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A b s t r a c t 

To perform rat ional decision-making, au­
tonomous agents need considerable computa-
t ional resources. In mult i-agent settings, when 
other agents are present in the environment, 
these demands are even more severe. We in­
vestigate ways in which the agent's knowledge 
and the results of deliberative decision-making 
can be compiled to reduce the complexity of 
decision-making procedures and to save t ime 
in urgent situations. We use machine learning 
algorithms to compile decision-theoretic delib­
erations into condit ion-action rules on how to 
coordinate in a mult i-agent environment. Us­
ing different learning algori thms, we endow a 
resource-bounded agent w i t h a tapestry of de­
cision making tools, ranging from purely reac­
tive to ful ly deliberative ones. The agent can 
then select a method depending on the t ime 
constraints of the part icular si tuat ion. We also 
propose combining the decision-making tools, 
so that , for example, more reactive methods 
serve as a pre-processing stage to the more ac­
curate but slower deliberative decision-making 
ones. We validate our framework w i th exper­
imental results in simulated coordinated de­
fense. The experiments show that compil ing 
the results of decision-making saves delibera­
t ion t ime while offering good performance in 
our multi-agent domain. 

1 I n t r o d u c t i o n 

It is desirable that an autonomous agent, operating 
under uncertainty in complex environments, be able 
to make opt imal decisions about which actions to ex­
ecute. Rational decision-making under such circum­
stances using, for instance, the paradigm of expected 
ut i l i ty maximizat ion, is costly [Horvi tz, 1988; Russell 
and Wefald, 1991; Russell and Subramanian, 1995; 
Zilberstein and Russell, 1996]. In our work, we con­
sider addit ional complexities presented by mult i-agent 
environments. In these settings, an agent has to make 

decisions as to the rat ional course of action consider­
ing not only the possibly complex and not ful ly known 
state of its environment, but also considering the beliefs, 
goals, intentions and actions of the other agents. Clearly, 
these demands may lead to its failure to decide an action 
wi th in the t ime constraint. 

To cope w i th t ime constraints imposed by various 
decision-making situations in complex and uncertain 
rnulti-agent settings, we endow an agent w i th a tapestry 
of decision-making procedures, f rom str ict ly reactive to 
purely deliberative. The reactive procedures are con­
structed by compil ing the deliberative decision-theoretic 
reasoning into condit ion-action rules. The compilation 
process exploits the regularities of the decision-theoretic 
reasoning and avoids costly deliberations in urgent sit­
uations. The rules are obtained from machine learn­
ing algori thms, which, as inputs, use the results of fu l l -
blown decision-theoretic computations performed off-
line. Each of the compiled methods is assigned a per­
formance measure that compares it to the ful l-blown 
decision-theoretic benchmark. The various compilations 
available, and their combinations w i th more deliberative 
methods, constitute a spectrum of approaches to mak­
ing decisions under the constraints of available compu­
tat ional (and cognitive) resources, and under t ime pres­
sure. 

Given the various decision-making methods at its dis­
posal, an agent should consider a number of factors to 
choose the appropriate decision-making mechanism for 
the si tuat ion at hand. The key factors include the qual­
ity of the decision provided by a method, the method's 
running time, and the urgency of the situation at hand. 
Intui t ively, wrhen a si tuat ion is not urgent, the agent can 
afford the luxury of fu l l -b lown decision-theoretic reason­
ing since it results in highest qual i ty of the choice made. 
If the si tuat ion is very urgent, the agent should save as 
much t ime as possible by using a crude but fast reac­
t ive tool . If the si tuat ion is somewhat urgent, the agent 
should use methods that are somewhat sophisticated al­
though not necessarily opt imal . 

Interestingly, the spectrum between the purely reac­
tive and ful ly deliberative decision-making tools can be 
spanned by combining these two varieties of methods. 
For example, the agent can use fast reactive rules as a 
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pre-processing stage to narrow down the set of viable al­
ternatives. These alternatives can then be passed on to 
a deliberative decision-making method that uses all of 
the agent's detailed knowledge to compute the expected 
ut i l i ty of these few courses of action. 

In this paper, we develop a suite of decision-making 
procedures for agents operating in multi-agent environ­
ments, and we measure1 their performance and running 
time. We use a part icular multi-agent domain in which 
automated agents have to decide how to coordinate their 
attempts to intercept mult iple incoming threats (as in 
anti-air defense), but we believe that lessons learned in 
this domain generalize to other multi-agent, domains. 

