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A b s t r a c t 
A decentralized mul t iagent system comprises 
agents who act autonomously based on local 
knowledge. Achiev ing coordinat ion in such a 
system is non t r i v ia l , hut is essential in most 
appl icat ions, where disjointed or incoherent be­
havior would be undesirable. Coord ina t ion in 
decentralized systems is a richer phenomenon 
than previously believed. In par t icu lar , five 
ma jor a t t r ibutes are crucial : the extent of the 
local knowledge and choices of the member 
agents, the extent of their shared knowledge, 
the level of their iner t ia , and the level of pre­
cision of the required coord inat ion. Interest­
ingly, precision and iner t ia tu rn out to con­
t ro l the coordinat ion process. They define dif­
ferent regions w i t h i n each of which the other 
a t t r ibutes relate nicely w i t h coord inat ion, but 
among which their relat ionships are altered or 
even reversed. Based on our study, we propose 
simple design rules to obta in coordinated be­
havior in decentralized mul t iagent systems. 

1 I n t r o d u c t i o n 
Coord ina t ion is key to the design of mul t iagent systems. 
Of ten, the mul t iagent systems must be decentralized 
whose member agents act autonomously based on local 
i n fo rma t ion . Such systems are essential in a number of 
appl icat ions where the agents may not wish to or be able 
to communicate or have a common p lan. 

Coord inat ion has been studied before. In the context 
of d is t r ibuted problem-solv ing and generalized par t ia l 
p lann ing, many good results have been obta ined [Decker 
and Lesser, 1995; Durfee, 1999]. However, the key fea-
tures of decentralized systems and their relat ionship to 
coord inat ion have not yet been fu l ly explored. Thei r 
study is the theme of this paper. 

Let 's begin w i t h a br ief h istor ical overview. The early 
work on coord inat ion considered knowledge as a key fac­
tor. A l though decentralized systems of the k ind we study 
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were not always considered, the commun i t y ' s folk lore is 
that more knowledge leads to better coord inat ion. I t is 
also recognized that the local ly best actions would not 
always lead to the best payoff for an ind iv idua l agent 
much less for the system as a whole. 

Schaerf et ai consider mul t iagent reinforcement learn­
ing in the context of load balancing in d is t r ibuted sys­
tems [1995]. In their f ramework, the agents share a num­
ber of resources, which they autonomously select to use. 
When al l agents are noncooperat ive, e.g., by always se­
lecting their most preferred resources, they all stand to 
lose. However, when ind iv iduals sometimes select, the 
less desirable resources, the entire popu la t ion benefits. 
In this system, communica t ion may not be useful in i m -
prov ing the performance of the popu la t ion and may in 
fact be de t r imenta l . 

In a simpler f ramework, Sen el ai also study coordi­
nat ion among agents shar ing resources [1996]. Coord i ­
nat ion corresponds to achieving equ i l i b r i um. Sen et ai 
argue tha t , contrary to conventional w isdom, g iv ing the 
interact ing agents add i t iona l knowledge causes the coor­
d ina t ion to slow down. Bar ay uses the same f ramework, 
but applies genetic a lgor i thms to show how coordinat ion 
can be speeded up [1998]. 

Rustogi fr Singh study coord inat ion in a s imi lar f rame-
work [1999]. They show tha t in add i t ion to knowledge, 
the choices available and the extent of the knowledge 
shared by the agents are also impo r tan t . Rustogi & 
Singh show that coord inat ion slows down when the avail­
able choices increase. When shared knowledge increases, 
then too coord inat ion slows down. There is no direct 
contradic t ion w i t h Sen et al, because their results cor-
respond to the case where the agents' knowledge also 
increases. 

The present paper advances the above program of re­
search by br ing ing in add i t iona l features of decentralized 
systems in order to better characterize the outcome of co-
ord ina t ion . Our exper iments indicate tha t perfect coor­
d inat ion is often inord inate ly more t ime-consuming than 
s l ight ly imperfect coord inat ion . Usually, i f the agents ex­
h ib i t higher patience or iner t ia in terms of not j u m p i n g 
to another resource, they can coordinate faster. 
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O r g a n i z a t i o n Section 2 describes our exper imental 
setup. Section 3 describes the ma in exper imental results 
we obta ined. Section 5 discusses some relevant concep­
tua l issues, ment ions some related l i terature, and con­
cludes w i t h a descript ion of some open problems. 

