick, 1995].

Previously we reported on our a t tempts to solve
Sokoban problems using the standard single-agent search
techniques available in the l i terature [Junghanns and
Schaeffer, 1998c]. When these proved inadequate, solv­
ing only 10 of a 90-problcm test suite, new a lgor i thms
had to be developed to improve search efficiency [Jung­
hanns and Schaeffer, 1998b; 1998a]. Th is allowed 47
problems to be op t ima l l y solved, or nearly so. Add i ­
t ional efforts have since increased this number to 52.
The results here show the large gains achieved by adding
appl icat ion-dependent knowledge to our program Rolling
Stone. W i t h each enhancement, reduct ions of the search
tree size by several orders of magn i tude are possible.

Ana lyz ing all the addi t ions made to the Sokoban
solver reveals tha t the most valuable search enhance­
ments are based on search (both on-l ine and off-l ine)
by improv ing the lower bound. We classify the search
enhancements along several dimensions inc lud ing their
generali ty, compu ta t i ona l mode l , completeness and ad­
missib i l i ty . Not surpr is ingly, the more specific an en­
hancement is, the greater its impact on search perfor­
mance.

When presented in the l i te ra ture, single-agent search
(usually I D A *) consists of a few lines of code. Most text-
books do not discuss search enhancements, other than
cycle detect ion. In real i ty, non - t r i v ia l single-agent search
problems require more extensive p rog ramming (and pos­
sibly research) effort. For example, achieving high per­
formance at solv ing s l id ing t i le puzzles requires enhance­
ments such as cycle detect ion, pa t te rn databases, move
order ing and enhanced lower bound calculat ions [Culber-
son and Schaeffer, 1996]. In th is paper, we out l ine a new
f ramework for developing high-performance single-agent
search programs.

Th is paper contains the fo l lowing cont r ibut ions:

1. A case study showing the evolu t ion of a Sokoban

570 COMPUTER GAME PLAYING

Figure 1: Problem #1 of the Test Set

solver's performance, beginning wi th a domain-
independent solver and ending wi th a highly-tuned,
application-dependent program.

2. A taxonomy of single-agent search enhancements.
3. A new framework for single-agent search, including

search enhancements and their control functions.

2 Sokoban
Figure 1 shows a sample problem of Sokoban. The goal is
simple: use the man to push all the stones in the maze to
the shaded goal squares. Only one stone can be pushed
at a t ime. These rather simple rules bely the diff iculty of
Sokoban problems, especially w i th respect to computer
solutions. We identified several reasons why Sokoban is
so diff icult [junghanns and Schaeffer, 1998c]:

• The graph underlying Sokoban problems is directed;
some moves are not reversible. Consequently, there
are deadlock states from which no solution is reach-
able. Deadlocks represent a challenge for anytime
algorithms, when commi t t ing to a move, how can
we make sure that no deadlock is introduced?

• The combination of long solution lengths (up to 674
stone pushes in the test set) and potentially large
branching factors make Sokoban diff icult for conven­
tional search algorithms to solve. 20x20 Sokoban
offers the challenge of a large search space

• Sokoban solutions are inherently sequential; only
l imited parts of a solution are interchangeable. Sub-
goals are often interrelated and thus cannot be
solved independently.

• A "simple", effective lower bound on the solution
length of a Sokoban problem remains elusive. The
best lower bound estimator is expensive to calculate,
and is often ineffective.

None of the above obstacles are found in the "stan­
dard" single-agent test domains, such as puzzles
and Rubik's Cube.

3 Appl icat ion- Independent Techniques
Ideally, applications should be specified wi th min imal ef­
fort and a "generic" solver would be used to compute the
solutions. In small domains this is attainable (e.g., if it is
easily enumerable). For more challenging domains, there
have recently been a number of interesting attempts at

Figure 2: Two Simple Sokoban Problems

domain-independent solvers (e.g., blackbox [Kautz and
Selman, 1996]). Before investing a lot of effort in de­
veloping a Sokoban-specific program, it is important to
understand the capabilities of current Al tools. Hence,
we include this information to i l lustrate the disparity be­
tween what application- independent problem solvers can
achieve, compared to application-dependent techniques.

