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Abstract 

Market-based mechanisms such as auctions are being studied 
as an appropriate means for resource allocation in distributed 
and inultiagcnl decision problems. When agents value re­
sources in combination rather than in isolation, one gener­
ally relies on combinatorial auctions where agents bid tor re­
source bundles. or simultaneous auctions for all resources. We 
develop a different model, where agents bid for required re-
sources sequentially. This model has the advantage that it can 
be applied in settings where combinatorial and simultaneous 
models are infeasible (e.g.. when resources are made available 
at different points in time by different parties), as well as cer­
tain benefits in settings where combinatorial models are appli­
cable. We develop a dynamic programming model tor agents 
to compute bidding policies based on estimated distributions 
over prices. We also describe how these distributions are up­
dated to provide a learning model for bidding behavior. 

1 Introduction 
A great deal of attention has been paid to the development of 
appropriate models and protocols for the interaction of agents 
in distributed and multiagent systems (MASs). Often agents 
need access to specific resources to pursue their objectives, 
but the needs of one agent may conflict with those of another. 
A number of market-based approaches have been proposed 
as a means to deal wi th the resource allocation and related 
problems in MASs [5. 211. 

Of particular interest are auction mechanisms where each 
agent bids ior a resource according to some protocol, and 
the allocation and price for the resource are determined by 
specific rules |13|. Auctions have a number of desirable 
properties as a means for coordinating activities, including 
minimizing the communication between agents and. in some 
cases, guaranteeing Pareto efficient outcomes | 13, 211. 

An agent often requires several resources before pursu­
ing a particular course of action. Obtaining one resource 
without another—for example, being allocated trucks wi th­
out fuel or drivers, or processing, time on a machine wi th­
out skilled labor to operate it—makes that resource worth­
less. When resources exhibit such complementarities, it is 
unknown whether simple selling mechanisms can lead to effi­
cient outcomes [21, 1]. Moreover, groups of resources are of­
ten substitutable: obtaining the bundle needed to pursue one 
course of action can lower the value of obtaining another, or 
render it worthless. For instance, once trucks and drivers are 
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obtained for transporting material in an optimal fashion, he­
licopters and pilots lose any value they may have had. 

Two methods for dealing with complementarities have 
been studied: simultaneous auctions for multiple goods [ 1 , 
17|; and combinatorial auctions in which agents submit bids 
for resource bundles [16, 18, 19, 9, 21). Specific models 
sometimes deal (possibly impl ic i t ly) wi th substitution ef­
fects, and sometimes not. In this paper, we explore a model 
that combines features of both simultaneous and combinato­
rial auctions. Our sequential auctions model supposes that 
the set of resources of interest are auctioned in sequence. 
Agents bid for resources in a specific, known order, and can 
choose how much (and whether) to bid for a resource depend-
ing on past successes, fail tires, prices, and so on. 

Our model has several advantaues over standard combina-
torial and simultaneous models. The chief benefit of such a 
model is that is can be applied in situations where combina­
torial and simultaneous models cannot. Specifically, when 
multiple sellers offer various resources of interest, or when 
the resources are sold at different points in time, one does not 
have the luxury of setting up either combinatorial or simulta­
neous auctions. As such, our model is suitable for auenls who 
are required to interact with multiple suppliers over time. 
Even in settings where combinatorial models can be applied, 
there may be some advantages to using a sequential model. 
Unlike combinatorial models, our model relieves the (com-
putational) burden of determining a final allocation from the 
seller, effectively distributing computation among the buyers 
(as in the simultaneous case); note that determining an opti­
mal allocation that maximizes the seller's revenue is NP-hard 
|118|. Out sequential model also has the advantage that buy­
ers are not required to reveal information about their valu­
ations for specific resource bundles that they do not obtain. 
I'iirthermore, it has greater flexibility in that agents can enter 
and leave the market without forcing recomputation of entire 
allocations. In contrast to simultaneous models, agents in the 
sequential model may lessen their exposure. If an agent does 
not obtain a certain resource early in the sequence, it need not 
expose itself by bidding on complementary resources occur­
ring later in the sequence. Agents are typically bidding in a 
state of greater knowledge in the sequential model, at least in 
later stages; however, in earlier stages agents may have lesser 
information than they would in a simultaneous model. 

One diff iculty that arises in the sequential model is how an 
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agent computes bids for individual resources (the same dif­
ficulty arises in simultaneous models). An agent has a val­
uation for a particular resource bundle b = 
but has no independent assignment of value to the individ­
ual resources.1 While auction theory can tell us how an agent 
should bid as a function of its valuation of resource ri for spe­
cific auction mechanisms, in our setting no such valuation 
exists. If b is worth how is an agent to "distribute the 
value" among the resources in order to compute bids? 