2 E x p e r i m e n t a l Setup 
Our setup (Figure 1) consists of an array of equivalent 
resources. Each agent uses exact ly one resource, but a 
resource can support several agents. The agents prefer 
resources tha t support fewer other agents. The agents 
know the occupancy of a certain number (Kn) of other 
resources besides their own. They can elect, to move to 
any of a certain number (Ch) of resources. The agents 
move only to resources tha t appear better. They grad­
ually disperse f rom the more crowded resources toward 
the less crowded ones. 

Equ i l i b r i um is achieved when the agents are un i fo rmly 
d is t r ibuted over all resources, and none move. Equi ­
l i b r i um corresponds to perfect, coord inat ion, because it 
means the agents have achieved a local ly and global ly 
op t ima l sharing of resources. Note that the present set­
t ing requires the same or complementary decisions. In 
general, complementary decisions are more interest ing, 
because they cannot be hardwired in some t r i v ia l mech­
anism. 

Figure 1: Knowledge (I\n), choice {Ch), and knowledge 
sharing of agents at resources i and j 

2.1 Decision Protocol 
Each agent, stochastical ly decides whether to move and 
where. A l l agents use the same decision funct ion and 
only move to better resources. The expressions used by 
an agent to compute the probabi l i ty of mov ing f rom cur­
rent resource i to another resource j in i ts choice window 
are given as fol lows. The f i ; are treated as weights. 

where , and are control parameters, and and 
the number of agents at resources and , respectively. 
In our experiments, we set = 5 , = 2, and = 
unless otherwise specified. 

The weights are normal ized to yield probabi l i t ies. 
Thus , the probab i l i t y of an agent, mov ing f rom resource 

i to resource j is given by 

In tu i t i ve ly , when the choices are l im i ted (as when smal l 
problems are considered), the agent typ ica l ly has only 
a few good alternat ives. Each good al ternat ive gets a 
small posit ive weight; each undesirable al ternat ive gets 
a weight of 0. Thus , the value of p i i comes out fa i r ly 
h igh. As the d is t r ibu t ion of the agents levels out , their 
p i i values increase un t i l each of them becomes 1 meaning 
that none of the agents can move. 

2.2 Key Concepts 
This simple framework provides enough structure to cap­
ture a variety of interest ing concepts. 

C h o i c e . The number of actions an agent may choose 
f r om. A rat ional agent may f ind it has fewer realistic 
choices when it comes to know more facts, but that as­
pect, is not direct ly measured here. If resource is not 
in the choice window, then is not used, and — 0. 

K n o w l e d g e . The number of resources whose occu­
pancy is known to the agent. Thus, the knowledge of an 
agent increases as the agent is given in format ion about 
an increasing number of resources. 

The variables and give the occupancy of resources 
/" and j. They are accurate for resources w i th in the 
agent's knowledge window. For other resources, they 
are est imated based on the to ta l number of agents and 
the occupancy of the known part, of the wor ld . 

where N is the to ta l number of agents, I\ is the number 
of agents in the knowledge window, and u is the number 
of resources that are not known about . Thus, N and u 
are a fo rm of global knowledge in the system. Since e l im­
ina t ing them would compl icate the present experiment 
considerably, that aspect is deferred to future work. 

I n e r t i a . Th is is the tendency of an agent to stay in its 
resource even if better al ternatives are known. Greater 
iner t ia means tha t the probab i l i t y is higher. In our 
setup, iner t ia is control led by As remarked above, 
if all values increase to 1, coordinat ion is achieved. 
Thus iner t ia can fac i l i ta te coord inat ion. A system whose 
agents have low inert ia may exh ib i t chaotic behavior, 
and never achieve coord inat ion. On the other extreme, 
very high inert ia would lead to an inactive system, w i th 
a s imi lar result. 

S h a r i n g . Shared knowledge corresponds to overlap­
ping knowledge windows. Rustogi & Singh estimate the 
to ta l amount of shar ing in the system as roughly propor­
t ional to the cube of the size of the1 knowledge window. 
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Under a homogeneous strategy (as here), shared knowl­
edge would tend to lead to similar decisions, which could 
influence coordination. 