The Sokoban problems in Figure 2 [McDermott , 1998]
were given to the program blackbox to solve. Blackbox
was the winner of the AIPS'98 fastest planner competi­
t ion. The first problem was solved wi th in a few seconds
and the second problem was solved in over an hour.

Clearly, domain-independent planners, like blackbox,
have a long way to go if they are to solve the even sim­
plest problem in the test suite (Figure 1). Hence, for this
application domain we have no choice but to pursue an
application-dependent implementation.

4 Appl icat ion-Dependent Techniques
As reported in [Junghanns and Schaeffer, 1998c], we
implemented I D A * for Sokoban. We gave the algo­
r i thm a fixed node l im i t of 1 bil l ion nodes for all ex­
periments (varying f rom 1 to 3 hours of CPU time on a
single 195 MHz processor of an SGI Origin 2000). After
adding an enhancement, Rolling Stone was run on 90 test
problems (http:/ /xsokoban.lcs.mit.edu/xsokoban.html)
to find out how many could be solved and how much
search effort was required to do so.

Figure 3 presents the experimental results for differ­
ent versions of Rolling Stone. Version RO is the program
using only I D A * wi th the lower bound; RA contains all
the search enhancements. The logarithmic vertical axis
shows the number of search nodes needed to solve a prob-
lem. The horizontal axis shows how many problems can
be solved (out of 90), ordering the problems by search
tree size. The performance lines in the figure are sorted
from left to right wi th an increasing number of search
enhancements.

L o w e r B o u n d (0 s o l v e d) : To obtain an admissi­
ble estimate of the distance of a position to a goal, a
minimum-cost, perfect bipart i te matching algorithm is
used. The matching assigns each stone to a goal and re­
turns the total (min imum) distance of all stones to their
goals. The algor i thm is 0(N3) in the number of stones
N. I D A * w i th this lower bound cannot solve any of the
test problems wi th in one bi l l ion search nodes.

J U N G H A N N S AND SCHAEFFER 571

Figure 3: Program Performance

T r a n s p o s i t i o n Tab le (6 s o l v e d) : The search space
of Sokoban is a graph, rather than a tree, so repeated
positions and cycles are possible. A transposition table
was implemented to avoid duplicate search effort. Posi­
tions that have the same stone locations and equivalent
man locations (taking man reachability into account) are
treated as the same posit ion. Transposition tables re­
duces the search tree size by several orders of magnitude,
allowing Rolling Stone to solve 6 problems.

M o v e O r d e r i n g (6 s o l v e d) : Children of a node are
ordered based on their l ikelihood of leading to a solution.
Move ordering only helps in the last i terat ion. Even
though move ordering results in no addit ional problems
being solved, less search effort is used to solve each prob­
lem.

D e a d l o c k T a b l e (8 s o l v e d) : The pattern database
is a recent idea that has been successfully used in the
Nx /V-puzzles [Culberson and Schaeffer, 1996] and Ru-
bik's Cube [Korf, 1997]. An off-line search enumerated
all possible stone/wall placements in a 4 x 5 region and
searched them to determine if deadlock was present.
These results are stored in deadlock tables. Dur ing an
I D A * search, the table is queried to see if the current
move leads to a local deadlock. Thus, deadlock tables
contain search results of part ia l problem configurations
and are general w i th respect to all Sokoban problems.

T u n n e l M a c r o s (10 s o l v e d) : A Sokoban maze often
contains "tunnels" (such as the squares KH, Lh, Mh and
Nh in Figure 1). Once a stone is pushed into a tunnel, it
must eventually be pushed all the way through. Rather
than do this through search, this sequence of moves can
be collapsed into a single macro move. By collapsing
several moves into one, the height of the search tree is
reduced. Tunnel macros are identified by pre-processing.