In this paper, we develop a dynamic programming algo­
rithm for doing just this. We assume that each agent has a 
probabilistic estimate of the size of the maximum bids for 
each resource (excluding its own). It can then compute a 
bidding policy that maximizes its expected utility, and apply 
this policy as dictated by its initial endowment. Bids for re­
sources early in the sequence are computed as a function of 
the odds of being able to obtain their complements and sub­
stitutes, while bids for later resources are conditioned on the 
resources obtained early in the sequence. 

We also interested in adaptive bidding behavior, and to this 
end investigate a repeated sequential auction model in which 
agents repeatedly bid for the same resources over time. We 
consider the problem of estimating the probability distribu­
tions over maximal bids in this repeated scenario. If agents 
persistently find themselves requiring resources to pursue 
their aims, we want them to learn which resources they wi l l 
be able to obtain and which they wi l l not. This is related to re­
cently proposed learning models for auctions [11,12], though 
our focus is on learning prices and its effect on the valuation 
of individual resources in bundles. 

The problem we study is part of a more general research 
program designed to study the impact of specific resource 
allocation schemes on the solution of sequential multiagent 
decision problems. We motivate the problem studied here 
as follows. We suppose that a number of agents have cer­
tain tasks and objectives to pursue, and for any objective 
there may exist a number of potential courses of action that 
are more or less suitable. For instance, an agent may con­
struct a policy for a Markov decision process [15, 2], from 
which it can determine the value of various courses of action, 
their likelihood of success, and so on. Any specific course of 
action wi l l require certain resources, say, bundle whose 
value can be determined as a function of the expected value 
of that course of action (and the expected value of alternative 
courses of action). As such, we suppose each bundle has 
an associated value and that the agent wi l l use only one 
bundle (the one associated with the highest-valued course of 
action among those bundles it possesses). It is from these val­
uations that the agent must determine its bidding policy for 
individual resources. This is the problem considered here. 

Ultimately, the decision problem we hope to study is far 
more complex. Determining appropriate courses of action 
wi l l depend on perceived probability of obtaining requisite 
resources, uncertainty in that course of action, alternatives 
available and so on. We envision very sophisticated reason­
ing emerging regarding the interaction bidding behavior and 

In fact, we will assume that several bundles can be valued, with 
possible overlap. This accounts for possible substitution effects. 

"base-lever' action choice (in the MDP), such as taking a few 
critical steps along a specific course of action before decid­
ing to enter the market for the corresponding resources (e.g., 
perhaps because this policy is fraught with uncertainty). We 
also foresee interesting interactions with other coordination 
and communication protocols. 

In Section 2 we describe the basic sequential bidding 
model. We note a number of dimensions along which our 
basic model can vary, though we wi l l focus only on specific 
instantiations of the model for expository reasons. We de­
scribe our dynamic programming model for constructing bid­
ding policies in Section 3. We also describe the motivation 
for using the specific model proposed here instead of using 
explicit equilibrium computation. We discuss repeated se­
quential auctions in Section 4, focusing on the problem of 
highest-bid estimation. In Section 5 we describe some pre­
liminary experimental results, and conclude in Section 6 with 
discussion of future research directions. 

While bidding strategies for sequential auctions would 
seem to be an issue worthy of study, there appears to have 
been little research focussed on this issue. What work exists 
(see, e.g., |8, 10]) tends to focus the seller's point of view— 
for example, wi l l simultaneous or sequential sales maximize 
revenue—and does not address the types of complementari­
ties we consider here. Generally, existing work assumes that 
single items are of interest to the buyer. 

2 Basic Model 
We assume wc have a finite collection of agents, all of 
whom require resources from a pool of resources = 

We denote by the subset 
n, with by convention. We describe the quanti­
ties relevant to a specific agent a. below, assuming that these 
quantities are defined for each agent. Agent a can use ex­
actly one bundle — of resources from a 

set of A: possible bundles: We denote by 
the set of useful resources for our agent. 

Agent a has a positive valuation v(bl) for each resource 
bundle Suppose the holdings of a,  
are those resources it is able to obtain. The value of these 
holdings is given by 
that is, the agent wi l l be able to use the resource bundle with 
maximal value from among those it holds in entirety, with the 
others going unused. This is consistent with our interpreta­
tion given in Section 1 where resource bundles correspond to 
alternative plans for achieving some objective (though other 
value combinators can be accommodated). 

