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A b s t r a c t 

Al research has developed an extensive collec­
t ion of methods to solve state-space problems. 
Using the challenging domain of Sokoban, this 
paper studies the effect of search enhancements 
on program performance. We show that the 
current state of the ar t in AT generally re­
quires a large p rog ramming and research effort 
into domain-dependent: methods to solve even 
moderately complex problems in such di f f icul t 
domains. The appl icat ion of domain-specif ic 
knowledge to exploi t propert ies of the search 
space can result in large reductions in the size 
of the search tree, often several orders of magni ­
tude per search enhancement. Understanding 
the effect of these enhancements on the search 
leads to a new taxonomy of search enhance­
ments, and a new f ramework for developing 
single-agent search appl icat ions. Th is is used 
to i l lust rate the large gap between what is por-
trayed in the l i terature versus what is needed 
in practice. 

K e y w o r d s : single-agent search, I D A * , Sokoban 

1 I n t r o d u c t i o n 
The AI research commun i t y has developed an impres­
sive suite of techniques for solv ing state-space problems. 
These techniques range f rom general-purpose domain -
independent methods such as A * , to domain-specif ic en­
hancements. There is a strong movement toward devel­
op ing domain independent methods to solve problems. 
Wh i l e these approaches require m in ima l effort to spec­
ify a problem to be solved, the performance of these 
solvers is often l im i t ed , exceeding available resources on 
even simple prob lem instances. Th is requires the devel-
opment of domain-dependent methods tha t explo i t addi-
t ional knowledge about the search space. These methods 
can great ly improve the efficiency of a search based pro­
g r a m , as measured in the size of the search tree needed 
to solve a problem instance. 

Th is paper presents a study on solv ing chal lenging 
single-agent search problems for the domain of Sokoban. 

Sokoban is a one-player game and is of general interest 
as an instance of a robot mo t ion p lann ing problem [Dor 
and Zwiek, 1995]. Sokoban is analogous to the prob lem 
of having a robot in a warehouse move specified goods 
f rom their current locat ion to their f inal dest inat ion, sul>-
ject to the topology of the warehouse and any obstacles 
in the way. Sokoban has been shown to be NP-hard 
[Culberson, 1997; Dor and Zwick, 1995]. 

Previously we reported on our a t tempts to solve 
Sokoban problems using the standard single-agent search 
techniques available in the l i terature [Junghanns and 
Schaeffer, 1998c]. When these proved inadequate, solv­
ing only 10 of a 90-problcm test suite, new a lgor i thms 
had to be developed to improve search efficiency [Jung­
hanns and Schaeffer, 1998b; 1998a]. Th is allowed 47 
problems to be op t ima l l y solved, or nearly so. Add i ­
t ional efforts have since increased this number to 52. 
The results here show the large gains achieved by adding 
appl icat ion-dependent knowledge to our program Rolling 
Stone. W i t h each enhancement, reduct ions of the search 
tree size by several orders of magn i tude are possible. 

Ana lyz ing all the addi t ions made to the Sokoban 
solver reveals tha t the most valuable search enhance­
ments are based on search (both on-l ine and off-l ine) 
by improv ing the lower bound. We classify the search 
enhancements along several dimensions inc lud ing their 
generali ty, compu ta t i ona l mode l , completeness and ad­
missib i l i ty . Not surpr is ingly, the more specific an en­
hancement is, the greater its impact on search perfor­
mance. 

When presented in the l i te ra ture, single-agent search 
(usually I D A * ) consists of a few lines of code. Most text-
books do not discuss search enhancements, other than 
cycle detect ion. In real i ty, non - t r i v ia l single-agent search 
problems require more extensive p rog ramming (and pos­
sibly research) effort. For example, achieving high per­
formance at solv ing s l id ing t i le puzzles requires enhance­
ments such as cycle detect ion, pa t te rn databases, move 
order ing and enhanced lower bound calculat ions [Culber-
son and Schaeffer, 1996]. In th is paper, we out l ine a new 
f ramework for developing high-performance single-agent 
search programs. 