P r e c i s i o n . Imprecision is the distance from a perfectly 
coordinated state, i.e., the min imum number of agent 
relocations required to coordinate. Given an accept-
able level of imprecision, we control the simulations to 
halt when that level is reached. Introducing precision 
into the experimental framework had important conse­
quences. First, because coordination is achieved much 
faster when imprecision is allowed, we could simulate 
much larger configurations than otherwise possible. Sec­
ond, allowing some imprecision made the trends more 
robust by reducing the l ikelihood of pathological situa­
tions in which the system may get stuck. Th i rd , impre­
cision helps us study the above pathological situations, 
which are interesting in their own right. This is the basis 
for some technical results presented later. 

3 Resul ts 
The following figures indicate our results. The tuple in 
each caption indicates, respectively, the number of re­
sources, the number of agents, the ini t ial deviation (dis­
tance of the agent distr ibution from a coordinated state), 
and the imprecision tolerated. 

— — '■■■■ 

Know­
ledge 

Choice 
— — '■■■■ 

Know­
ledge 4 6 8 1 0 12 14 16 

2 64 21 31 44 110 127 74 
4 17 20 20 59 115 139 174 
6 17 31 103 180 254 366 
8 51 142 194 518 931 
10 339 710 1007 1464 
12 1096 2464 7270 
14 5257 10550 
16 21069 

Table 1: Number of steps to coordination 

We compute the tables only for the upper triangu­
lar submatr ix, because the lower triangular submatrix is 
readily determined from it. The lower triangular sub-
matr ix corresponds to the knowledge window being a 
superset of the choice window. In our decision protocol, 
this extra knowledge is useless and harmless, because it 
does not affect the agent's decisions. Thus, the values are 
essentially constant along each column below the pr in­
cipal diagonal. ( In simulations, the randomization can 
cause minor variations.) 

3.1 Sharing of Knowledge 
Figure 2 is based on the last column of Table 1. Fig­

ure 2 shows that the t ime to achieve coordination lias 
the same order as the sharing metric. To reduce clut­
ter, we only show the graphs for a cubic polynomial that 
was fit to the data, and data corresponding to the last 

Figure 2: Effect of sharing of knowledge  

column (constant, maximal choice) of Table 1. This fig­
ure indicates that sharing may have a significant role to 
play in the final understanding of coordination in decen­
tralized systems where the agents are homogeneous and 
coordination calls for complementary decisions, as here. 

3.2 Precision 
Reducing the required precision enhances the scalability 
of coordination. In other words, as the quality of the co-
ordination increases, the cost in terms of t ime becomes 
extremely high. We studied this observation further by 
delineating the effect of the deviation from coordination 
at the start of each simulation run. In our setup, the de­
viation ranges from 1 (almost coordinated) to 15 (max­
imally uncoordinated). 

Figure 3: Effect of in i t ia l deviation  

Figure 3 demonstrates that it- takes far fewer steps to 
progress from maximal uncoordination to almost perfect 
coordination than to go from almost perfect coordination 
to perfect coordination. The last l i t t le bit of precision 
consumes almost, all of the effort. 

The previous result suggests that the t ime to coordi­
nate increases exponentially as the allowed imprecision 
is reduced to zero. Figure 4 supports this claim. The ex­
ponential variation occurs as inertia drops significantly, 
resulting in increasing instabil i ty. The exponential vari­
ation described above, however, does not manifest itself 
when the agents have l i t t le choice, because in such sce­
narios, the agents cannot move around much anyway. 
Instead, as Figures 5 and 6 demonstrate, for small choice 
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Figure 4: Effect of imprecis ion  

windows, the t ime for coord inat ion increases only poly-
nomia l ly w i t h reducing allowed imprecis ion. In these 
figures, to help visualize the trends better, each curve is 
normal ized to 1 w i t h respect to its m a x i m u m value. I t 
should he obvious, however, tha t for low values of i m ­
precision ( inc lud ing 0), the actual t ime to coordinate in­
creases w i t h choice. For higher values, the t ime to coor­
dinate is pract ical ly independent of the choices available 
to the agents or the knowledge possessed by them. 

3.3 Inertia 

Recall tha t iner t ia refers to the tendency of an agent to 
stay in its present resource even if i t knows of better re­
sources. F rom the probab i l i t y calculat ions of section 2, i t 
should be clear t ha t , in general, as the number of choices 
increase, increases, and consequently the iner t ia 
(i.e., p i i) decreases. Th i s reason, especially when cou­
pled w i t h an imprecis ion of 0, can prevent coord inat ion 
for moderately large dimensions. 

