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Abs t rac t 
In automated negotiation systems consisting 
of self-interested agents, contracts have tradi­
t ional ly been binding. Leveled commitment 
contracts—i.e. contracts where each party can 
decommit by paying a predetermined penalty 
were recently shown to improve Pareto effi­
ciency even if agents rationally decommit in 
Nash equi l ibr ium using inflated thresholds on 
how good their outside offers must be before 
they decommit. This paper operationalizes 
the four leveled commitment contracting pro­
tocols by presenting algorithms for using them. 
Algor i thms are presented for computing the 
Nash equi l ibr ium decommitt ing thresholds and 
decommit t ing probabilit ies given the contract 
price and the penalties. Existence and unique­
ness of the equi l ibr ium are analyzed. Algo­
r i thms are also presented for opt imizing the 
contract itself (price and penalties). Existence 
and uniqueness of the opt imum are analyzed. 
Using the algorithms we offer a contract opt i ­
mization service on the web as part of ('Medi­
ator, our next generation electronic commerce 
server. Final ly, the algorithms are generalized 
to contracts involving more than two agents. 

1 I n t r o d u c t i o n 
In mult iagent systems consisting of self-interested 
agents, contracts have tradit ional ly been binding [Rosen-
schein and Z lotk in , 1994; Sandholm, 1993; Kraus, 1993]. 
Once an agent agrees to a contract, she has to follow 
through no matter how future events unravel. Although 
a contract may be profitable to an agent when viewed ex 
ante, it need not be profitable when viewed after some 
future events have occurred, i.e. ex post. Similarly, a 
contract may have too low expected payoff ex ante, but 
in some realizations of the future events, it may be de­
sirable when viewed ex post. Normal ful l commitment 
contracts are unable to take advantage of the possibili­
ties that such future events provide. 

On the other hand, many multiagent systems consist­
ing of cooperative agents incorporate some form of de-
commitment in order to allow agents to accommodate 
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new events. For example, in the original Contract Net 
Protocol [Smith, 1980], the agent that contracts out a 
task could send a termination message to cancel the 
contract even when the contractee had part ial ly fulfil led 
i t . This was possible because the agents were not self-
interested: the contractee did not m ind losing part of 
its effort wi thout a monetary compensation. Similarly, 
the role of decommitment among cooperative agents has 
been studied in meeting scheduling [Sen, 1993]. 

Contingency contracts have been suggested for uti l iz­
ing the potential provided by future events among self-
interested agents [Raiffa, 1982]. The contract obliga­
tions are made contingent on future events. In some 
games this increases the expected payoff to both parties 
compared to any ful l commitment contract. However, 
contingency contracts are often impractical because the 
space of combinations of future events may be large and 
unknown. Also, when events are not mutual ly observ­
able, the observing agent can lie about what transpired. 

Leveled commitment contracts are another method 
for capitalizing on future events [Sandholm and Lesser, 
1996]. Instead of condit ioning the contract on future 
events, a mechanism is bui l t into the contract that allows 
unilateral decommitt ing. This is achieved by specifying 
in the contract the level of commitment by decommit­
ment penalties, one for each agent.1 If an agent wants to 
decommit—i.e. to be freed from the obligations of the 
contract—it can do so simply by paying the decommit-
ment penalty to the other party. The method requires no 
explicit conditioning on future events: each agent can do 
her own condit ioning dynamically. No event verification 
mechanism against lying is required either. 

Principles for assessing decommitment penalties have 
been studied in law [Calamari arid Perillo, 1977; Pos-
ner, 1977], but the purpose has been to assess a penalty 
on the agent that has breached the contract after the 
breach has occurred. Similarly, penalty clauses for partial 
failure -such as not meeting a deadline—are commonly 
used in contracts, but the purpose is usually to mot i ­
vate the agents to follow the contract. Instead, in lev­
eled commitment contracts, explicit ly allowing decom­
mitment from the contract for a predetermined price is 
used as an active method for ut i l iz ing the potential pro­
vided by an uncertain future.2 The decommitment pos­
sibil ity increases each agent's expected payoff under very 

1 [Sandholm and Lesser, 1995] present an example protocol that 
uses this feature. 

R e c o m m i t t i n g has been studied in other settings, e.g. where 
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general assumptions [Sandholm and Lesser, 1996]. 
We analyze contracting situations from the perspec­

tive of two risk neutral agents each of which attempts to 
maximize his own expected payoff: the contractor who 
pays to get a task done, and the contractee who gets 
paid for handling the task. Handling a task can mean 
taking on any types of constraints. The method is not 
specific to classical task allocation. The contractor tries 
to minimize the contract price that he has to pay. The 
contractee tries to maximize the payoff that she re­
ceives. 

