
Temporal Coherence and Prediction Decay in TD Learning
Don F. Beal and Mar t in C. Smith
Department of Computer Science

Queen Mary and Westfield College
University of London

Mile End Road
London E1 4NS

UK

Abstract
This paper describes improvements to the tem­
poral difference learning method. The
standard form of the method has the
problem that two control parameters, learning
rate and temporal discount, need to be chosen
appropriately. These parameters can have a ma­
jor effect on performance, particularly the
learning rate parameter, which affects the stabil­
ity of the process as well as the number of ob­
servations required. Our extension to the
algorithm automatically sets and subsequently
adjusts these parameters. The learning rate ad­
justment is based on a new concept we call tem­
poral coherence (TC). The experiments reported
here compare the extended algorithm per-
formance with human-chosen parameters and
with an earlier method for learning rate adjust­
ment, in a complex game domain. The learning
task was that of learning the relative values of
pieces, without any init ial domain-specific
knowledge, and from self-play only. The results
show that the improved method leads to better
learning (i.e. faster and less subject to the effects
of noise), than the selection of human-chosen
values for the control parameters, and a com­
parison method.

1 In t roduc t i on
Two major parameters that control the behaviour of
Sutton's [1988] temporal difference algorithm TD(A.) are
the learning rate (or step-size), and the temporal dis­
count parameter,

The choice of these parameters can have a major effect
on the efficacy of the learning algorithm, and in practical
problems they are often determined somewhat arbitrarily,
or else by trying a number of values and 'seeing what
works' (e.g. Tesauro [1992]). Another widely used
method is to use a learning rate that decreases over time,
but such systems sti l l require the selection of a suitable
schedule.

Sutton and Singh [1994] describe systems for setting
both and within the framework of Markov-chain

models. However these methods assume relatively small
numbers of distinct states, and acylic graphs, and so are
not directly applicable to more complex real-world
problems. Jacobs [1988] presented the 4delta-bar-delta'
algorithm for adjusting during the learning process.
We compared the performance of delta-bar-delta with
our algorithm on our sample domain. More recently,
Almeida [1998] and Schraudolph [1998] have presented
other methods for adaptation for stochastic domains
and neural networks respectively.

We describe a new system which automatically adjusts
and This system does not require any a priori

knowledge about suitable values for learning rate or
temporal discount parameters for a given domain. It ad­
justs these parameters according to the learning experi­
ences themselves. We present results that show that this
method is effective, and in our sample domain yielded
better learning performance than our best attempt to find
optimum choices of fixed and and better learning
performance than delta-bar-delta.

2. Tempora l di f ference learn ing
Temporal difference learning methods are a class of in­
cremental learning procedures for learning predictions in
multi-step prediction problems. Whereas earlier predic­
tion learning procedures were driven by the difference
between the predicted and actual outcome, TD methods
are driven by the difference between temporally succes­
sive predictions.

Sutton's algorithm can be summarised by the
fo l lowing formula. Given a vector of adjustable weights,
w, and a scries of successive predictions, P, weight ad­
justments are determined at each timestep according to:

where is the parameter controll ing the learning rate,
is the partial derivative of with respect to and

is the prediction at timestep t. The temporal discount
parameter, provides an exponentially decaying weight
for more distant predictions.

The formula shows that is parameterised by
the learning rate, and the temporal discount factor.

564 COMPUTER GAME PLAYING

Both parameters, and especially can have a major ef­
fect on the speed with which the weights approach an
optimum. In Sutton's paper, learning behaviour for dif­
ferent and values in sample domains is presented, but
no method for determining suitable values a priori is
known. Learning rates too high can cause failure to
reach stable values and learning rates too low can lead to
orders of magnitude more observations being necessary.
Methods of choosing suitable and values before or
during the learning are therefore advantageous. There
have been several algorithms proposed for adjusting in
supervised and TD learning: ours is based on a new prin­
ciple that we call temporal coherence.