Figure 7: Effect of iner t ia 

Figure 5: Effect of choice relat ive to imprecision 
(each curve is normal ized to 1) 

Figure 6: Effect of choice relat ive to imprecision 
(each curve is normal ized to 1) 

In our setup, iner t ia is characterized by the parame­
ter a. The preceding results were based on = 5; now 
we vary a above and below this value. Figure 7 shows 
that increasing the iner t ia faci l i tates coord inat ion. Th is 
is because when the agents are less l ikely to move, a low 
occupancy resource w i l l not suddenly by occupied by sev­
eral agents. Conversely, decreasing the inert ia to a low 
value can make coord inat ion extremely slow. The agents 
appear to j u m p about too much and system takes longer 
and longer to converge. For such cases, the detr imen­
ta l effect of shared knowledge st i l l applies; thus adding 
knowledge slows coord inat ion. 

Interest ingly, for h igh iner t ia , an increase in knowl­
edge or choice fur ther improves the coord inat ion. Th is 
relat ionship is a reversal f rom when the iner t ia is low. 
It appears tha t the t rend changes, because higher in ­
er t ia l im i ts agent movement to such an extent that the 
benefits of add i t iona l local knowledge in decision-making 
overshadow the usual i l l effects of increased sharing of 
knowledge. 

The improvement of coord inat ion due to increasing 
inert ia is observed only if the iner t ia is not too h igh. 
Increasing the iner t ia to a very high value results in slow 
coord inat ion. Th is is because very high iner t ia causes 
the agents to freeze in whatever resources they occupy. 

3.4 Other Variants Considered 
Our interest is in understanding the phenomenon of co-
ord inat ion in general, not analyzing the specific setup 
used in our experiments. Thus we emphasize the trends 
observed in the s imulat ions, and the qual i ta t ive relat ion­
ships among the trends, such as whether the number of 
steps is increasing or decreasing and if so at what polyno-
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mial order. Our experiments included complex scenar­
ios, but which also yield the same trends as the simple 
scenarios on which the above results are directly based. 

• Our results hold for several decision functions, but 
we present only the simple decision function used 
by Sen et al. 

• Like Rustogi & Singh, we observed that keeping the 
knowledge and choice windows of an agent symmet-
rically distributed around its current resource yield 
the same trends as when the windows are skewed 
wi th respect to each other; therefore, we focus on 
the simpler situation. 

• To enable convergence, we set an integral ratio of 
agents to resources. This is not str ict ly necessary 
when imprecise coordination is allowed, but chang­
ing the ratio has no effect on the trends, so we report 
only the integral situations here. 

• Except when precision itself is a variable, we can 
make do with lower precision, because it yields 
faster convergence without affecting the qualitative 
nature of the trends. 

• We studied the role of inertia and its interplay with 
knowledge and choice, by altering the control pa­
rameters in our protocol. The results 
highlighted an interesting interplay among the var­
ious bases of coordination. Varying alone, how-
ever, provides representative results. 

4 Mapp ing the Terra in 
Our experimental study of decentralized multiagent sys­
tems brought out a number of important factors that 
affect coordination. Some of these factors inertia and 
precision—have not been empirically studied in such sys-
tems. Others—knowledge and choice have been stud­
ied but, as our analysis showed, the trends relating to 
these are richer than believed. Trends due to inertia 
and precision can dominate and sometimes reverse the 
simpler trends. 

The following simple rules summarize our qualitative 
results. 

R1. Low inertia & low imprecision knowledge 
sharing governs local knowledge & l imited 
choice performs better 

R 2 a . Moderately high inertia extent of knowledge 
or choice is less important 

R 2 b . High imprecision extent of knowledge or 
choice is less important 

R 3 . Very high inert ia system inactivi ty 

The above rules demarcate the most important regions 
of our terrain. Figure 8 illustrates the corresponding 
regions. Rule Rl supported by Figure 2, is mapped to 
Region I in Figure 8. To achieve effective coordination 
in this region, agents must l im i t their knowledge as well 
as choice. The results of Sen et al. and Rustogi & Singh 
lie wi th in this region. Figures 5-6 and 7 support the 

rules R2b and R2a, respectively. The results of Baray 
lie wi th in this region—this is the reason he obtains much 
faster coordination than Sen et al. These rules, mapped 
to region II of Figure 8, imply that knowledge and choice 
are less relevant for coordination. Rule R3 is intuit ively 
obvious and is represented by region III in Figure 8. 