The resources wi l l be auctioned sequentially in a com­
monly known order: without loss of generality, we assume 
that this ordering is We use to denote 
the auction for We refer to the sequence of auctions 

as a round of auctions. There may be a single 
round, some (definite or indefinite) finite numbers of rounds, 
or an infinite number of rounds. 

Supposing for the moment only one round, we assume that 
agent a is given an initial endowment which it can use to ob­
tain resources. At the end of the round, has holdings  
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and d dollars remaining from its endowment.2 We assume 
that the utility of being in such a state at the end of the round 
is given by where / is some function at­
taching utility to the unused portion of the endowment. Other 
utility functions could be considered within this framework. 

There are a wide range of options one could consider when 
instantiating this framework. We define a specific model 
here, but list the options that could be explored. We develop 
the algorithms in this paper for the specific model, but where 
appropriate, indicate how they should be modified for other 
design choices. The main design choices are: 

• What auction mechanism is used for the auctions Ai? 

• What rules are instituted for reselling or speculation? 

• What information is revealed to the agents? When? 

• What information do agents have when a round begins? 

We assume that the individual auctions wi l l be first-price, 
sealed-bid—each agent wi l l provide a single bid and the 
highest bidder wi l l be awarded the resource for the price bid. 
We adopt this model because of the ease with which it fits 
with our approach to bid computation; however, we believe 
our model could be adapted for other auction protocols. We 
also assume that bids are discrete (integer-valued); but we do 
describe the appropriate amendments to deal with continuous 
bids. Agents, once obtaining a resource, cannot resell that re­
source to another agent. This, of course, means that an agent 
may obtain one resource but later be unable to obtain a 
complementary resource essentially being "stuck" with 
a useless resource We do this primarily for simplicity, 
though in certain settings this assumption may be realistic. 
We are currently exploring more sophisticated models where 
agents can "put back" resources for re-auctioning, or possi­
bly resell resources directly to other agents. 

Each agent is told the winning price at the end of the each 
auction (and whether it was the winner). We could suppose 
that no information (other than winning or losing) is pro­
vided, that the distribution over bids is announced, or that the 
bids of specific individuals arc made public; our assumption 
seems compatible with the first-price, sealed-bid model. 

Finally, agent a believes that the highest bid that wi l l be 
made for resource r,, excluding any bid a might make, is 
drawn from some unknown distribution Because bids 
are integer-valued, this unknown distribution is a multino­
mial over a non-negative, bounded range of integers.3 To 
represent uncertainty over the parameters of this distri­
bution, we assume has a prior probability distribution 
over the space of bid distributions. Agent a models 
as a Dirichlet distribution with parameters [6], 
where m, is the (estimated) maximum possible bid for We 
elaborate on this probability model in Sections 3 and 4. 

We make two remarks on this model. First, if the space of 
possible bids is continuous, a suitable continuous PDF (e.g., 

2 If speculation or reselling is allowed, there is the possibility that 
d e, depending on the interaction protocols we allow. We will 
mention this possibility below, but we will examine only protocols 
that disallow it. 

3 We assume that a bound can be placed on the highest bid. 

Gaussian) could be used to model bid distributions and the 
uncertainty about the parameters of this PDF. More ques­
tionable is the implicit assumption that bids for different re­
sources are uncorrelated. By having distributions IV rather 
than a joint distribution over all bids, agent a is reasoning as 
if the bids for different resources are independent. When re­
sources exhibit complementarities, this is unlikely to be the 
case. For instance, if someone bids up the price of some re­
source (e.g., trucks), they may subsequently bid up the 
price of complementary resource (e.g., fuel or drivers). If 
agent a does not admit a model that can capture such correla­
tions, it may make poor bids for certain resources. Again, we 
make this assumption primarily for ease of exposition. Ad­
mitting correlations does not fundamentally change the na­
ture of the algorithms to follow, though it does raise interest­
ing modeling and computational issues (see Section 4). 

3 Computing Bids by Dynamic Programming 
In this section we focus on the decisions facing an agent in a 
single round of auctions. A key decision facing an agent at 
the start of a round is how much to bid for each resource that 
makes up part of a useful bundle In standard single item 
auctions (e.g., first/second-price, sealed bid) rational agents 
with an assessment of the valuations of other agents can com­
pute bids with maximum expected utility 113]. For example, 
in first-price, sealed bid auctions, an agent should bid a some 
amount below its true valuation, where this amount is given 
by its beliefs about the valuations of others. 