3. Tempora l Coherence: ad jus t ing
Our system of self-adjusting learning rates is based on
the concept that the learning rate should be higher when
there is significant learning taking place, and lower when
changes to the weights are primarily due to noise. Ran­
dom noise wi l l tend to produce adjustments that cancel
out as they accumulate. Adjustments making useful ad­
aptations to the observed predictions wi l l tend to rein­
force as they accumulate. As weight values approach
their optimum, prediction errors wi l l become mainly ran­
dom noise.

Motivated by these considerations, our Temporal Co­
herence (TC) method estimates the significance of the
weight movements by the relative strength of reinforcing
adjustments to total adjustments. The learning rate is set
according to the proportion of reinforcing adjustments as
a fraction of all adjustments. This method has the desir­
able property that the learning rate reduces as optimum
values are approached, tending towards zero. It has the
equally desirable property of allowing the learning rate
to increase if random adjustments are subsequently fo l ­
lowed by a consistent trend.

Separate learning rates are maintained for each weight,
so that weights that have become close to optimum do
not fluctuate unnecessarily, and thereby add to the noise
affecting predictions. The use of a separate learning rate
for each weight allows for the possibility that different
weights might become stable at different times during the
learning process. For example, if weight A has become
fairly stable after 100 updates, but weight B is stil l con­
sistently rising, then it is desirable for the learning rate
for weight B to be higher than that for weight A. An
additional potential advantage of separate learning rates
is that individual weights can be independent when new
weights are added to the learning process. If new terms
or nodes are added to an existing predictor, independent
rates make it possible for the new weights to adjust
quickly, whilst existing weights only increase their
learning rates in response to perceived need.

The TC learning rates are determined by the history of
recommended adjustments to each weight. We use the
term 'recommended change' to mean the temporal differ­
ence adjustment prior to multiplication by the learning
rate. This detachment of the learning rate enables the TC

algorithm to respond to the underlying adjustment im­
pulses, unaffected by its own recent choice of learning
rate. It has the additional advantage that if the learning
rate should reach zero, future learning rates are still free
to be non-zero, and the learning does not halt.

The recommended change for weight at timestep t
is defined as:

The actual change made to weight after game is:

where is the individual learning rate for weight
and c is a learning rate for the whole process.

For each weight we are interested in two numbers: the
accumulated net change (the sum of the individual rec­
ommended changes), and the accumulated absolute
change (the sum of the absolute individual recommended
changes). The ratio of net change, N, to absolute change,
A, allows us to measure whether the adjustments to a
given weight are mainly in the same 'direct ion'. We take
reinforcing adjustments as indicating an underlying
trend, and cancelling adjustments as indicating noise
from the stochastic nature of the domain (or limitations
of the domain model that contains the weights). The
individual learning rate, for each weight is set to be
the ratio of net recommended change to absolute recom­
mended change:

with the following definitions and update rules:

= recommended change for weight at prediction t
are predictions, is the final outcome

The operational order is that changes to are made first,
using the previous values of A, and , then and

arc updated. The parameter c has to be chosen, but
this does not demand a choice between fast learning and
eventual stability, since it can be set high init ial ly, and
the then provide automatic adjustment during the
learning process. A l l the are initialised to 1 at the
start of the learning process.

The foregoing formulae describe updating the weights
and learning rates at the end of each sequence. The
method may be easily amended to update more fre­
quently (e.g. after each prediction), or less frequently
(e.g. after a batch of sequences). For the experiments
reported in this paper, update at the end of each game
sequence is natural and convenient to implement.

BEAL AND SMITH 565

4. Pred ic t ion Decay: determin ing
We determine a value for the temporal discount pa­

rameter, by computing a quantity we call prediction
decay. Prediction decay is a function of observed pre­
diction values, indexed by temporal distance between
them, described in more detail in appendix A. An expo­
nential curve is fitted to the observed data, and the expo­
nential constant, from the fitted curve is the predic­
tion decay. We set init ially, and thereafter.