We study a setting where the future of the agents in­
volves uncertainty. Specifically, the agents might receive 
outside offers.3 The contractor's best outside offer is 
only probabilistically known ex ante by both agents, and 
is characterized by a probabil i ty density function 
If the contractor does not receive an outside offer, cor­
responds to its best outstanding outside offer or its fal l­
back payoff, i.e. payoff that it receives if no contract is 
made. The contractee's best outside offer is also only 
probabilistically known ex ante, and is characterized by a 
probabil i ty density function If the contractee does 
not receive an outside offer, corresponds to its best 
outstanding outside offer or its fall-back payoff.4 The 
variables and are assumed statistically independent. 

The contractor's options are either to make a contract 
wi th the contractee or to wait for Similarly, the con­
tractee 's options are either to make a contract wi th the 
contractor or to wait for The two agents could make a 
ful l commitment contract at some price. Alternatively, 
they can make a leveled commitment contract which is 
specified by the contract price, the contractor's decom-
mitment penalty, a, and the contractee's decommitment 
penalty, 6. We restrict our attention to contracts where 
a 0 and b 0, i.e. agents do not get paid for decom-
mi t t i ng . The contractor has to decide on decommitt ing 
when he knows his outside offer but does not know 
the contractee's outside offer Similarly, the contractee 
has to decide on decommit t ing when she knows her out­
side offer but does not know the contractor's. This 
seems realistic f rom a practical automated contracting 
perspective. 

The theory of these leveled commitment protocols was 
presented by [Sandholm and Lesser, 1996], but to date 
no algorithms have been presented for agents to com­
pute when they should decommit given a contract, or for 
agents to choose beneficial contracts. This paper oper-
ationalizes leveled commitment contracts by presenting 
an algor i thm for computing how the agents should de-
there is a constant inflow of agents, and they have a t ime cost 
for searching partners of two types: good or bad [Diamond and 
Mask in , 1979]. 

3 T h e f ramework can also be interpreted to model si tuat ions 
where the agents' cost structures for handl ing tasks and for get­
t i ng tasks handled change e.g. due to resources going off-line or 
becoming back on- l ine. 

4 Games where at least one agent's fu ture is certa in, are a subset 
of these games. In such games al l of the probabi l i ty mass of 
and /o r is on one po in t . 

commit (Section 2), and an algor i thm for constructing 
the opt imal leveled commitment contract for any given 
setting defined by and (Section 3). 

2 Nash equ i l i b r i a for a g iven cont rac t 
One concern is that a rational agent is reluctant in de-
commit t ing because there is a chance that the other 
party wi l l decommit, in which case the former agent gets 
freed from the contract, does not have to pay a penalty, 
and collects a penalty f rom the breacher. [Sandholm and 
Lesser, 1996] showed that despite such insincere decom­
mi t t ing the leveled commitment feature increases each 
contract party's expected payoff, and enables contracts 
in settings where no ful l commitment contract is bene­
ficial to all parties. To set the context, we first review 
their analysis of how rational agents would decommit, 
i.e. we derive the Nash equi l ibr ium (NE) [Nash, 1950] 
of the decommitt ing game where each agent's decom­
mi t t ing strategy is a best response to the other agent's 
decommitt ing strategy. The new contributions begin in 
Section 2.3. 

The contractor decommits if he gets a low enough out­
side offer, e.g., he can get his task handled at a low cost. 
We denote his decommitt ing threshold by so his de-
commit t ing probabil i ty is 

(i) 
The contractee decommits if she gets a high enough 

outside offer, e.g., gets paid for handling a task. We 
denote her decommitt ing threshold by so her decom­
mi t t ing probabil i ty is 

(2) 

2.1 Sequential decommitting (SEQD) game 
In our sequential decommitt ing (SEQD) game, one agent 
has to reveal her decommitt ing decision before knowing 
whether the other party decommits. Whi le our imple­
mentation analyzes both orders of decommit t ing, due 
to space l imitat ions we only discuss the setting where 
the contractee has to decide first. The case where the 
contractor decides first is analogous. There are two al­
ternative leveled commitment contracts that differ on 
whether or not the agents have to pay the penalties if 
both decommit. 