2 Background and Related Work 
Our prior work on deliberative decision-theoretic method 
includes the Recursive Model ing Method (R.MM) [Gmy-
trasiewiez, 1996; Gmytrasiewicz at al., 1998; Noh and 
Gmytrasiewicz, 1997; 1998]. We have implemented a 
full-blown version of R M M which allows an agent to com­
pute its best action given what is known about the other 
agents and about their states of knowledge and capabil­
ities. In the task of coordinating agents in a simulated 

Figure 2: The performance of R M M , RMM-Human, and 
Human teams in anti-air defense, without and wi th com­
munication, respectively. 

better than the others. However, since the R M M deci­
sion procedure considers all of the combinations of the 
agents' alternative actions, it is not surprising that its 
complexity is, in the worst case, exponential in the num­
ber of agents present. As the complexity of the mult i -
agent situation increases, as in Figure 3, the running 
time of R M M grows to over one hour (our current im­
plementation is in Lisp running on a P90 machine). It is 
clear that, the full-blown R M M needs to be supplemented 
by other, more reactive, methods for more1 complex and 
time-crit ical scenarios. 

Figure 1: An example anti-air defense scenario. 

anti-air defense domain (such as in Figure 1) the perfor­
mance of R M M agents was comparable to or better than 
the human performance. Figure 2 presents these results 
in terms of the average total damage suffered by each 
of the coordinating defense teams. We show the per­
formance of three different teams: R M M - R M M , R M M -
Human, and Human-Human team. We experimented 
with all the teams in cases when communication was, 
and was not, available. When the communication was 
available, the performance achieved by three teams was 
improved, w i th the a l l -RMM team performing slightly 

Figure 3: A complex anti-air defense scenario. 

Our present work builds on a body of related re-
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search. Fox et al. [Fox and Krause, 1991] provides a 
theoretical framework for symbolic reasoning as reac­
tive decision procedure. Other rigorous efforts to make 
decision-theoretic systems computat ional ly tractable in­
clude work on the use of metareasoning procedures to 
control inference [Horvi tz, 1988; Horv i tz et al., 1989], 
and anytime algorithms [Dean and Boddy, 1988; Rus­
sell and Subramanian, 1995; Zilberstein and Russell, 
1996]. In yet another approach Bratman [Bratman et 
al., 1988] describes an agent's architecture that includes 
both means-end reasoning and decision-theoretic reason­
ing. For a resource-bounded agent, the agent's beliefs, 
desires, and intentions (BDI) involve the format ion, revi­
sion, and execution of plans to constrain the deliberation 
process. Rao et al. [Rao and Georgeff, 1995] explore the 
applicabil i ty of reactive and deliberative behavior pro­
vided by the B D I architecture, and use it for air-traffic 
management system (OASIS). Ephrat i and collaborators 
[Ephrat i et al., 1995J apply a filtering strategy to the 
multi-agent t i le world system. The f i l ter ing is accom­
plished using rules provided by the system designer, and 
it only guides the agent's role allocation. Our condit ion-
action rules, on the other hand, represent learning over 
the results of agent's rat ional decisions in sample scenar­
ios obtained from a deliberative method. Our f i l tering 
strategy is to accumulate agents1 knowledge and effec­
tively use it to l im i t deliberation in urgent situations. 

In the following sections of this paper we propose 
a compilat ion process that explores the regularities of 
a deliberative decision making, and show how an au­
tonomous agent can use the compiled informat ion, given 
performance metrics and t ime constraints. Then, we val­
idate our framework empirically, and discuss the experi­
mental results. In conclusion, we summarize our results 
and further research issues. 

3 Formalism of Compilation and 
Filtering 

To reduce the complexity and t ime needed for decision 
making in t ime constrained si tuat ion, we compile the re­
sults of deliberative decision-making into a set of reactive 
condit ion-action rules w i th numerous machine learning 
algorithms. An autonomous agent can use the compiled 
knowledge [Russell, 1989; Zilberstein, 1995] and either 
eliminate the deliberative decision-making all together, 
or constrain the number of alternative actions considered 
by excluding the ones that are likely to be suboptimal. 

We propose an adaptive and deliberative agent (ADA) 
architecture, as consisting of compiled and deliberative 
decision procedures that allow the agent's bounded ra­
t ional i ty to emerge from their combined usage. Let N be 
the set of agents, be the set of actions of agent 
i, and be the set of wor ld states that the  
agent can discriminate among. For each action 
we define condition to be the abstraction of the 
wor ld state that includes only the parameters relevant 
for this action. For example, if the action is to pick up a 
block (shoot at a given threat) , then the corresponding 

abstraction specifies the location and other parameters 
of the block ( threat) . Final ly, let be the set 
of compilat ion methods (learning algorithms) that the 
agent employs. 