Th is paper contains the fo l lowing cont r ibut ions: 

1. A case study showing the evolu t ion of a Sokoban 
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Figure 1: Problem #1 of the Test Set 

solver's performance, beginning wi th a domain-
independent solver and ending wi th a highly-tuned, 
application-dependent program. 

2. A taxonomy of single-agent search enhancements. 
3. A new framework for single-agent search, including 

search enhancements and their control functions. 

2 Sokoban 
Figure 1 shows a sample problem of Sokoban. The goal is 
simple: use the man to push all the stones in the maze to 
the shaded goal squares. Only one stone can be pushed 
at a t ime. These rather simple rules bely the diff iculty of 
Sokoban problems, especially w i th respect to computer 
solutions. We identified several reasons why Sokoban is 
so diff icult [ junghanns and Schaeffer, 1998c]: 

• The graph underlying Sokoban problems is directed; 
some moves are not reversible. Consequently, there 
are deadlock states from which no solution is reach-
able. Deadlocks represent a challenge for anytime 
algorithms, when commi t t ing to a move, how can 
we make sure that no deadlock is introduced? 

• The combination of long solution lengths (up to 674 
stone pushes in the test set) and potentially large 
branching factors make Sokoban diff icult for conven­
tional search algorithms to solve. 20x20 Sokoban 
offers the challenge of a large search space  

• Sokoban solutions are inherently sequential; only 
l imited parts of a solution are interchangeable. Sub-
goals are often interrelated and thus cannot be 
solved independently. 

• A "simple", effective lower bound on the solution 
length of a Sokoban problem remains elusive. The 
best lower bound estimator is expensive to calculate, 
and is often ineffective. 

None of the above obstacles are found in the "stan­
dard" single-agent test domains, such as puzzles 
and Rubik's Cube. 

3 Appl icat ion- Independent Techniques 
Ideally, applications should be specified wi th min imal ef­
fort and a "generic" solver would be used to compute the 
solutions. In small domains this is attainable (e.g., if it is 
easily enumerable). For more challenging domains, there 
have recently been a number of interesting attempts at 

Figure 2: Two Simple Sokoban Problems 

domain-independent solvers (e.g., blackbox [Kautz and 
Selman, 1996]). Before investing a lot of effort in de­
veloping a Sokoban-specific program, it is important to 
understand the capabilities of current Al tools. Hence, 
we include this information to i l lustrate the disparity be­
tween what application- independent problem solvers can 
achieve, compared to application-dependent techniques. 

The Sokoban problems in Figure 2 [McDermott , 1998] 
were given to the program blackbox to solve. Blackbox 
was the winner of the AIPS'98 fastest planner competi­
t ion. The first problem was solved wi th in a few seconds 
and the second problem was solved in over an hour. 

Clearly, domain-independent planners, like blackbox, 
have a long way to go if they are to solve the even sim­
plest problem in the test suite (Figure 1). Hence, for this 
application domain we have no choice but to pursue an 
application-dependent implementation. 

4 Appl icat ion-Dependent Techniques 
As reported in [Junghanns and Schaeffer, 1998c], we 
implemented I D A * for Sokoban. We gave the algo­
r i thm a fixed node l im i t of 1 bil l ion nodes for all ex­
periments (varying f rom 1 to 3 hours of CPU time on a 
single 195 MHz processor of an SGI Origin 2000). After 
adding an enhancement, Rolling Stone was run on 90 test 
problems (http:/ /xsokoban.lcs.mit.edu/xsokoban.html) 
to find out how many could be solved and how much 
search effort was required to do so. 

Figure 3 presents the experimental results for differ­
ent versions of Rolling Stone. Version RO is the program 
using only I D A * wi th the lower bound; RA contains all 
the search enhancements. The logarithmic vertical axis 
shows the number of search nodes needed to solve a prob-
lem. The horizontal axis shows how many problems can 
be solved (out of 90), ordering the problems by search 
tree size. The performance lines in the figure are sorted 
from left to right wi th an increasing number of search 
enhancements. 