The use of has the desirable characteristics that
(i) a perfect predictor wi l l result in and TD(1) is an
appropriate value for the l imit ing case as predictions
approach perfection, (i i) as the prediction reliabil i ty
increases, increases, and it is reasonable to choose
higher values of for TD learning as the prediction
reliabil ity improves. We make no claim that setting
is optimum. Our experience is that it typically performs
better than human-guessed choice of a fixed a priori}

The advantage of using prediction decay is that it en­
ables to be applied effectively to domains without
prior domain knowledge, and without prior experiments
to determine an effective When combined with our
method for adjusting learning rates, the resulting algo­
rithm performs better than the comparison method, and
better than using fixed rates, in both test domains.

Prediction decay is the average deterioration in pre­
diction quality per timestep. A prediction quality func­
tion measures the correspondence between a prediction
and a later prediction (or end-of-sequence outcome). The
observed prediction qualities for each temporal distance
are averaged. An exponential curve is then fitted to the
average prediction qualities against distance (Figure 1
shows an example), and the exponential constant of that
fitted curve is the prediction decay, We set the TD
discount parameter to 1 init ial ly, and thereafter.
In the experiments reported, (and hence were up­
dated at the end of each sequence.

The prediction quality measure, we used is
defined below. It is constructed as a piece-wise linear
function with the fo l lowing properties:
i. When the two predictions p and are identical,

= 1. (The maximum is 1)
i i . As the discrepancy between p and increases,

decreases,
i i i . When one prediction is 1 and the other is 0, then

= - 1 . (The minimum
iv. For any given py the average value of for all pos­

sible values of such that equals 0.
(Thus random guessing yields a score of zero.) This
property is achieved by the quadratic equations in
the definit ion below.

We achieve all these properties by defining:

p is the current prediction, p' is an earlier prediction,
and d refers to the temporal distance between p and p'.

Predictions lie in the range [0, 1].
It is assumed that the learning occurs over the course

of many multi-step sequences, in which a prediction is
made at each step; and that the sequences are independ­
ent. To form a prediction pair, both predictions must lie
within the same sequence.

is the average prediction quality over all prediction

pairs separated by distance d observed so far. For this
purpose, the terminal outcome at the end of the sequence
is treated as a prediction. At every prediction, the are

incrementally updated.
An example graph from our experimental results is

given in Figure 1. This example is typical of the f i t to the
observed data in the test domain. The exponential curve
is fitted to the average prediction quality by minimising
the mean squared error between the exponential curve
and the observed values. was fair ly stable in the

range 0.990 - 0.993 during the test runs.

Figure 1: Fit of the prediction quality temporal decay to ob­
served data from the game domain, after 2000 games.

To prevent rarely occurring distances from carrying
undue weight in the overall error, the error term for each
distance is weighted by the number of observed predic­
tion pairs. Thus we seek a value of which minimises:

1 By expending sufficient computation time to repeatedly re­
run the experiments we found somewhat better values for

where is the average prediction quality for distance

dy and is the number of prediction pairs separated by
that distance, and / is the length of the longest sequence
in the observations so far.

900 COMPUTER GAME PLAYING

In the experiments reported here the value for was
obtained by simple iterative means, making small incre­
mental changes to its value until a minimum was identi-
fied. Values for (and hence were updated at the end
of each sequence.

5. Del ta-bar-de l ta
The delta-bar-delta algorithm (DBD) for adapting learn­
ing rates is described by Jacobs (1988], Sutton [1992]
later introduced Incremental. DBD for linear tasks. The
original D B D was directly applied to non-linear tasks,
and hence more easily adapted to our test domain. In
common with our temporal coherence method, it main­
tains a separate learning rate for each weight. If the cur­
rent derivative of a weight and the exponential average
of the weight's previous derivatives possess the same
sign, then D B D increases the learning rate for that
weight by a constant, If they possess opposite signs,
then the learning rate for that weight is decremented by a
proportion, of its current value. The exponential aver­
age of past derivatives is calculated with as the base
and time as the exponent. The learning rates are ini t ial­
ised to a suitable value, and are then set automati­
cally, although the meta-parameters and must
be supplied. To adapt D B D to TD domains, we compute
a weight adjustment term, and a learning rate adjustment
at each timestep, after each prediction, but we only apply
the weight and learning rate adjustments at the end of
each TD sequence. D B D is very sensitive to its meta-
parametcrs and prior to our experiments we performed
many test runs, exploring a large range of meta-
parameter values and combinations. We used the best
we found for the comparison between DBD and TC re­
ported here. Both algorithms update the weights, and the
internal meta-parameters, at the end of each sequence.

