
Temporal Coherence and Prediction Decay in TD Learning 
Don F. Beal and Mar t in C. Smith 
Department of Computer Science 

Queen Mary and Westfield College 
University of London 

Mile End Road 
London E1 4NS 

UK 

Abstract 
This paper describes improvements to the tem­
poral difference learning method. The 
standard form of the method has the 
problem that two control parameters, learning 
rate and temporal discount, need to be chosen 
appropriately. These parameters can have a ma­
jor effect on performance, particularly the 
learning rate parameter, which affects the stabil­
ity of the process as well as the number of ob­
servations required. Our extension to the 
algorithm automatically sets and subsequently 
adjusts these parameters. The learning rate ad­
justment is based on a new concept we call tem­
poral coherence (TC). The experiments reported 
here compare the extended algorithm per-
formance with human-chosen parameters and 
with an earlier method for learning rate adjust­
ment, in a complex game domain. The learning 
task was that of learning the relative values of 
pieces, without any init ial domain-specific 
knowledge, and from self-play only. The results 
show that the improved method leads to better 
learning (i.e. faster and less subject to the effects 
of noise), than the selection of human-chosen 
values for the control parameters, and a com­
parison method. 

1 In t roduc t i on 
Two major parameters that control the behaviour of 
Sutton's [1988] temporal difference algorithm TD(A.) are 
the learning rate (or step-size), and the temporal dis­
count parameter,  

The choice of these parameters can have a major effect 
on the efficacy of the learning algorithm, and in practical 
problems they are often determined somewhat arbitrarily, 
or else by trying a number of values and 'seeing what 
works' (e.g. Tesauro [1992]). Another widely used 
method is to use a learning rate that decreases over time, 
but such systems sti l l require the selection of a suitable 
schedule. 

Sutton and Singh [1994] describe systems for setting 
both and within the framework of Markov-chain 

models. However these methods assume relatively small 
numbers of distinct states, and acylic graphs, and so are 
not directly applicable to more complex real-world 
problems. Jacobs [1988] presented the 4delta-bar-delta' 
algorithm for adjusting during the learning process. 
We compared the performance of delta-bar-delta with 
our algorithm on our sample domain. More recently, 
Almeida [1998] and Schraudolph [1998] have presented 
other methods for adaptation for stochastic domains 
and neural networks respectively. 

We describe a new system which automatically adjusts 
and This system does not require any a priori 

knowledge about suitable values for learning rate or 
temporal discount parameters for a given domain. It ad­
justs these parameters according to the learning experi­
ences themselves. We present results that show that this 
method is effective, and in our sample domain yielded 
better learning performance than our best attempt to find 
optimum choices of fixed and and better learning 
performance than delta-bar-delta. 

2. Tempora l di f ference learn ing 
Temporal difference learning methods are a class of in­
cremental learning procedures for learning predictions in 
multi-step prediction problems. Whereas earlier predic­
tion learning procedures were driven by the difference 
between the predicted and actual outcome, TD methods 
are driven by the difference between temporally succes­
sive predictions. 

Sutton's algorithm can be summarised by the 
fo l lowing formula. Given a vector of adjustable weights, 
w, and a scries of successive predictions, P, weight ad­
justments are determined at each timestep according to: 

where is the parameter controll ing the learning rate, 
is the partial derivative of with respect to and 

is the prediction at timestep t. The temporal discount 
parameter, provides an exponentially decaying weight 
for more distant predictions. 

The formula shows that is parameterised by  
the learning rate, and the temporal discount factor. 
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Both parameters, and especially can have a major ef­
fect on the speed with which the weights approach an 
optimum. In Sutton's paper, learning behaviour for dif­
ferent and values in sample domains is presented, but 
no method for determining suitable values a priori is 
known. Learning rates too high can cause failure to 
reach stable values and learning rates too low can lead to 
orders of magnitude more observations being necessary. 
Methods of choosing suitable and values before or 
during the learning are therefore advantageous. There 
have been several algorithms proposed for adjusting in 
supervised and TD learning: ours is based on a new prin­
ciple that we call temporal coherence. 