L o w e r B o u n d (0 s o l v e d ) : To obtain an admissi­
ble estimate of the distance of a position to a goal, a 
minimum-cost, perfect bipart i te matching algorithm is 
used. The matching assigns each stone to a goal and re­
turns the total (min imum) distance of all stones to their 
goals. The algor i thm is 0(N3) in the number of stones 
N. I D A * w i th this lower bound cannot solve any of the 
test problems wi th in one bi l l ion search nodes. 
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Figure 3: Program Performance 

T r a n s p o s i t i o n Tab le (6 s o l v e d ) : The search space 
of Sokoban is a graph, rather than a tree, so repeated 
positions and cycles are possible. A transposition table 
was implemented to avoid duplicate search effort. Posi­
tions that have the same stone locations and equivalent 
man locations (taking man reachability into account) are 
treated as the same posit ion. Transposition tables re­
duces the search tree size by several orders of magnitude, 
allowing Rolling Stone to solve 6 problems. 

M o v e O r d e r i n g (6 s o l v e d ) : Children of a node are 
ordered based on their l ikelihood of leading to a solution. 
Move ordering only helps in the last i terat ion. Even 
though move ordering results in no addit ional problems 
being solved, less search effort is used to solve each prob­
lem. 

D e a d l o c k T a b l e (8 s o l v e d ) : The pattern database 
is a recent idea that has been successfully used in the 
Nx /V-puzzles [Culberson and Schaeffer, 1996] and Ru-
bik's Cube [Korf, 1997]. An off-line search enumerated 
all possible stone/wall placements in a 4 x 5 region and 
searched them to determine if deadlock was present. 
These results are stored in deadlock tables. Dur ing an 
I D A * search, the table is queried to see if the current 
move leads to a local deadlock. Thus, deadlock tables 
contain search results of part ia l problem configurations 
and are general w i th respect to all Sokoban problems. 

T u n n e l M a c r o s (10 s o l v e d ) : A Sokoban maze often 
contains "tunnels" (such as the squares KH, Lh, Mh and 
Nh in Figure 1). Once a stone is pushed into a tunnel, it 
must eventually be pushed all the way through. Rather 
than do this through search, this sequence of moves can 
be collapsed into a single macro move. By collapsing 
several moves into one, the height of the search tree is 
reduced. Tunnel macros are identified by pre-processing. 

G o a l M a c r o s (23 s o l v e d ) : Prior to start ing the 
search, a prel iminary search is used to f ind an appropri­
ate order in which to f i l l in the goal squares. In many 
cases this is a non-t r iv ia l computat ion, especially when 

the goal area(s) has several entrances. A specialized 
search is used to avoid fill sequences that lead to a dead­
lock. The knowledge about the goal area is then used 
to create goal macros, where stones are pushed directly 
from the goal area entrance(s) to the final goal square 
avoiding deadlocks. For example, in Figure 1, square 
Gh is defined as the entrance to the goal area; once a 
stone reaches i t , a single macro move is used to push it 
to the next pre-determined goal square. These macro 
moves significantly reduce the search depth required to 
solve problems and can dramatical ly reduce the search 
tree size. Whenever a goal macro move is possible, it 
is the only move considered; all alternatives are forward 
pruned. 

G o a l C u t s (26 s o l v e d ) : Goal cuts effectively push 
the goal macros further up the search tree. Whenever a 
stone can be pushed to a goal entrance square, none of 
the alternative moves are considered. The idea behind 
these cuts is that if one is confident about using macro 
moves, one might as well prune alternatives to pushing 
that stone further up in the search tree. 