6. Learn ing in a complex domain
We tested our methods in a complex game domain. The
chosen task was the learning of the values of chess pieces
by a minimax search program, in the absence of any
chess-related init ial knowledge other than the rules of the
game.

We attempted to learn suitable values for five adjust­
able weights (Pawn, Knight, Bishop, Rook and Queen),
via a series of randomised self-play games. Learning
from self-play has the important advantage that no ex­
isting expertise (human or machine) is assumed, and thus
the method is transferable to domains where no existing
expertise is available. Beal and Smith 11997; 1998J
show that, using this method, it is possible to learn rela­
tive values of the pieces that perform at least as well as
those quoted in elementary chess books. The learning
performance of the temporal coherence scheme was
compared with the learning performance using fixed
learning rates, and with delta-bar-delta.

The TD learning process is driven by the differences
between successive predictions of the probability of win­
ning during the course of playing a series of games. In

this domain each temporal sequence is a set of predic­
tions for all the positions reached in one game, each
game corresponding to one sequence in the learning pro­
cess. The predictions vary from 0 (loss) to 1 (win), and
are determined by a search engine that uses the adjust­
able piece weights to evaluate game positions. The
weights are updated after each game.

At the start of the experiments all piece weights were
initialised to one, and a series of games were played us­
ing a 5-ply search. To avoid the same games from being
repeated, the move lists were randomised. This had the
effect of selecting at random from all tactically equal
moves, and the added benefit of ensuring a wide range of
different types of position were encountered.

6.1 Evaluation predictions
In order to make use of temporal differences, the values
of positions were converted from the evaluation provided
by the chess program into estimations of the probability
of winning. This was done using a standard sigmoid
squashing function. Thus the prediction of probability of
winning for a giver, position is determined by:

where v is the 'evaluation value', and/ , is the piece count
differential for piece type i at the given position.

This sigmoid function has the advantage that it has a
simple derivative:

6.2 Results
To visualise the results obtained from the various meth­
ods for determining learning rates, we present graphs
produced by plott ing weights for each of the five piece
values over the course of runs consisting of 2,000 game
sequences each. Beal and Smith [1997) show that this
method is capable of learning relative piece values that
compare favourably with the widely quoted elementary
values of Pawn = 1, Knight and Bishop = 3, Rook = 5
and Queen = 9. The number of sequences in each run is
large enough that the values reach a quasi-stable state of
random noise around a learnt value. To confirm that the
apparent stability is not an artefact, each experiment was
repeated 10 times, using different random number seeds.

Figure 2 shows the average weights achieved using
fixed settings of a = 0.05 and X = 0.95 over a series of
10 runs. These settings offered a good combination of
learning rate and stability from the many fixed settings
that we tried. A lower learning rate produced more sta­
ble values, but at the cost of further increasing the num­
ber of sequences needed to establish an accurate set of
relative values. Raising the learning rate makes the
weights increasingly unstable.

Figure 3 shows the average weights produced by the
delta-bar-delta algorithm over 10 runs. For this domain

BEAL AND SMITH 567

we used meta-parametcrs of K = 0.035, = 0.333, =
0.7 and = 0.05, guided by data presented by Jacobs
[1988] and preliminary experiments in this domain. For

which D B D does not set, we used derived
from our experience with the fixed rate runs. We tried a
number of other meta-parameter settings, none of which
performed better than the chosen set. It is possible that a
comprehensive search for a better set of meta-parameters
might have improved the performance of the delta-bar-
delta algorithm, but given the computational cost of a
single run of 2000 sequences, we were unable to attempt
a systematic search of all the meta-parameter values.