3. Tempora l Coherence: ad jus t ing  
Our system of self-adjusting learning rates is based on 
the concept that the learning rate should be higher when 
there is significant learning taking place, and lower when 
changes to the weights are primarily due to noise. Ran­
dom noise wi l l tend to produce adjustments that cancel 
out as they accumulate. Adjustments making useful ad­
aptations to the observed predictions wi l l tend to rein­
force as they accumulate. As weight values approach 
their optimum, prediction errors wi l l become mainly ran­
dom noise. 

Motivated by these considerations, our Temporal Co­
herence (TC) method estimates the significance of the 
weight movements by the relative strength of reinforcing 
adjustments to total adjustments. The learning rate is set 
according to the proportion of reinforcing adjustments as 
a fraction of all adjustments. This method has the desir­
able property that the learning rate reduces as optimum 
values are approached, tending towards zero. It has the 
equally desirable property of allowing the learning rate 
to increase if random adjustments are subsequently fo l ­
lowed by a consistent trend. 

Separate learning rates are maintained for each weight, 
so that weights that have become close to optimum do 
not fluctuate unnecessarily, and thereby add to the noise 
affecting predictions. The use of a separate learning rate 
for each weight allows for the possibility that different 
weights might become stable at different times during the 
learning process. For example, if weight A has become 
fairly stable after 100 updates, but weight B is stil l con­
sistently rising, then it is desirable for the learning rate 
for weight B to be higher than that for weight A. An 
additional potential advantage of separate learning rates 
is that individual weights can be independent when new 
weights are added to the learning process. If new terms 
or nodes are added to an existing predictor, independent 
rates make it possible for the new weights to adjust 
quickly, whilst existing weights only increase their 
learning rates in response to perceived need. 

The TC learning rates are determined by the history of 
recommended adjustments to each weight. We use the 
term 'recommended change' to mean the temporal differ­
ence adjustment prior to multiplication by the learning 
rate. This detachment of the learning rate enables the TC 

algorithm to respond to the underlying adjustment im­
pulses, unaffected by its own recent choice of learning 
rate. It has the additional advantage that if the learning 
rate should reach zero, future learning rates are still free 
to be non-zero, and the learning does not halt. 

The recommended change for weight at timestep t 
is defined as: 

The actual change made to weight after game is: 

where is the individual learning rate for weight 
and c is a learning rate for the whole process. 

For each weight we are interested in two numbers: the 
accumulated net change (the sum of the individual rec­
ommended changes), and the accumulated absolute 
change (the sum of the absolute individual recommended 
changes). The ratio of net change, N, to absolute change, 
A, allows us to measure whether the adjustments to a 
given weight are mainly in the same 'direct ion'. We take 
reinforcing adjustments as indicating an underlying 
trend, and cancelling adjustments as indicating noise 
from the stochastic nature of the domain (or limitations 
of the domain model that contains the weights). The 
individual learning rate, for each weight is set to be 
the ratio of net recommended change to absolute recom­
mended change: 

with the following definitions and update rules: 

= recommended change for weight at prediction t 
are predictions, is the final outcome 

The operational order is that changes to are made first, 
using the previous values of A, and , then and 

arc updated. The parameter c has to be chosen, but 
this does not demand a choice between fast learning and 
eventual stability, since it can be set high init ial ly, and 
the then provide automatic adjustment during the 
learning process. A l l the are initialised to 1 at the 
start of the learning process. 