If the contractee has decommitted, the contractor's 
best move is not to decommit because 
(because a 0). This also holds for a contract where 
neither agent has to pay a decommitment penalty if both 
decommit since In the subgame where the 
contractee has not decommitted, the contractor's best 
move is to decommit if  

(3a) 
The contractee gets if she decommits, if 

she does not but the contractor does, and if neither 
decommits. Thus the contractee decommits if  

this is equivalent to 
which is false because a 0 and 6 0. In other 

words, if the contractee surely decommits, the contractor 
does not. On the other hand, the above is equivalent to 
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2.4 Uniqueness of the Nash equilibrium 
We now consider uniqueness of the Nash equi l ibr ium. 
P r o p o s i t i o n 2.2 For the sequential games, the NE is 
unique. For the simultaneous games the NE need not be 
unique. 
P r o o f . For the sequential games, uniqueness follows 
from the forms of (3) and (4): One threshold is expressed 
as a function of p and a penalty, and the other is defined 
as a function of this threshold. Fig. 1 shows an example 
where mult iple equil ibria exist for a S IMUDBP game. 
We constructed a similar example for SIMUDNP. D 
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2.5 Algorithm for finding the Nash equilibria 
We now discuss the algorithm for computing the Nash 
equil ibria. We assume that the probabi l i ty density func­
tions and are piecewise linear w i th n and m 
pieces respectively. This is reasonable since any continu­
ous function can be approximated arbi trar i ly closely by 
a piecewise linear curve, and piecewise linear curves are 
easy for the user to input. 

The algori thm for computing the equi l ibr ium of a se­
quential game is straightforward. It simply substitutes 
the contract parameters (p,a,6) into (3) and (4). 



In the simultaneous games this substitution gives a 
system of two nonlinear simultaneous equations. These 
equations may have mult iple solutions and all of them 
need to be found. This rules out iterative procedures 
that only find one solution. That motivated us to design 
a fast analytic algor i thm that finds all solutions. We 
decompose the search space into rectangles. Since  
and are piece wise linear, the simultaneous equations 
can be solved analytically wi th in each rectangle. The 
rectangles are | where 1 i n and 
1 j m, i.e. the boundaries are the end points of 
each linear segment of / and Wi th in each rectangle, 
the algori thm 

1. Solves (1) and (2) to get and These 
functions are quadratic because and are 
linear wi th in the rectangle. 

2. Substitutes into (4), and into (3). 
3. Substitutes from (3) into (4). 
4. Reduces the resulting equation to a cubic polyno­

mial in  
5. Solves for the roots of this polynomial. 
6. Calculates the corresponding values for using (3). 
7. Accepts the solutions that lie wi th in the rectangle. 
The algorithm runs in t ime because it is 0 (1) 

wi th in each rectangle, and there are 0(nm) rectangles. 
Of all the equil ibria found, it presents social welfare 

maximizing one(s) to the user, i.e. the one(s) that maxi­
mize the sum of the agents' expected payoffs. It can also 
present all equil ibria. 

3 Opt imizing the contract 
So far we discussed how rational agents would decommit 
under a given contract. Now we take this further by 
opt imizing the contract i tself—taking into account that 
agents wi l l decommit insincerely in Nash equi l ibr ium. 
Specifically, we present an algori thm and analysis for 
finding the opt imal contract price and decommitment 
penalties in any given setting for all three protocols. 

3 .1 A n a l y s i s 
We first describe the opt imizat ion problem. Let be 
the contractor's expected ut i l i ty, and the contractee's. 
For shorthand, we define and  
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occur in a gap in / or g. In such cases, there necessarily is 
another pair of opt imal thresholds where the old opt imal 
threshold that was in the gap is now at the end of the 
gap. This is because the probabil i ty mass in the gap 
is zero so moving a decommitt ing threshold to the end 
of the gap cannot affect the path of play. Therefore, we 
can restrict our analysis to the case where and 

The first order constraints above are satisfied if  
These two 

conditions give a pair of simultaneous equations: 

(5) 
(6) 

Equation (5) describes as a function of and Equa-
tion (6) gives as a function of A local opt imum of 

exists where the curves intersect. They may or may 
not intersect, and they can intersect at mult iple points: 

P r o p o s i t i o n 3.1 Curves (5) and (6) intersect if  
and They do not intersect Oth-

erwise they may or may not intersect. The intersection 
point is unique if  

P r o o f . From (5), in the l im i t and 
when From (6), when  

and in the l im i t Both 
curves represent str ict ly increasing functions (the first 
derivatives are always positive). Note that  

Thus they intersect 
if This intersection point is 
unique if They do not intersect 
if Otherwise they may or may not intersect.  

Figure 2 shows that (5) and (G) can intersect at mul t i ­
ple points, i.e. that can have mult iple (local) opt ima. 

We now show that if these locally opt imal solutions 
exist, they lie w i th in the feasible set, i.e. there exists a 
nonempty range [LB, UB] for the contract price which 
satisfies the IR constraints. We derive LB and U B using 
the expressions for and the I I I constraints,  

S E Q D : 

For SIMUDBP games, For S IMUDNP, 
This occurs from the form of the in­

tegrals, and the fact that they are always between 0 
and 1 because they are defined over probabi l i ty density 
functions. For each game above, reduces to 

which can be shown true by the form of (5) and (6). 