Unfortunately, the same reasoning cannot be applied to our 
sequential setting, since individual resources cannot be as­
sessed a well-defined valuation. For instance, if bundle = 

has valuation how should agent a apportion 
this value over the two resources? Intuitively, if there is a 
greater demand for a larger "portion" of the value should 
be allotted for bidding in the first auction rather than the sec­
ond. If the agent fails to obtain the value of goes to zero 
(ignoring other bundles). In contrast, should a obtain it is 
likely that the agent should offer a substantial bid for ap­
proaching the valuation since the price paid for r1 is 
essentially a "sunk cost." Of course, if the agent expects this 
high price to be required, it should probably not have bid for 
r\ in the first place. Finally, the interaction with other bun­
dles requires the agent to reason about the relative likelihood 
of obtaining any specific bundle for an acceptable price, and 
to focus attention on the most promising bundles. 

3.1 The D y n a m i c P r o g r a m m i n g M o d e l 

These considerations suggest that the process by which an 
agent computes bids should not be one of assigning value 
to individual resources, but rather one of constructing a bid­
ding policy by which its bid for any resource is conditioned 
on the outcome of events earlier in the round. The sequen­
tial nature of the bidding process means that it can be viewed 
as a standard sequential decision problem under uncertainty. 
Specifically, the problem faced by agent a can be modeled as 
a fully observable Markov decision process (MDP) 115, 2]. 
The computation of an optimal bidding policy can be imple­
mented using a standard stochastic dynamic programming al-
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gorithm such as value iteration. 
We emphasize that agents are computing optimal bids, not 

true valuations for individual resources. Thus issues involv­
ing revelation of truthful values for resources are not directly 
relevant (but see Section 4 on multiple rounds). 

We assume the decision problem is broken into 1 
stages, n stages at which bidding decisions must be made, 
and a terminal stage at the end of the round. We use a time 
index 0 / n. to refer to stages—time refers to the 
point at which auction for is about to begin. The 
state of the decision problem for a specific agent a at time t is 
given by two variables: the subset of resources 
IV held by agent a: and the dollar amount (unspent en­
dowment) available for future bidding. We write to 
denote the state of a's decision problem at time /. Note that 
although we could distinguish the state further according to 
which agents obtained which resources, these distinctions are 
not relevant to the decision facing a.A 

The dynamics of the decision process can be characterized 
by a's estimated transition distributions. Specifically, assum­
ing that prices are drawn independently from the stationary 
distributions agent a can predict the effect of any action 
(bid) a available to it. If agent a is in state at stage t, 
i t can bid for with any a m o u n t ( f o r conve­
nience we use a bid of 0 to denote nonparticipation). Letting 
w denote the highest bid of other agents, if a bids : at time /, 
it wil l transition to state with proba-

bility and to with  
This does not form an MDP per se, since a may be uncer­

tain about the true distribution having only a Dirichlel 
distribution over the possible parameters 

of However, the expectation that the highest bid is w 
is given by the relative weight of parameter thus. 

While the observation of the true winning bid can cause 
this estimated probability to change (properly making this 
a partially observable MDP), the change cannot impact fu­
ture transition probability estimates or decisions: we have as­
sumed that the high bid probabilities are independent. Thus, 
treating this as a fully observable MDP with transition prob­
abilities given by expected transition probabilities is sound. 

The final piece of the MDP is a reward function q. We 
simply associate a reward of zero with all states at stages 
0 through and assign reward to ev­
ery terminal state A bidding policy is a map­
ping from states into actions: for each legal state  

means that a wi l l bid z for resource 
The value of policy at any state is the 
expected reward obtained by ex­
ecuting The expected value of given the agent's initial 

4 This is true under the current assumptions, but may not be under 
different models: see below. 

'' For expository purposes, the model assumes ties are won. Sev­
eral rules can be used for ties: none complicate the analysis. 

state is simply An optimal bidding policy 
is any that has maximal expected reward at every state. 

We compute the optimal policy using value iteration [15], 
defining the value of states at stage / using the value of states 
at stage t + 1. Specifically, we set 

and define, for each  

Given that V is defined for all stage states,  
denotes the value of bidding z at state and acting op­
timally thereafter. denotes the optimal value at 
slate while is the optimal bid. 

Implementing value iteration requires that we enumerate, 
for each /, all possible stage t states and compute the con­
sequences of every feasible action at that state. This can re­
quire substantial computational effort. While linear in the 
state and action spaces (and in the number of stages 77), the 
state and action spaces themselves are potentially quite large. 
The number of possible slates at stage / could potentially con­
sist of any subset of resources together with any monetary 
component. The action set at a state with monetary compo­
nent d has size d+t. Fortunately, we can manage some of this 
complexity using the following observations: first, a never 
needs to bid for any resource outside the useful set so 
its state space (at stage t) is restricted to subsets of and 
second, if a resource rt requires a complementary resource 

(that is, all bundles containing r( also contain 
then we need never consider a state where a has but not 
rt

6 Reducing the impact of the number of possible bids is 
more difficult. We can certainly restrict the state and action 
space to dollar values no greater than a's initial endowment 
e. If the PDF is well-behaved (e.g., concave), pruning is pos­
sible: e.g., once the expected value of a larger bids starts to 
decrease, search for a maximizing bid can be halted.' 