G o a l M a c r o s (23 s o l v e d) : Prior to start ing the
search, a prel iminary search is used to f ind an appropri­
ate order in which to f i l l in the goal squares. In many
cases this is a non-t r iv ia l computat ion, especially when

the goal area(s) has several entrances. A specialized
search is used to avoid fill sequences that lead to a dead­
lock. The knowledge about the goal area is then used
to create goal macros, where stones are pushed directly
from the goal area entrance(s) to the final goal square
avoiding deadlocks. For example, in Figure 1, square
Gh is defined as the entrance to the goal area; once a
stone reaches i t , a single macro move is used to push it
to the next pre-determined goal square. These macro
moves significantly reduce the search depth required to
solve problems and can dramatical ly reduce the search
tree size. Whenever a goal macro move is possible, it
is the only move considered; all alternatives are forward
pruned.

G o a l C u t s (26 s o l v e d) : Goal cuts effectively push
the goal macros further up the search tree. Whenever a
stone can be pushed to a goal entrance square, none of
the alternative moves are considered. The idea behind
these cuts is that if one is confident about using macro
moves, one might as well prune alternatives to pushing
that stone further up in the search tree.

P a t t e r n Search (46 s o l v e d) : Pattern searches
[Junghanns and Schaeffer, 1998b] are an effective way
to detect lower bound inefficiencies. Smal l , localized
conflict-driven searches uncover patterns of stones that
interact in such a way that the lower bound estimator
is off by an arbitrary amount (even inf inite, in the case
of a deadlock). These patterns are used throughout the
search to improve the lower bound. Patterns are specific
to a particular problem instance and are discovered on
the fly using specialized searches. Patterns represent the
knowledge about dynamic stone interactions that lead to
poor static lower bounds, and the associated penalties
are the corrective measures.

Pattern searches lead to dramatic improvements of the
search: many orders of magnitude vanish from the search
tree size and 20 more problems can be solved. Note that
tree sizes reported include the pattern search nodes.

Re levance C u t s (47 s o l v e d) : Relevance cuts [Jung­
hanns and Schaeffer, 1998a] are an at tempt to cut down
the branching factor using forward pruning. If moves
are "inconsistent" to the previous move history, they are
pruned. This heuristic is unsafe, since it has the poten­
t ia l to prune solution paths. However, it does decrease
search tree sizes, and can be a beneficial trade-off.

O v e r e s t i m a t i o n (52 s o l v e d) : Given the diff iculty
of solving Sokoban problems, any solution, even a non-
opt imal one, is welcome. The patterns that Rolling
Stone discovers indicate when potential ly "di f f icult" sit­
uations arise. To ensure admissibi l i ty, some patterns
that match are not always used to increase the lower
bound. Overestimation allows every pattern to add to
the lower bound. In principle, this can be interpreted
as the program "avoiding" diff icult situations. We pre­
fer to describe it as a knowledge-driven postponement of
search: the addit ional penalty only postpones when the
search wi l l explore a certain part of the tree, it wi l l not
cut branches indefinitely. In this respect, this method
preserves completeness, but not solution opt imal i ty.

572 COMPUTER GAME PLAYING

The performance gap between the first and last ver­
sions of Rolling Stone in Figure 3 is astounding. For ex-
ample, consider extrapolat ing the performance of Rolling
Stone w i th transposition tables so that it can solve the
same number of problems as the complete program (52).
1050 (not a typo!) seems to be a reasonable lower bound
on the difference in search tree sizes.