3 .2 A l g o r i t h m f o r f i n d i n g o p t i m a l c o n t r a c t s 
Our algorithm determines the opt ima by computing the 
intersection points of curves (5) and (6). Mul t ip le so-
lutions might exist, which rules out the use of iterative 
methods that only find one solution. Our algori thm uses 
the same rectangular decomposition as our equi l ibr ium 
finding algorithm presented above. In each rectangle it 

1. Solves T1,T2,T3, and T4 to get quadratic equations 
for them (because and | are linear wi th in 
the rectangle). 

2. Substitutes these into (5) and (6). 
3. Substitutes from (5) into (G). 
4. Reduces the resulting equation to a 9th degree poly­

nomial in  
5. Solves for the roots of this polynomial. 
6. Calculates the corresponding values of from (5). 
7. Accepts solutions that lie in the rectangle. 

The algori thm runs in 0{nm) t ime because it is O(1) 
with in each rectangle, and there are 0(nm) rectangles. 
Finally, the candidate set of local opt ima is scanned for 
global opt ima. 

3.3 T h e f a i r o p t i m a l c o n t r a c t 
An opt imal pair defines a set of welfare max­
imizing contracts (p,a,b) which differ based on how 
the excess—i.e. expected gain over ful l commitment 
contracts—is divided among the contract parties. Our 
implementation shows all the opt imal feasible contracts 
to the user and visualizes how the different choices lead 
to different division of expected payoff and as l in­
ear functions of p [LB,UB]). It also suggests a fair 
contract which divides the excess equally. It, turns out 
that the fair contract price is p = The fair val­
ues for the penalties are then calculated using (3) and 
(4). 

4 I m p l e m e n t a t i o n 
Using the algorithms of this paper, we provide a client-
server based contract opt imizing service on the web 
( h t t p : / / e c o m m e r c e . c s . w u s t l . e d u / c o n t r a c t s . h t m l ) 
as part of eMediator, our next generation electronic com­
merce server. The client, a Java applet, implements the 



G U I and communicates to the server over the web using 
CGI /Per l . The server, wr i t ten in C, executes the com-
putations. The client accepts piecewise linear functions 

and The user can input these graphically or as 
text. Each probabi l i ty density functions is automatically 
scaled so that its integral is 1. The output interface dis­
plays either the decommitt ing thresholds and probabil i­
ties for a given contract, or the opt imal feasible contracts 
together w i th the fair opt imal feasible contract. 

The server computes the roots of polynomials in our 
rectangular decomposition algorithms. We use Laguer's 
root finding method to compute the roots [Press et al., 
1993]. It finds all roots simultaneously and polishes roots 
to reduce numerical imprecision. If the roots are close to 
the boundaries of the rectangle, imprecision may result 
in these roots being calculated just outside the rectangle. 
To accommodate for this, we extend the rectangle in all 
directions by That allows us to capture al l those roots 
that would otherwise be overlooked. 

5 Genera l iza t ion to 3-agent contracts 
The method can be generalized to contracts involving 
more than two agents. We demonstrate this via 3-agent 
games. Let there be one contractor, and two con-
tractees, b and c. If even one party decommits the con­
tract breaks down between all 3 parties. Let the density 
functions of outside offers be and The 
1R constraints are and  
The contract price, p, paid by the contractor, is paid in 
two parts, to 6, and to c. The decommitment 
penalties are and see Figure 3. 

The sequential game wi l l have 3! variants depending 
on the decommitt ing order. The simultaneous games 
differ based on whether two parties on simultaneous de-
commitment pay each other or not. Due to l imi ted space 
we only present the formulae for S IMUDBP: 

These expressions are analogous to 2-agent SIMUDBP. 
We get similar expressions for Our 
rectangular decomposition algorithms for computing the 
Nash equi l ibr ia extend by using cuboids instead of rect­
angles. Nonuniqueness extends to this case. The opt i ­
mizat ion problem also has similar characteristics. is 
a funct ion of Solving for the roots of the first 
derivatives yields three equations in three variables. Our 
rectangular decomposition algorithms for calculating the 

opt ima extend to this case by using cuboids instead of 
rectangles. Similar expressions/results occur for the 3-
agent generalization of S IMUDNP. 

6 Conclusions 
Leveled commitment contract are a practical way of cap­
ital izing on future uncertainties in negotiation among 
self-interested agents. This paper operationalizes them 
by presenting two algorithms. The first one takes a given 
contract and computes the Nash equi l ibr ium decommit­
t ing thresholds and decommit t ing probabil it ies for ra­
t ional agents. The second algor i thm optimizes the con­
tract price and penalties so as to maximize the sum of 
the agents' expected payoffs —tak ing into account that 
agents decommit insincerely. Using these algorithms, a 
contract opt imizing service is provided on the web. 
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