Figure 8: Mapping the terrain of decentralized systems 

The study of coordination is interesting from a practi­
cal engineering standpoint. The above rules yield heuris­
tics to aid in the engineering of a multiagent system. 
Our first conclusion is that for maximal scalability, we 
should allow some imperfection in coordination. Even a 
slight imperfection improves performance considerably. 
A moderately high value of inertia is desirable. Select­
ing the right value is nontr iv ia l , especially because it 
wi l l change in a dynamic system. An open problem is to 
devise online learning techniques to adapt to the right 
inertia during execution. 

interestingly, for most of the situations in our setup, 
local information performs better than global informa­
t ion. Even when local informat ion gives suboptirnal re­
sults, for many applications, it can provide a reasonable 
tradeoff w i th the cost incurred in acquiring the global 
information. 

5 Discussion 
In addit ion to the works mentioned above, some inter­
esting relevant approaches are known in the literature. 
For instance, Kuwabara et al. present a market-based 
approach in which agents controll ing different resources 
set their prices based on previous usage, and buyer 
agents choose which resources to use [1996]. The buyer 
agent can use more than one resource concurrently, and 
seeks to minimize the total price. As in our approach, 
the buyer's decision-making is probabilistic. Al though 
Kuwabara et al.'s model is similar to ours, they do not 
study the reasons for achieving effective coordination. 

Rachlin et al. show how agents, using the A-Team 
architecture, can achieve coordination wi thout explicit 
communication [1999]. An A-Team is an asynchronous 
team of agents that shares a population of solutions 
that evolve over t ime into an opt imal set of solutions. 
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Through shar ing of the solut ion popu la t ion , cooperative 
behavior between agents may emerge leading to better 
solutions than any one agent could produce. Of ten, how­
ever, a human agent may be necessary to help achieve 
coordinat ion by impa r t i ng domain-specif ic knowledge. 

Results by Hogg L Huberman indicate the potent ia l 
benefits of in t roduc ing heterogeneity of different forms 
[1991]. These agree w i t h the in tu i t i on tha t in homoge­
neous sett ings, the sharing of knowledge may have an 
undesirable effect on coord inat ion. Th is is especially so 
when the agents must make complementary decisions so 
as to coordinate, i.e., move to different resources. Th is 
problem is closely related to the emergence of conven­
tions for resource shar ing [Lewis, 1969]. 

There are some l im i ta t ions of the present exper imental 
setup. It. focuses on cases where the resource conflicts are 
direct and immedia te ly perceived, the resources are ho 
mogeneous, the agents al l use the same decision-making 
protocol , and the agents do not communicate direct ly. 
Further, there are wel l -known l im i ta t ions of reinforce­
ment learning in terms of t ime taken to learn even sim­
ple concepts. The present experiments leave open the 
possibi l i ty tha t more sophist icated agents in more flex* 
ible environments, where their learning is supervised in 
certain ways m igh t discover better ways of coord inat ion, 
which may tu rn out to have different characteristics in 
terms of the influence of knowledge and choice. 

A l though we introduced some interest ing considera­
t ions, a lot remains to be done. Choice and inert ia bear 
an interest ing relat ionship to the not,ion of commi tments . 
Jt appears that the two are complementary in tha t the 
greater the agent's choice the lower its commi tment to 
a part icular decision. Previous exper imental work ap­
pears especially relevant. K inny & Georgeff empir ica l ly 
investigate how the agents' commi tmen t to their current 
plan contr ibutes to their effective behavior [ l 9 9 l ] . The 
agents in their work are characterized as bo ld , norma l , 
or cautious based on the extent of their commi tmen t 
(akin to inert ia here), ranging f rom high to low, in thai-
order. The cautious agents cont inual ly reconsider their 
plan at every step, in the face of a dynamic environ­
ment, and therefore exh ib i t the least commitment,. For 
the most part,, bold agents, despite their higher degree 
of b l ind commi tmen t , per form better than normal and 
cautious agents except when the rate of change is very 
h igh. K inny & Georgeff, however, do not study the ef-
fectiveness of behavior when the degree of commi tmen t 
is very h igh. 

We identi f ied several of the key at t r ibutes affecting 
coordinat ion in a way that, agrees w i t h but subsumes 
previous results. We also give some heuristics to de­
velop decentralized mult iagent systems. To cover addi­
t ional appl icat ions, we need to consider communicat ion 
among agents and to determine the circumstances under 
which it helps or disrupts coord inat ion. We need to con­
sider systems whose membership involves agents being 
removed and added back. 
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