The preceding discussion closely corresponds to the
order in which enhancements were in i t ia l ly added to
Rolling Stone (although most enhancements have been
continually refined). Figure 4 shows how these results
were achieved over the 2-year development t ime. The
development effort equates to a ful l - t ime PhD, a part
t ime professor, a ful l - t ime summer student, and feed-
back from many people. Addit ional ly, a large number of
machine cycles were used for tuning and debugging. It is
interesting to note the occasional decrease in the number
of problems solved, the result of (favorable) bugs being
fixed. The long, slow, steady increase is indicative of the
reality of bui lding a large system. Progress is incremen­
tal and often painfully slow.

The results in Figure 3 may misrepresent the impor­
tance of each feature. Figure 5 shows the results of tak­
ing the ful l version of Rolling Stone and disabling sin­
gle search enhancements. In the absence of a particular
method, other search enhancements can compensate to
allow a solution to be found. Most notably, while the
lower bound function alone cannot solve a single prob­
lem, neither can the complete system solve a single prob­
lem wi thout the lower bound function.

Figure 5 shows that turning off goal macros reduces
the number of problems solved by 35, more than 66%!
Turning ofT transposition tables loses 23 problems. Turn­
ing off pattern searches reduces the number of solved
problems by 16. Other than the lower bound funct ion,
these three methods are the most important for Rolling
Stone] losing any one of them dramatical ly reduces the
performance. Whi le other enhancements don' t have as
dramatic an effect, turning any one of them off loses at
least one problem.

Figure 5: Effort Graphs For Methods "Fumed Off

5 Knowledge Taxonomy
In looking at the domain-specific knowledge used to solve
Sokoban problems, we can identify several different ways
of classifying the knowledge:

G e n e r a l i t y . Classify based on how general the knowl­
edge is: domain (e.g., Sokoban), instance (a par­
ticular Sokoban problem), and subtree (wi th in a
Sokoban search).

C o m p u t a t i o n . Differentiate how the knowledge was
obtained: static (such as advice from a human ex­
pert) and dynamic (gleaned from a search).

A d m i s s i b i l i t y / C o m p l e t e n e s s . Knowledge can be:
admissible (preserve opt imal i ty in a solution) or
non-admissible. Non-admissible knowledge can ei­
ther preserve completeness of the algori thm or ren­
der it incomplete. Admissible knowledge is neces­
sarily complete.

Figure 6 summarizes the search enhancements used in
Rolling Stone. Other enhancements from the literature
could easily be added into spaces that are st i l l blank, e.g.
perimeter databases [Manzini, 1995] (dynamic, admissi­
ble, instance). Note that some of the enhancement clas­
sifications are fixed by the type of the enhancement. For
example, any type of forward pruning is incomplete by
definit ion, and move ordering always preserves admissi­
bi l i ty. For some enhancements, the properties depend on
the implementat ion. For example, overestimation tech­
niques can be static or dynamic; goal macros can be
admissible or non-admissible; pattern databases can be
domain-based or instance-based.

It is interesting to note that , apart f rom the lower
bound function itself, the three most important program
enhancements in terms of program performance (Figure
5) are all dynamic (search-based) and instance/subtree
specific. The static enhancements, while of value, turn
out to be of less importance. Static knowledge is usually
r igid and does not include the myr iad of exceptions that
search-based methods can uncover and react to.

JUNGHANNS AND SCHAEFFER 573

Classification Domain Instance Subtree
Static admissible lower

bound
tunnel
macros

move
ordering

Static

complete

Static

incomplete relevance
cuts

goal
cuts

Dynamic admissible deadlock
tables

pattern
searches

Dynamic admissible

transposi­
t ion table

Dynamic

complete overesti-
mat ion

Dynamic

incomplete goal
macros

Figure 6: Taxonomy of Search Enhancements in Sokoban

6 Contro l Functions
There is another type of application-dependent knowl­
edge that is critical to performance, but receives scant
attention in the literature. Control functions are in t r in­
sic parts of efficient search programs, controll ing when
to use or not use a search enhancement. In Rolling
Stone numerous control functions are used to improve
the search efficiency. Some examples include:

T r a n s p o s i t i o n T a b l e : Control knowledge is needed to
decide when new informat ion is worth replacing
older informat ion in the table. Also, when read­
ing from the table, control information can decide
whether the benefits of the lookup just i fy the cost.