Given a learning method a compiled decision­
making procedure of an adaptive and deliberative 
agent implements a funct ion coriditum  

representing that the action is (or is not) 
recommended in the state Thus, various machine 
learning algorithms compile decision-theoretic models 
into different functions As we mentioned, we gener­
ated the t ra in ing examples for these learning algorithms 
from deliberative reasoning performed by R M M . 

To allow for further f lexibi l i ty in the A D A agents, 
we allow the procedures to be combined depending on 
circumstances at hand. Clearly, when the agents have 
enough t ime, they should t ry to make a deliberatively 
rat ional decision that maximizes their expected ut i l i ty. 
In a t ime-cri t ical s i tuat ion, howrever, agent's decision­
making is bounded by the available computat ion t ime. 
For an adaptive and deliberative agent, therefore, we use 
the set of compiled rules to remove f rom consideration 
the likely unprofitable actions, and to reduce the deliber­
ation cost. This strategy is represented by the agent 
f i l tering criterion where In­
tui t ively, the value of is the set of plausible actions the 
agent should consider in si tuat ion The f i l tering cri­
terion results f rom applying the rules in the function 

to the current state to obtain the plausible alterna­
tives. For example, if 
then and are plausible, and is not, in situation 

Given the set of plausible actions, our agent maximizes 
the expected u t i l i ty among them: 

( i ) 

We now apply the above formalism to agents making 
coordinated decisions in the anti-air defense domain. 

4 Deliberation About Act ion in 
Ant i -A i r Defense Domain 

Our specific domain, the anti-air domain, consists of a 
number of attacking targets, labelled A and B in Fig­
ure 4, and a number of defending units, labelled 1 and 
2.1 The mission of the defense units is to at tempt to 
intercept attacking targets so as to minimize damages to 
the defended ground area. Let us note that this situa­
tion makes coordination necessary. The defense batteries 
do not want to miscoordinate and at tempt to intercept 
the same threat, bo th due to the wasted ammunit ion 
and due to the increase in l ikel ihood that the remain­
ing threat wi l l reach its destination and cause damage 
proport ional to its warhead size. 

Given these factors, the expected benefit of shooting 
at a threat can be quantif ied as a product of the size of 

1 In the figure, the left top corner of the screen is (0,0), x 
is pointing right, and y is pointing down. 
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Figure 4: An example of a simple anti-air defense sce­
nario. 

the threat and the interception probabil i ty. The inter­
ception probabi l i ty2 , P(Hij), is dependent on the angle 
djj between the target direction of motion and the 
battery line of sight, the distance between the 
battery and the target, and the speed of target (see, 
for example, [Macfadzean, 1992]), as follows: 

(2) 
where u is an interceptor-specific constant (assumed here 
to be 0.001). 

For example, in Figure 4, the combined benefit of Bat­
tery l's shooting at the threat A and Battery2 s shooting 
at the threat D amounts to 206.8(= 100 x 0.94 + 120 x 
0.94). This value is entered in the payoff matr ix , such as 
one on top in Figure 5. In this payoff matr ix the rows 
represent Ba t te ry l ' s alternative actions of shooting at 
.4, B, and not shooting at all (5 ) , respectively, and the 
columns represent the alternative actions of Battery2. 

Figure 5: R M M ' s recursive model structure for Bat­
tery l's decision making. 

The actual behavior of Battery2, however, depends 
on a number of factors that Battery 1 may be uncertain 

2In the cooperative weapon-target allocation problem, air 
defense units calculate probability of kill to evaluate target, 
survivability depending upon situation-specific characteris­
tics. Here, the interception probability is a probability of 
kill, and is based on our heuristic factors. 

about. For example, if Battery2 has been hit and inca­
pacitated, it wi l l not be able to launch any interceptors. 
If it is not incapacitated then its own decision-making 
situation can be represented as another payoff matr ix. 
Further, Battery2 may have run out of long-range or 
short-range interceptors. If Battery2 has only long-range 
interceptors, it would be unable to attack target B, and 
can only attempt to shoot down target A. If Battery2 
has only short-range interceptors, it can only attempt to 
shoot at target B. These four models, of Battery2 being 
fully operational and having long- and short-range inter­
ceptors, operational wi th only long-range interceptors, 
having only short-range interceptors, and incapacitated, 
are depicted as the second level models in Figure 5, wi th 
their associated probabilities, in this example case 0.3, 
0.3, 0.3, and 0.1, respectively. 