This dynamic programming model deals with the com­
plementarities and substitutability inherent in our resource 
model; no special devices are required. Furthermore, it auto­
matically deals with issues such as uncertainty, dynamic val­
uation, "sunk costs," and so on. Given stationary, uncorre­
cted bid distributions, the computed policy is optimal. 

3.2 Extensions of the Model 
While the assumptions underlying our (single-round) model 
are often reasonable, there are two assumptions that must be 
relaxed in certain settings: the requirement for discrete bids 

6This reasoning extends to arbitrary subset complementarities. 
7 If we move to a continuous action space, the value function rep­

resentation and maximization problems may become easier to man­
age for certain well-behaved classes of probability distributions and 
utility functions (see Section 3.2 and [3|). 
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and the prohibition of reselling or returning resources for re­
sale. We are currently exploring these relaxations. 

Continuous bidding models are important for computa­
tional reasons. Though money is not truly continuous, the in­
crements that need to be considered generally render explicit 
value calculations for all discrete bids infeasible. Continu­
ous function maximization and manipulation techniques are 
often considerably more efficient that discrete enumeration, 
and approximately optimal "integer" bids can usually be ex­
tracted. We are currently exploring specific continuous mod­
els, specifically using parameterized bid distributions (such 
as Gaussian and uniform distributions) and linear utility func­
tions (as described above). The key difficulty in extending 
value iteration is determining an appropriate value function 
representation. While the maximization problem (over bids) 
for a specific state is not difficult, we must represent V' as 
a function of the continuous state space. This function is 
linear (in d) at all states where the remaining endowment d 
is greater than the maximal worthwhile bid. But a different 
function representation is needed for states with endowment 
less than the best bid. We are currently exploring a value 
function representation with piecewise, continuous represen-
tations of I for each (discrete) set of holdings H(a) |3|. 

Reselling may be appropriate in many settings and can al­
low agents to bid more aggressively with less risk. We are 
currently developing a simple model in which agents are al­
lowed, at the end of a round, to "put back" resources for re-
auction that are not needed (e.g., are not part of the agent's 
max-valued complete bundle).8 Several difficulties arise in 
this setting, including the fact that agents may need to esti­
mate the probability that an unobtuined resource may be re­
turned for re-auction. 

3.3 Equilibrium Computation 
The model described above does not allow for strategic rea­
soning on the part of the bidding agent. The agent takes the 
expected prices as given and does not attempt to compute the 
impact of its bids on the behavior of other agents, how they 
might estimate its behavior and respond, and so on; that is, 
no form of equilibrium is computed. Standard models in auc­
tion theory generally prescribe bidding strategies that arc in 
Bayes-Nash equilibrium: when each agent has beliefs about 
the types of other agents (i.e., how each agent values the good 
for sale), and these beliefs are common knowledge, then the 
agents' bidding policies can be prescribed so that no agent 
has incentive to change its policy.'' This, for instance, is the 
basis for prescribing the well-known strategies for bidding in 
first- and second-price auctions [201. 

Our approach is much more "myopic." There are several 
reasons for adopting such a model rather that a full Bayes-
Nash equilibrium model. First, equilibrium computation is 
often infeasible, especially in a nontrivial sequential, multi-
resource setting like ours. Second, the information required 
on the part of each agent, namely a distribution over the pos-

8 More complicated models that allow agents to put back re 
sources during the round or resell directly are also possible. 

9 We use type here in the sense used in game theory for games 
with incomplete information [14]. 

sible types of other agents, is incredibly complex—an agent 
type in this setting is its set of valuations for all resource bun­
dles, making the space of types unmanagable. Finally, the 
common knowledge assumptions usually required for equi­
librium analysis are unlikely to hold in this setting. 

We expect that the MDP model described here could be ex­
tended to allow for equilibrium computation. Rather than do 
this, we consider an alternative, adaptive model for bidding 
in which agents wi l l adjust their estimates of prices—hence 
their bidding policies—over time. Implicitly, agents learn 
how others value different resources, and hopefully some 
type of "equilibrium" wi l l emerge. We turn our attention to 
this process of adaptation. 