The foregoing formulae describe updating the weights 
and learning rates at the end of each sequence. The 
method may be easily amended to update more fre­
quently (e.g. after each prediction), or less frequently 
(e.g. after a batch of sequences). For the experiments 
reported in this paper, update at the end of each game 
sequence is natural and convenient to implement. 
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4. Pred ic t ion Decay: determin ing  
We determine a value for the temporal discount pa­

rameter, by computing a quantity we call prediction 
decay. Prediction decay is a function of observed pre­
diction values, indexed by temporal distance between 
them, described in more detail in appendix A. An expo­
nential curve is fitted to the observed data, and the expo­
nential constant, from the fitted curve is the predic­
tion decay. We set init ially, and thereafter. 

The use of has the desirable characteristics that 
(i) a perfect predictor wi l l result in and TD(1) is an 
appropriate value for the l imit ing case as predictions 
approach perfection, ( i i) as the prediction reliabil i ty 
increases, increases, and it is reasonable to choose 
higher values of for TD learning as the prediction 
reliabil ity improves. We make no claim that setting 
is optimum. Our experience is that it typically performs 
better than human-guessed choice of a fixed a priori} 

The advantage of using prediction decay is that it en­
ables to be applied effectively to domains without 
prior domain knowledge, and without prior experiments 
to determine an effective When combined with our 
method for adjusting learning rates, the resulting algo­
rithm performs better than the comparison method, and 
better than using fixed rates, in both test domains. 

Prediction decay is the average deterioration in pre­
diction quality per timestep. A prediction quality func­
tion measures the correspondence between a prediction 
and a later prediction (or end-of-sequence outcome). The 
observed prediction qualities for each temporal distance 
are averaged. An exponential curve is then fitted to the 
average prediction qualities against distance (Figure 1 
shows an example), and the exponential constant of that 
fitted curve is the prediction decay, We set the TD 
discount parameter to 1 init ial ly, and thereafter. 
In the experiments reported, (and hence were up­
dated at the end of each sequence. 

The prediction quality measure, we used is 
defined below. It is constructed as a piece-wise linear 
function with the fo l lowing properties: 
i. When the two predictions p and are identical, 

= 1. (The maximum is 1) 
i i . As the discrepancy between p and increases,  

decreases, 
i i i . When one prediction is 1 and the other is 0, then  

= - 1 . (The minimum 
iv. For any given py the average value of for all pos­

sible values of such that equals 0. 
(Thus random guessing yields a score of zero.) This 
property is achieved by the quadratic equations in 
the definit ion below. 

We achieve all these properties by defining: 

p is the current prediction, p' is an earlier prediction, 
and d refers to the temporal distance between p and p'. 

Predictions lie in the range [0, 1]. 
It is assumed that the learning occurs over the course 

of many multi-step sequences, in which a prediction is 
made at each step; and that the sequences are independ­
ent. To form a prediction pair, both predictions must lie 
within the same sequence. 

is the average prediction quality over all prediction 

pairs separated by distance d observed so far. For this 
purpose, the terminal outcome at the end of the sequence 
is treated as a prediction. At every prediction, the are 

incrementally updated. 
An example graph from our experimental results is 

given in Figure 1. This example is typical of the f i t to the 
observed data in the test domain. The exponential curve 
is fitted to the average prediction quality by minimising 
the mean squared error between the exponential curve 
and the observed values. was fair ly stable in the 

range 0.990 - 0.993 during the test runs. 

Figure 1: Fit of the prediction quality temporal decay to ob­
served data from the game domain, after 2000 games. 

To prevent rarely occurring distances from carrying 
undue weight in the overall error, the error term for each 
distance is weighted by the number of observed predic­
tion pairs. Thus we seek a value of which minimises: 

1 By expending sufficient computation time to repeatedly re­
run the experiments we found somewhat better values for  

where is the average prediction quality for distance 

dy and is the number of prediction pairs separated by 
that distance, and / is the length of the longest sequence 
in the observations so far. 
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In the experiments reported here the value for was 
obtained by simple iterative means, making small incre­
mental changes to its value until a minimum was identi-
fied. Values for (and hence were updated at the end 
of each sequence. 