Figure 4 shows the average weights obtained using
temporal coherence. It can be seen from the figure that
all traces have approached their final values after about
900 sequences (some weights much sooner). Comparing
with figures 2 and 3 it can be seen that the TC algorithm
is faster to approach final values, and more stable once
they are reached. In addition, the traces in figure 4 are
smoother than in figures 2 and 3, representing less varia­
tion due to noise in the individual runs.

Figure 5: Progress over an average of 10 runs

Figure 5 shows the average piece values over 10 runs
for the various methods, combined into a single term
measuring progress toward the values achieved at the
ends of the runs. From this figure we can see that delta-
bar-delta does not improve much on a carefully-chosen
fixed learning rate, and that temporal coherence clearly
produces faster learning. The TC and f ixed-a final
weights were not significantly different.

To confirm that the learning process had produced
satisfactory values, a match was played pitt ing the learnt
values against the values widely quoted in elementary
chess books Q=9, R=5, N/B=3, P = l . One program used
those values, the other used the weights learnt using tem­
poral coherence, as a check that the learnt values were at
least as good as the standard ones. In a match of 2,000
games the TC values achieved a score of 58% against the
standard values (won= 1,119 lost=781 drawn=100).

7. Conclusions
We have described two new extensions, temporal coher­
ence, and prediction decay, to the temporal difference
learning method that set and adjust the major control
parameters, learning rate and temporal discount, auto­
matically as learning proceeds. The resulting TD algo­
rithm has been tested in depth on a complex domain.

The results demonstrated both faster learning and more
stable final values than a previous algorithm and the best
of the fixed learning rates. The test domain was one in
which values were learnt without supplying any domain-
specific knowledge. We also tested the TC algorithm in
a bounded walk domain [Sutton, 1998J, and found simi­
lar advantages.

In our comparisons with the delta-bar-delta algorithm,
we tried to f ind good parameter sets for DBD, which
requires four meta parameters instead of the one control
parameter, We tried several different (meta-) pa­
rameter sets in each domain, but were unable to find a set
of parameters that improved performance over the results
presented in sections 5.1 and 6.2. It is possible that a
systematic search for better set of meta-parametcrs in
each of the domains might improve performance. How­
ever, it is a major drawback for the method that it re­
quires its meta-parameters to be tuned to the domain it is
operating in. The methods presented here do not require
a search for good parameter values.

The experimental results demonstrated that the tempo­
ral coherence plus prediction decay algorithm achieved
three benefits: (1) automatic setting and adjustment of
parameters (2) faster learning and (3) more stable final
values.

References
Almeida, Langlois, & Amaral, 1998, On-Line Step Size
Adaptation, Technical Report RT07/97 INESC. 9 Rua
Alves Redol, 1000 Lisbon, Portugal.

Beal, D. F., and Smith, M.C., 1997, Learning piece val­
ues using temporal differences. International Computer
Chess Association Journal, 20 (3): 147-151.

Beal, D.F., and Smith, M.C., 1998, Temporal Difference
Learning for Heuristic Domains. JCIS'98 Proceedings
Vol(l), Oct 23-28, 1998: 431-434.

Jacobs, R.A., 1988. Increased rates of convergence
through learning rate adaptation. Neural Networks, 1:
295-307.

Schraudolph, N.N., 1998, Online Local Gain Adaptation
for Multi- layer Perceptrons, Technical Report IDSIA-09-
98, IDSIA, Corso Elvezia 36, 6900 Lugano, Switzerland.

Sutton, R.S., 1988. Learning to predict by the methods of
temporal differences. Machine Learning, 3: 9-44.

Sutton, R.S., 1992. Adapting bias by gradient descent:
an incremental version of delta-bar-delta. Proceedings
of the Tenth National Conference on Artificial Intelli­
gence, 171-176.

Sutton, R.S., and Singh, S.P., 1994. On step-size and
bias in temporal-difference learning. Proceedings of the
Eighth Yale Workshop on Adaptive and Learning Sys-
tems, 91-96.

Tesauro, G., 1992. Practical issues in temporal differ­
ence learning. Machine Learning, 8. 257-277'.

BEAL AND SMITH 569