4 Repeated Auctions and Value Estimation 
In certain domains, agents wil l repeatedly need resources 
drawn from some pool to pursue ongoing objectives. We 
model this by assuming that the same resource collection is 
auctioned repeatedly in rounds. While agents could compute 
a single bidding policy and use it at every round, we would 
like agents to use the behavior they've observed at earlier 
rounds to update their policies. Specifically, observed win­
ning prices for resource auctions Ai in the past can be used 
by an agent to update its estimate of the true distribution Pr 
of high bids for r7. Its bidding strategy at the next round can 
be based on the updated distributions. 

If each agent updates its bidding policy based on past price 
observations, the prices observed at earlier rounds may not 
be reflective of the prices that wi l l obtain at the next round. 
This means that the agents are learning based on observa­
tions drawn from a nonstationary distribution. This setting 
is common in game theory, where agents read to each oth­
ers past behavior. Myopic learning models such as fictitious 
play [4] (designed to learn strategy profiles) can be shown to 
converge to a stationary distribution despite the initial non-
stationarity. This type of learning model has been applied to 
repeated (single-item) auctions and shown to converge [11]. 
Our model is based on similar intuitions—namely, that learn­
ing about prices wil l eventually converge to a steady state. 
Hu and Well man [12] also develop a related model for price 
learning in a somewhat different context. 

The advantage of a learning model is that agents can come 
to learn which resources they can realistically obtain and fo­
cus their bidding on those. If agents A and B have similar 
endowments and both equally value having either or 
they may learn over time not to compete for and ; instead 
they may learn to anticipate (implicitly, through pricing)each 
other's strategy and (implicitly) coordinate their activities, 
with one pursuing and the other If one agent has a 
greater endowment than another (e.g., it may have higher pri­
ority objectives in a distributed planning environment), the 
poorer agent should learn that it can't compete and focus on 
less contentious (and perhaps less valued) resources. An-
other important feature of learning models is that they can be 
used to overcome biased or weak prior assessments. 

Given the form of the probabilistic model described in Sec­
tion 3, an agent can update its estimate of a bid distribution 
rather easily. Suppose agent a has parameters  
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that characterize its distribution over the true distribution 
of high bids for resource rt. After auction the win­

ning bid is announced to each agent.10 If a fails to win 
the resource, it should update these Dirichlet parameters by 
setting at the next round, its estimate that the 
highest bid wi l l be is thus increased. If wins resource 

for price the only information it gets about the highest 
bid (excluding its own) is that it is less than The Dirich­
let parameters can then be updated with an algorithm such as 
EM [7]. Roughly, the expectation step computes an update 
of the parameters of the Dirichlet using current estimates to 
distribute the observation over the parameters  
each i s increased b y T h e maxi­
mization step corresponds to the actual update followed by 
the substitution of these parameters in Pr. Whereas the EM 
algorithm requires an iteration of these two steps until con­
vergence, we performed this iteration about 10 times.11 

In the specific probability model developed here, agents 
cannot profitably use this updated estimate during the cur­
rent round. Because prices are assumed independent, learn­
ing about one price cannot influence an agent's bidding strat­
egy for other resources.12 Thus the agent continues to im­
plement the bidding policy computed at the start of the round. 
The updated bid distributions are used prior to the start of the 
next round of auctions to compute an new bidding policy. 

As mentioned above, the price-independence assumption 
may be unrealistic. If prices are correlated, the observed 
price of a resource can impact the estimated price of another 
resource that wi l l be available later in the round. Agents in 
this case should revise their bidding policies to reflect this 
information. Two approaches can be used to deal with cor­
relations. First, agents can simply recompute their bidding 
policies during a round based on earlier outcomes. An alter­
native is to model this directly within the MDP itself: this en­
tails making the MDP partially observable, which can cause 
computational difficulties. 

One thing we do not consider is agents acting strategi­
cally within a round to influence prices at subsequent rounds. 
Agents are reasoning "myopically" within a specific round. 
By formulating multi-round behavior as a sequential prob­
lem, we could have agents attempting to manipulate prices 
for future gain. Our current model does not allow this. 

5 Results 
We now describe the results of applying this model to some 
simple resource allocation problems. These illustrate inter­
esting qualitative behavior such as adaptation and coordina-
tion. We also explain why such behavior arises. In all runs, 
multiple rounds are considered and remaining endowment d 

10Our model can accommodate both more (e.g., the bids of all 
agents) and less (e.g., only whether an agent won or lost) revealed 
information about the auction outcome rather easily. 