P a t t e r n Search (46 s o l v e d ) : Pattern searches 
[Junghanns and Schaeffer, 1998b] are an effective way 
to detect lower bound inefficiencies. Smal l , localized 
conflict-driven searches uncover patterns of stones that 
interact in such a way that the lower bound estimator 
is off by an arbitrary amount (even inf inite, in the case 
of a deadlock). These patterns are used throughout the 
search to improve the lower bound. Patterns are specific 
to a particular problem instance and are discovered on 
the fly using specialized searches. Patterns represent the 
knowledge about dynamic stone interactions that lead to 
poor static lower bounds, and the associated penalties 
are the corrective measures. 

Pattern searches lead to dramatic improvements of the 
search: many orders of magnitude vanish from the search 
tree size and 20 more problems can be solved. Note that 
tree sizes reported include the pattern search nodes. 

Re levance C u t s (47 s o l v e d ) : Relevance cuts [Jung­
hanns and Schaeffer, 1998a] are an at tempt to cut down 
the branching factor using forward pruning. If moves 
are "inconsistent" to the previous move history, they are 
pruned. This heuristic is unsafe, since it has the poten­
t ia l to prune solution paths. However, it does decrease 
search tree sizes, and can be a beneficial trade-off. 

O v e r e s t i m a t i o n (52 s o l v e d ) : Given the diff iculty 
of solving Sokoban problems, any solution, even a non-
opt imal one, is welcome. The patterns that Rolling 
Stone discovers indicate when potential ly "di f f icult" sit­
uations arise. To ensure admissibi l i ty, some patterns 
that match are not always used to increase the lower 
bound. Overestimation allows every pattern to add to 
the lower bound. In principle, this can be interpreted 
as the program "avoiding" diff icult situations. We pre­
fer to describe it as a knowledge-driven postponement of 
search: the addit ional penalty only postpones when the 
search wi l l explore a certain part of the tree, it wi l l not 
cut branches indefinitely. In this respect, this method 
preserves completeness, but not solution opt imal i ty. 
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The performance gap between the first and last ver­
sions of Rolling Stone in Figure 3 is astounding. For ex-
ample, consider extrapolat ing the performance of Rolling 
Stone w i th transposition tables so that it can solve the 
same number of problems as the complete program (52). 
1050 (not a typo!) seems to be a reasonable lower bound 
on the difference in search tree sizes. 

The preceding discussion closely corresponds to the 
order in which enhancements were in i t ia l ly added to 
Rolling Stone (although most enhancements have been 
continually refined). Figure 4 shows how these results 
were achieved over the 2-year development t ime. The 
development effort equates to a ful l - t ime PhD, a part 
t ime professor, a ful l - t ime summer student, and feed-
back from many people. Addit ional ly, a large number of 
machine cycles were used for tuning and debugging. It is 
interesting to note the occasional decrease in the number 
of problems solved, the result of (favorable) bugs being 
fixed. The long, slow, steady increase is indicative of the 
reality of bui lding a large system. Progress is incremen­
tal and often painfully slow. 

The results in Figure 3 may misrepresent the impor­
tance of each feature. Figure 5 shows the results of tak­
ing the ful l version of Rolling Stone and disabling sin­
gle search enhancements. In the absence of a particular 
method, other search enhancements can compensate to 
allow a solution to be found. Most notably, while the 
lower bound function alone cannot solve a single prob­
lem, neither can the complete system solve a single prob­
lem wi thout the lower bound function. 

Figure 5 shows that turning off goal macros reduces 
the number of problems solved by 35, more than 66%! 
Turning ofT transposition tables loses 23 problems. Turn­
ing off pattern searches reduces the number of solved 
problems by 16. Other than the lower bound funct ion, 
these three methods are the most important for Rolling 
Stone] losing any one of them dramatical ly reduces the 
performance. Whi le other enhancements don' t have as 
dramatic an effect, turning any one of them off loses at 
least one problem. 