G o a l M a c r o s : If a goal area has too few goal squares,
then goal macros are disabled. W i t h a small number
of goals or too many entrances, the search wi l l likely
not need macro moves, and the potential savings are
not worth the risk of el iminat ing possible solutions.

P a t t e r n Searches: Pattern searches are executed only
when a non-tr iv ial heuristic function indicates the
likelihood of a penalty being present. Executing a
pattern search is expensive, so this overhead should
be introduced only when it is likely to be cost ef­
fective. Control functions are also used to stop a
pattern search when success appears unlikely.

Implementing a search enhancement is often only one
part of the programming effort. Implementing and tun­
ing its control function(s) can be significantly more t ime
consuming and more crit ical to performance. We esti­
mate that whereas the search enhancements take about
90% of the coding effort and the control functions only
10%, the reverse distr ibut ion applies to the amount of
tuning effort needed and machine cycles consumed.

A clear separation between the search enhancements
and their respective control functions can help the tuning
effort. For example, while the goal macro creation only
considers which order the stones should be placed into
the goal area, the control function can determine if goal
macros should be created at al l . Both tuning efforts
have very different objectives, one is search efficiency,

Figure 7: Enhanced I D A *

the other risk min imizat ion. Separating the two seems
natural and convenient.

7 Single-Agent Search Framework
As presented in the l i terature, single-agent search con­
sists of a few lines of code (usually I D A *) . Most text-
books do not discuss search enhancements, other than
cycle detection. In reality, non-tr iv ia l single-agent search
problems require a more extensive programming (and
possibly research) effort.

Figure 7 il lustrates the basic I D A * routine, w i th our
enhancements included (in italics). This routine is spe­
cific to Rolling Stone, but could be wri t ten in more gen­
eral terms. It does not include a number of well-known
single-agent search enhancements available in the litera­
ture. Control functions are indicated by parameters to
search enhancement routines. In practice, some of these
functions are implemented as simple if statements con­
trol l ing access to the enhancement code.

Examining the code in Figure 7, one realizes that there
are really only three types of search enhancements:

1. Modi fy ing the lower bound (as indicated by the up­
dates to /6). This can take two forms: opt imal ly
increasing the bound (e.g. using patterns) which re­
duces the distance to search, or non-optimally (us­
ing overestimation) which redistributes where the
search effort is concentrated.

2. Removing branches unlikely to add addit ional infor-

574 COMPUTER GAME PLAYING

mat ion to the search (the next and break statements
in the for loop) . Th is forward p run ing can result in
large reductions in the search tree, at the expense
of possibly affecting the completeness.

3. Col lapsing the tree height by replacing a sequence
of moves w i t h one move (for example, macros).

Some of the search enhancements involve computa­
tions outside of the search. Figure 8 shows where the
pre-search processing occurs at the domain and instance
levels. Off- l ine compu ta t i on of pat tern databases or
pre processing of problem instances are powerful tech­
niques that receive scant a t tent ion in the l i terature
(chess endgame databases are a notable except ion). Yet
these techniques are an impo r t an t step towards the au­
tomat ion of knowledge discovery and machine learning.
Preprocessing is involved in many of the most valuable
enhancements tha t are used in Rolling Stone.

Simi lar issues occur w i t h other search a lgor i thms. For
example, a l though it takes only a few lines to spec-
ify the a lpha-beta a lgo r i t hm, the Deep Blue chess pro­
gram's search procedure includes numerous enhance­
ments (many s imi lar in sp i r i t to those used in Rolling
Stone) tha t cumula t ive ly reduce the search tree size by
several orders of magni tude. If no th ing else, the Deep
Blue result demonstrated the degree of engineering re­
quired to bu i ld h igh-performance search-based systems.