5. Del ta-bar-de l ta 
The delta-bar-delta algorithm (DBD) for adapting learn­
ing rates is described by Jacobs (1988], Sutton [1992] 
later introduced Incremental. DBD for linear tasks. The 
original D B D was directly applied to non-linear tasks, 
and hence more easily adapted to our test domain. In 
common with our temporal coherence method, it main­
tains a separate learning rate for each weight. If the cur­
rent derivative of a weight and the exponential average 
of the weight's previous derivatives possess the same 
sign, then D B D increases the learning rate for that 
weight by a constant, If they possess opposite signs, 
then the learning rate for that weight is decremented by a 
proportion, of its current value. The exponential aver­
age of past derivatives is calculated with as the base 
and time as the exponent. The learning rates are ini t ial­
ised to a suitable value, and are then set automati­
cally, although the meta-parameters and must 
be supplied. To adapt D B D to TD domains, we compute 
a weight adjustment term, and a learning rate adjustment 
at each timestep, after each prediction, but we only apply 
the weight and learning rate adjustments at the end of 
each TD sequence. D B D is very sensitive to its meta-
parametcrs and prior to our experiments we performed 
many test runs, exploring a large range of meta-
parameter values and combinations. We used the best 
we found for the comparison between DBD and TC re­
ported here. Both algorithms update the weights, and the 
internal meta-parameters, at the end of each sequence. 

6. Learn ing in a complex domain 
We tested our methods in a complex game domain. The 
chosen task was the learning of the values of chess pieces 
by a minimax search program, in the absence of any 
chess-related init ial knowledge other than the rules of the 
game. 

We attempted to learn suitable values for five adjust­
able weights (Pawn, Knight, Bishop, Rook and Queen), 
via a series of randomised self-play games. Learning 
from self-play has the important advantage that no ex­
isting expertise (human or machine) is assumed, and thus 
the method is transferable to domains where no existing 
expertise is available. Beal and Smith 11997; 1998J 
show that, using this method, it is possible to learn rela­
tive values of the pieces that perform at least as well as 
those quoted in elementary chess books. The learning 
performance of the temporal coherence scheme was 
compared with the learning performance using fixed 
learning rates, and with delta-bar-delta. 

The TD learning process is driven by the differences 
between successive predictions of the probability of win­
ning during the course of playing a series of games. In 

this domain each temporal sequence is a set of predic­
tions for all the positions reached in one game, each 
game corresponding to one sequence in the learning pro­
cess. The predictions vary from 0 (loss) to 1 (win), and 
are determined by a search engine that uses the adjust­
able piece weights to evaluate game positions. The 
weights are updated after each game. 

At the start of the experiments all piece weights were 
initialised to one, and a series of games were played us­
ing a 5-ply search. To avoid the same games from being 
repeated, the move lists were randomised. This had the 
effect of selecting at random from all tactically equal 
moves, and the added benefit of ensuring a wide range of 
different types of position were encountered. 

6.1 Evaluation predictions 
In order to make use of temporal differences, the values 
of positions were converted from the evaluation provided 
by the chess program into estimations of the probability 
of winning. This was done using a standard sigmoid 
squashing function. Thus the prediction of probability of 
winning for a giver, position is determined by: 

where v is the 'evaluation value', and/ , is the piece count 
differential for piece type i at the given position. 

This sigmoid function has the advantage that it has a 
simple derivative: 

6.2 Results 
To visualise the results obtained from the various meth­
ods for determining learning rates, we present graphs 
produced by plott ing weights for each of the five piece 
values over the course of runs consisting of 2,000 game 
sequences each. Beal and Smith [1997) show that this 
method is capable of learning relative piece values that 
compare favourably with the widely quoted elementary 
values of Pawn = 1, Knight and Bishop = 3, Rook = 5 
and Queen = 9. The number of sequences in each run is 
large enough that the values reach a quasi-stable state of 
random noise around a learnt value. To confirm that the 
apparent stability is not an artefact, each experiment was 
repeated 10 times, using different random number seeds. 