Figure 5: Effort Graphs For Methods "Fumed Off 

5 Knowledge Taxonomy 
In looking at the domain-specific knowledge used to solve 
Sokoban problems, we can identify several different ways 
of classifying the knowledge: 

G e n e r a l i t y . Classify based on how general the knowl­
edge is: domain (e.g., Sokoban), instance (a par­
ticular Sokoban problem), and subtree (wi th in a 
Sokoban search). 

C o m p u t a t i o n . Differentiate how the knowledge was 
obtained: static (such as advice from a human ex­
pert) and dynamic (gleaned from a search). 

A d m i s s i b i l i t y / C o m p l e t e n e s s . Knowledge can be: 
admissible (preserve opt imal i ty in a solution) or 
non-admissible. Non-admissible knowledge can ei­
ther preserve completeness of the algori thm or ren­
der it incomplete. Admissible knowledge is neces­
sarily complete. 

Figure 6 summarizes the search enhancements used in 
Rolling Stone. Other enhancements from the literature 
could easily be added into spaces that are st i l l blank, e.g. 
perimeter databases [Manzini, 1995] (dynamic, admissi­
ble, instance). Note that some of the enhancement clas­
sifications are fixed by the type of the enhancement. For 
example, any type of forward pruning is incomplete by 
definit ion, and move ordering always preserves admissi­
bi l i ty. For some enhancements, the properties depend on 
the implementat ion. For example, overestimation tech­
niques can be static or dynamic; goal macros can be 
admissible or non-admissible; pattern databases can be 
domain-based or instance-based. 

It is interesting to note that , apart f rom the lower 
bound function itself, the three most important program 
enhancements in terms of program performance (Figure 
5) are all dynamic (search-based) and instance/subtree 
specific. The static enhancements, while of value, turn 
out to be of less importance. Static knowledge is usually 
r igid and does not include the myr iad of exceptions that 
search-based methods can uncover and react to. 
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Classification Domain Instance Subtree 
Static admissible lower 

bound 
tunnel 
macros 

move 
ordering 

Static 

complete 

Static 

incomplete relevance 
cuts 

goal 
cuts 

Dynamic admissible deadlock 
tables 

pattern 
searches 

Dynamic admissible 

transposi­
t ion table 

Dynamic 

complete overesti-
mat ion 

Dynamic 

incomplete goal 
macros 

Figure 6: Taxonomy of Search Enhancements in Sokoban 

6 Contro l Functions 
There is another type of application-dependent knowl­
edge that is critical to performance, but receives scant 
attention in the literature. Control functions are in t r in­
sic parts of efficient search programs, controll ing when 
to use or not use a search enhancement. In Rolling 
Stone numerous control functions are used to improve 
the search efficiency. Some examples include: 

T r a n s p o s i t i o n T a b l e : Control knowledge is needed to 
decide when new informat ion is worth replacing 
older informat ion in the table. Also, when read­
ing from the table, control information can decide 
whether the benefits of the lookup just i fy the cost. 

G o a l M a c r o s : If a goal area has too few goal squares, 
then goal macros are disabled. W i t h a small number 
of goals or too many entrances, the search wi l l likely 
not need macro moves, and the potential savings are 
not worth the risk of el iminat ing possible solutions. 

P a t t e r n Searches: Pattern searches are executed only 
when a non-tr iv ial heuristic function indicates the 
likelihood of a penalty being present. Executing a 
pattern search is expensive, so this overhead should 
be introduced only when it is likely to be cost ef­
fective. Control functions are also used to stop a 
pattern search when success appears unlikely. 

Implementing a search enhancement is often only one 
part of the programming effort. Implementing and tun­
ing its control function(s) can be significantly more t ime 
consuming and more crit ical to performance. We esti­
mate that whereas the search enhancements take about 
90% of the coding effort and the control functions only 
10%, the reverse distr ibut ion applies to the amount of 
tuning effort needed and machine cycles consumed. 