8 Conclusions
Th is paper described our experiences work ing w i t h a
chal lenging single-agent search doma in . In contrast to
the s imp l ic i t y of the basic I D A * fo rmu la t ion , bu i ld ing
a high-performance single-agent searcher can be a com­
plex task tha t combines bo th research and engineering.
Appl icat ion-dependent knowledge, specifically tha t ob­
tained using search, can result in an orders-of-magnitude
improvement in search efficiency. Th is can be achieved
through a jud ic ious combinat ion of several search en­
hancements. Con t ro l funct ions are overlooked in the l i t ­
erature, yet are cr i t ica l to performance. They represent
a signif icant por t ion of the program development t ime
and most of the program exper imentat ion resources.

Domain- independent tools offer a quick p rog ramming
solut ion when compared to the effort required to de­
velop domain-dependent appl icat ions. Flowever, w i th
current AI tools, performance is commensurate w i t h ef­
for t . Domain-dependent solut ions can be vastly superior
in performance. The trade-off between p rog ramming ef­
for t and performance is the cr i t i ca l design decision tha t
needs to be made.

9 Acknowledgements
Th is research was supported by a grant f rom the Natu ra l
Sciences and Engineering Research Counci l of Canada.
Compu ta t i ona l resources were provided by M A C I . Th is
paper benefited f rom interact ions w i t h Y n g v i Bjornsson,
Afzal Upa l and Rob Hol te .

References
[Culberson and Schaeffer, 1996] J. Culberson and

J. Schaeffer. Searching w i t h pa t te rn databases. In
G. McCal la , edi tor , Advances in Artificial Intelligence,
pages 402-416. Springer-Verlag, 1996.

[Culberson, 1997] J. Culberson. Sokoban is PSPACE-
cornplete. Technical Report T R 9 7 - 0 2 , Dept. of
C o m p u t i n g Science, Universi ty of A lber ta , 1997.
f tp .cs .ua l be r ta . ca /pub /TechRepor t s /1997 /TR97 -02.

[Dor and Zwick, 1995] D. Dor and U. Zwick.
S O K O B A N and other mot ion p lann ing problems,
1995. A t : h t t p : / / w w w . m a t h . t a u . a c . i l / d d o r i t .

[Junghanns and Schaeffer, 1998a] A. Junghanns and
J. Schaeffer. Relevance cuts: Local iz ing the search.
In The First International Conference on Computers
and Games, pages 1-13, 1998. To appear in : Lecture
Notes in Computing Science, Springer Verlag.

[Junghanns and Schaeffer, 1998b] A. Junghanns and
J. Schaeffer. Single-agent search in the presence of
deadlock. In AAAI, pages 419-424, 1998.

[junghanns and Schaeffer, 1998c] A. Junghanns and
J. Schaeffer. Sokoban: Eva lua t ing standard single-
agent search techniques in the presence of deadlock.
In R. Mercer and E. Neufeld, editors, Advances in Ar-
tificial Intelligence, pages 1 1 5 . Springer Verlag, 1998.

[Kautz and Selman, 1996] I I . Kau tz and B. Selman.
Pushing the envelope: p lann ing , proposi t ional logic
and stochastic search. In AAAI, pages 1194-1201,
1996.

[Korf , 1997] R.E. Kor f . F ind ing op t ima l solut ions to
Rub ik 's Cube using pat tern databases. In AAAI,
pages 700 705, 1997.

[Manz in i , 1995] G. Manz in i . B1DA* : An improved
per imeter search a lgo r i t hm. Artificial Intelligence,
75:347-360, 1995.

[McDermo t t , 1998] Drew M c D e r m o t t . Using regression-
match graphs to cont ro l search in p lann ing, 1998. Un­
publ ished manuscr ip t .

J U N G H A N N S AND SCHAEFFER 575