Figure 2 shows the average weights achieved using 
fixed settings of a = 0.05 and X = 0.95 over a series of 
10 runs. These settings offered a good combination of 
learning rate and stability from the many fixed settings 
that we tried. A lower learning rate produced more sta­
ble values, but at the cost of further increasing the num­
ber of sequences needed to establish an accurate set of 
relative values. Raising the learning rate makes the 
weights increasingly unstable. 

Figure 3 shows the average weights produced by the 
delta-bar-delta algorithm over 10 runs. For this domain 
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we used meta-parametcrs of K = 0.035, = 0.333, = 
0.7 and = 0.05, guided by data presented by Jacobs 
[1988] and preliminary experiments in this domain. For 

which D B D does not set, we used derived 
from our experience with the fixed rate runs. We tried a 
number of other meta-parameter settings, none of which 
performed better than the chosen set. It is possible that a 
comprehensive search for a better set of meta-parameters 
might have improved the performance of the delta-bar-
delta algorithm, but given the computational cost of a 
single run of 2000 sequences, we were unable to attempt 
a systematic search of all the meta-parameter values. 

Figure 4 shows the average weights obtained using 
temporal coherence. It can be seen from the figure that 
all traces have approached their final values after about 
900 sequences (some weights much sooner). Comparing 
with figures 2 and 3 it can be seen that the TC algorithm 
is faster to approach final values, and more stable once 
they are reached. In addition, the traces in figure 4 are 
smoother than in figures 2 and 3, representing less varia­
tion due to noise in the individual runs. 

Figure 5: Progress over an average of 10 runs 

Figure 5 shows the average piece values over 10 runs 
for the various methods, combined into a single term 
measuring progress toward the values achieved at the 
ends of the runs. From this figure we can see that delta-
bar-delta does not improve much on a carefully-chosen 
fixed learning rate, and that temporal coherence clearly 
produces faster learning. The TC and f ixed-a final 
weights were not significantly different. 

To confirm that the learning process had produced 
satisfactory values, a match was played pitt ing the learnt 
values against the values widely quoted in elementary 
chess books Q=9, R=5, N/B=3, P = l . One program used 
those values, the other used the weights learnt using tem­
poral coherence, as a check that the learnt values were at 
least as good as the standard ones. In a match of 2,000 
games the TC values achieved a score of 58% against the 
standard values (won= 1,119 lost=781 drawn=100). 

7. Conclusions 
We have described two new extensions, temporal coher­
ence, and prediction decay, to the temporal difference 
learning method that set and adjust the major control 
parameters, learning rate and temporal discount, auto­
matically as learning proceeds. The resulting TD algo­
rithm has been tested in depth on a complex domain. 

The results demonstrated both faster learning and more 
stable final values than a previous algorithm and the best 
of the fixed learning rates. The test domain was one in 
which values were learnt without supplying any domain-
specific knowledge. We also tested the TC algorithm in 
a bounded walk domain [Sutton, 1998J, and found simi­
lar advantages. 

In our comparisons with the delta-bar-delta algorithm, 
we tried to f ind good parameter sets for DBD, which 
requires four meta parameters instead of the one control 
parameter, We tried several different (meta-) pa­
rameter sets in each domain, but were unable to find a set 
of parameters that improved performance over the results 
presented in sections 5.1 and 6.2. It is possible that a 
systematic search for better set of meta-parametcrs in 
each of the domains might improve performance. How­
ever, it is a major drawback for the method that it re­
quires its meta-parameters to be tuned to the domain it is 
operating in. The methods presented here do not require 
a search for good parameter values. 

The experimental results demonstrated that the tempo­
ral coherence plus prediction decay algorithm achieved 
three benefits: (1) automatic setting and adjustment of 
parameters (2) faster learning and (3) more stable final 
values. 
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