A clear separation between the search enhancements 
and their respective control functions can help the tuning 
effort. For example, while the goal macro creation only 
considers which order the stones should be placed into 
the goal area, the control function can determine if goal 
macros should be created at al l . Both tuning efforts 
have very different objectives, one is search efficiency, 

Figure 7: Enhanced I D A * 

the other risk min imizat ion. Separating the two seems 
natural and convenient. 

7 Single-Agent Search Framework 
As presented in the l i terature, single-agent search con­
sists of a few lines of code (usually I D A * ) . Most text-
books do not discuss search enhancements, other than 
cycle detection. In reality, non-tr iv ia l single-agent search 
problems require a more extensive programming (and 
possibly research) effort. 

Figure 7 il lustrates the basic I D A * routine, w i th our 
enhancements included (in italics). This routine is spe­
cific to Rolling Stone, but could be wri t ten in more gen­
eral terms. It does not include a number of well-known 
single-agent search enhancements available in the litera­
ture. Control functions are indicated by parameters to 
search enhancement routines. In practice, some of these 
functions are implemented as simple if statements con­
trol l ing access to the enhancement code. 

Examining the code in Figure 7, one realizes that there 
are really only three types of search enhancements: 

1. Modi fy ing the lower bound (as indicated by the up­
dates to /6). This can take two forms: opt imal ly 
increasing the bound (e.g. using patterns) which re­
duces the distance to search, or non-optimally (us­
ing overestimation) which redistributes where the 
search effort is concentrated. 

2. Removing branches unlikely to add addit ional infor-
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mat ion to the search (the next and break statements 
in the for loop) . Th is forward p run ing can result in 
large reductions in the search tree, at the expense 
of possibly affecting the completeness. 

3. Col lapsing the tree height by replacing a sequence 
of moves w i t h one move (for example, macros). 

Some of the search enhancements involve computa­
tions outside of the search. Figure 8 shows where the 
pre-search processing occurs at the domain and instance 
levels. Off- l ine compu ta t i on of pat tern databases or 
pre processing of problem instances are powerful tech­
niques that receive scant a t tent ion in the l i terature 
(chess endgame databases are a notable except ion). Yet 
these techniques are an impo r t an t step towards the au­
tomat ion of knowledge discovery and machine learning. 
Preprocessing is involved in many of the most valuable 
enhancements tha t are used in Rolling Stone. 

Simi lar issues occur w i t h other search a lgor i thms. For 
example, a l though it takes only a few lines to spec-
ify the a lpha-beta a lgo r i t hm, the Deep Blue chess pro­
gram's search procedure includes numerous enhance­
ments (many s imi lar in sp i r i t to those used in Rolling 
Stone) tha t cumula t ive ly reduce the search tree size by 
several orders of magni tude. If no th ing else, the Deep 
Blue result demonstrated the degree of engineering re­
quired to bu i ld h igh-performance search-based systems. 

8 Conclusions 
Th is paper described our experiences work ing w i t h a 
chal lenging single-agent search doma in . In contrast to 
the s imp l ic i t y of the basic I D A * fo rmu la t ion , bu i ld ing 
a high-performance single-agent searcher can be a com­
plex task tha t combines bo th research and engineering. 
Appl icat ion-dependent knowledge, specifically tha t ob­
tained using search, can result in an orders-of-magnitude 
improvement in search efficiency. Th is can be achieved 
through a jud ic ious combinat ion of several search en­
hancements. Con t ro l funct ions are overlooked in the l i t ­
erature, yet are cr i t ica l to performance. They represent 
a signif icant por t ion of the program development t ime 
and most of the program exper imentat ion resources. 

Domain- independent tools offer a quick p rog ramming 
solut ion when compared to the effort required to de­
velop domain-dependent appl icat ions. Flowever, w i th 
current AI tools, performance is commensurate w i t h ef­
for t . Domain-dependent solut ions can be vastly superior 
in performance. The trade-off between p rog ramming ef­
for t and performance is the cr i t i ca l design decision tha t 
needs to be made. 
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