11 Preliminary experiments showed this sufficient. 
12 With correlated prices, an agent could attempt to provide mis­

leading information about its valuation of one resource in order to 
secure a later resource at a cheaper price. This type of deception, 
studied for identical item auctions in [10], cannot arise within a sin­
gle round in our current model, even if strategic reasoning is used. 

is valued at 0.5d = 0.5). Agent priors have slightly in­
creasing weights on higher bids.13 

The first series of examples illustrates bidding behavior in 
allocation problems with specific parameter settings. 

Example There are two agents whose optimal bundles are 
disjoint: requires = (value 20) or = 

(value 30), while a2 requires = { r2, r3} 
(value 20) or = (value 30). Initially, both 
agents focus on the smaller (and lower-valued) bundles. 
At the first round, obtains while gets "stuck" with 

outbid it for The next round sees bid less 
for and more for (outbidding a.\). Since it obtains 

it does not attempt to bid for But without and 
its estimated prices for resources in lowered, now 
bids for and gets (its optimal bundle). Up to the 14th 
round, one of the agents gets its best bundle and the other 
its worst. At the 14th round, each gets its best bundle, and 
after the 16th round, the socially optimal allocation (the 
one with maximal total bundle value) is reached each time: 
the agents (more or less) "realize" that they need not com­
pete. The agents do "hedge their bets" and still keep bid­
ding for resources and They also offer fairly high 
bids for the nonconflicting resources, though these bids are 
reduced over time. 

This first example shows that optimal allocations wi l l 
emerge when agents are not in direct competition. It also i l ­
lustrates general behavioral phenomenon that occur in almost 
all examples. (1) Agents tend to bid more aggressively (ini­
tially) for resources in bundles with smaller size, since the 
odds of getting all resources in a larger bundle are lower. (2) 
Agents tend to bid more aggressively for resources that occur 
later in the sequence. Once an agent obtains all resources in 
a bundle but one, the last resource is very valuable (for ex­
ample, in round 16 above, a.\ obtains by paying 1 for r^ 
and r5, and 27 for r6. (3) Agents tend to initially offer high 
bids for certain resources, and gradually lower their bids over 
time (realizing slowly that there is no competition). For ex­
ample, a1 reduces its bid for r6 to 26 only at round 36. This 
is a consequence of the simple priors and belief update rules 
we use, and the lack of information it obtains when it wins 
the resource consistently: it is not told what the next highest 
bid is (it is zero), and can only conclude that it was less than 
27, making belief update slow. The equivalent sample size of 
our priors also makes adjustment somewhat slow. Domain-
specific (more accurate) priors, and the use of exponential 
decay (or finite histories) in price-estimation would alleviate 
much of this slowness of response. 

Example There are 25 resources and five agents with four 
bundles each (with an average of four resources per bun­
dle). There exists an allocation of five disjoint bundles, 
one to each agent. For each agent three of the resources 
occur only in its bundles, so the agents are competing for 
only 10 of the 25 resources. The socially optimal alloca­
tion has value 100. Over fifty rounds, the agents gener­
ally find very good (but not optimal) allocations. Figure 1 
shows the value of the allocations obtained at each round, 
13More realistic priors could reflect perceived demand. 
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Figure 1: Behavior over 50 Auction Rounds: 5 agents with 
disjoint bundles (optimal allocation has value 100). 

Figure 2: Sample Behavior over 75 Auction Rounds: 5 
agents (optimal allocation has value 69) 

as well as the collective "surplus" (total value minus re-
adjusted prices paid). The agents quickly find good alloca­
tions (by the ninth round, no allocation has value less than 
88), and also learn to pay less for the resources. 

Example An interesting phenomenon emerges in a two-
agent example of [21] that has no price equilibrium: as­
sume resources with valuing bundle at 
6, and valuing either of at 4. The agents have 
equal endowments. Though there is no price equilibrium, 
in our adaptive protocol wins one of its bundles much 
more frequently than It bids for and if it wins it need 
not bid for if it loses it can outbid for (since has 
paid for experiments with and wins it occasion­
ally, gradually lowers its bid for and, since it does 
not model correlations in prices, occasionally loses al­
lowing to get both and When this occurs, wi l l 
quickly raise its bids and win one of the resources again. 
By modeling price correlations, or estimating the require­
ments of agent _ could guarantee that it obtains one 
of its resources (see Section 6). 

Example We have 3 resources and 2 agents, each valuing 
at 10 and at 5, but differing in initial endow­

ment: a1 begins with 6, with 8. Initially, gets the first 
(higher-valued) bundle (at prices 2 and 5) and the sec­
ond (at price 3). By the fourth round, realizes that it can 
win with bids of 3 and 5. It spends 8 on leav­
ing to bid 4 for These prices persist, with not bid­
ding on and eventually not bidding on or This 
illustrates that agents with larger endowments (or less rel­
ative value for money compared to bundles) have greater 
odds of obtaining their most important bundles, leaving 
"poorer" agents to get what is left.14 

14This last property is useful for teams if agents with higher pri 
ority objectives are given larger endowments. 

We also studied the bidding behavior on randomly gener­
ated allocation problems. Here we describe two sets of ex­
periments. In problem set Ps 1, live allocation problems were 
randomly generated with the following characteristics: four 
agents arc competing for 12 resources with an initial endow­
ment of 30 each; each agent has a random number of needed 
bundles (normally distributed with mean 4 and s.d. 1); each 
bundle contains a random number of resources (normally dis­
tributed with mean 3 and s.d. 1, where the resources are them­
selves drawn uniformly from the set of 12); and the value of 
each bundle is random (normally distributed with mean 16 
and s.d. 3). Problem set Ps2 is identical except there are five 
agents and the mean number of resources per bundles is 4: 
hence problems in Ps2 are more constrained, with more com­
petition among the agents. 

Typical behavior for one trial from Ps2 (the more con­
strained problem set) is shown in Figure 2, which plots the 
the value of the allocations obtained at each round, as well 
as the collective surplus. The agents find good allocations in 
this problem, reaching the (socially) optimal allocation (with 
value 69) at many of the rounds. On average, over the 75 
rounds, the allocation obtained has value 59 (85% of opti­
mal). Note that once the agents " f ind" a good allocation, they 
may not stick with it—generally such allocations are not in 
equilibrium in the sequential game induced by a round of auc­
tions. At the very least, agents have a tendency to attempt to 
lower the prices they bid after consistently winning a good, 
due to the lack of information about what other agents bid and 
how they update their beliefs (as mentioned above). This it-
self can cause some instability. The greater cause of instabil­
ity however is the fact that a socially optimal allocation does 
not generally make self-interested agents happy. 

Other trials illustrate similar qualitative behavior. When 
comparing Psl (the less constrained problem set) to Ps2 
(the more constrained), we find that the allocations in Ps 
have value that is, on average, within 87% of the optimal, 
while with Ps2, allocations are within 80% of optimal. This 
suggests that for less constrained problems, sequential auc-
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tions among self-interested agents can lead to allocations 
wi th higher social welfare value. Given that agents "dis­
cover" many different allocations, one might view sequen­
tial auctions as a heuristic search mechanism for combinato­
rial auctions.15 However, we emphasize that the main goal 
of our model is to compute bidding policies when combina­
torial and simultaneous auctions are not possible. 

6 Concluding Remarks 
We have described a model for sequential auctioning of re­
sources that exhibit complementarities for different agents 
and described a dynamic programming algorithm for the 
computation of optimal bidding policies. We have also i l lus­
trated how price learning can be used to allow agents to adapt 
there bidding policies to those of other agents. The sequen­
tial model can be applied in settings where combinatorial and 
simultaneous models are infeasible (e.g., when agents enter 
or leave markets overt ime, or when agents require resources 
from multiple sellers). Preliminary results are encouraging 
and suggest that desirable behavior often emerges. 

We have suggested several possible extensions of the 
model, some of which we arc currently exploring. These in­
clude developing continuous bidding models, models with 
reselling/return, incorporating correlated bid distributions 
and exploring the interactions between decision theoretic 
planning and bidding for the resources needed to implement 
plans and policies. 

There are several more immediate directions we hope to 
pursue. One is the investigation of models where prices are 
estimated wi th greater weight placed on more recent prices. 
Along with correlated price distributions, the use of l imited 
"opponent" models may be helpful : by identifying which 
agents tend to need which resources, a bidder can make more 
informed decisions. Addit ional revealed information about 
specific auctions (such as who bid what amount) could also 
lead to more informed decisions. This information may be 
appropriate in team situations, where distributed decision 
makers are not directly in competit ion. 

Apart from such myopic mechanisms, we would also like 
to develop a Bayes-Nash equi l ibr ium formulation of the se­
quential model, and study the extent to which myopic mod­
els l ike our simple learning scheme approximate it. The con­
ditions under which our model converges to interesting allo-
cations (socially optimal allocations, equil ibria, etc.) is also 
worthy of exploration. Other avenues to be considered are 
the development of different auction ordering heuristics to 
maximize social welfare, seller's revenue or other objective 
criteria; and the development of generalization methods to 
speed up dynamic programming. We are also integrating the 
sequential auction model for resource allocation into the gen­
eral planning context described in Section 1. 
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