The Recursive Modeling Method uses dynamic 
programming [Gmytrasiewicz, 199G; Noh and Gmy-
trasiewiez, 1997] to process model structures as in Fig­
ure 5 and determine the rational choice of coordinated 
action. In this case, Battery 1 computes that if Battery2 
is fully operational then the probabil i ty distribution over 
Battery2 ,s actions A, B, and 5 is [0.03,0.97,0.0]. If Bat­
tery 2 has only long-range interceptors it wi l l choose to 
shoot at target .4, i.e., the probabil i ty distr ibution over 
Battery2 ,s actions becomes [1,0,0]. If Battery 2 has only 
short-range interceptors it, wil l intercept target B. These 
probabil i ty distributions are combined with the model of 
Battery2 being incapacitated: 

The resulting distr ibut ion is Bat tery l 's overall expec­
tat ion of Battery2's actions, given all of the remaining 
uncertainties. Propagating these results to Level 1, the 
combined probabil i ty distr ibution describing Battery2's 
actions is used to compute the expected util it ies of Bat­
tery l's alternative actions. We have: 

Thus, given the uncertainties about Battery2, Bat tery l 's 
rational coordinated choice is to intercept target A. 

5 Compilat ion of Deliberative Decisions 
in Air-Defense 

To construct compiled rules for our agents in the coor­
dinated defense domain, we used four machine learning 
algorithms: Hayes Classifier, C4.5 [Quinlan, 1993], CN2 
[Clark and Niblett , 1989], and FOIL [Cameron-Jones 
and Quinlan, 1994].3 The input data for the learning 

3We implemented the anti-air defense domain with Com­
mon LISP on top of the MICE simulator [Durfee and Mont­
gomery, 1989] on a LINUX machine, and also implemented 
a simple Bayesian classifier described in [Clark and Niblett, 
1989]. 

NOH AND GMYTRASIEWICZ 495 



algorithms were obtained from the Recursive Model ing 
Method ( R M M ) , as described above. For the Bayesian 
classifier, the results are represented as rules specify­
ing the probabi l i ty of occurrence of each at t r ibute value 
given a class [Clark and Nib let t , 1989], in our case "Yes'1 

(also called Select. Target below) and "No" {Don't Select 
Target below). C4.5 represents its output as a decision-
tree, and the output of CN2 is an ordered set of if-then 
rules. The trained results of F O I L are the relations of at­
tr ibutes as function-free Horn clauses. We now describe 
the agent's compiled knowledge by using the above learn­
ing algorithms, and compare their decision capabilities 
in the anti-air defense environment. 

5.1 Learned Condit ion-Action Rules 
In our experiments we considered agents that vary in 
their capacities, and they have l imi ted knowledge about 
other agents. They decide on which behavior to execute 
based upon their sensory input and the l imited informa­
t ion they have about the other agents. 

The attr ibutes of situations that the agents can sense 
in an anti-air defense environment are summarized in 
Table 1. They include the size, speed and angle of the 
attacking targets, the agent's own intercepting capabili­
ties (i.e., its possessing both long- and short-range inter­
ceptors, only long-range interceptors, only short-range 
interceptors, and its being incapacitated and unable to 
shoot), and the probabil it ies associated w i th the capa­
bilities of the other defense agent4 (the other agent's 
possessing both long- and short-range interceptors, only 
long-range interceptors, only short-range interceptors, 
and its being incapacitated and unable to shoot). Dur­
ing the experiments the values of the attr ibutes were 
randomly generated wi th in the ranges of values. 

Table 1: condition describing the relevant at­
tr ibutes of targets in the anti-air defense. 

Att r ibute Type Value 
Target Size numeric 100 - 300 
Target Speed nominal slow, mid, fast 
Target Angle numeric 0 - 90 
Distance numeric 0 - 40 
Capacity nominal both, long, short, incap. 
P of both amino numeric 0.0 - 1.0 
P of only long numeric 0.0 - 1.0 
P of only short numeric 0.0 - 1.0 
P of incap. numeric 0 .0- 1.0 

Based on the attr ibutes in Table 1, the targets the 
defense agent considers for interception can be classified 
into two classes: As 
an example, a decision tree obtained using C4.5 for these 
attr ibutes is depicted in Figure 6. 

Table 1 describes parameters for two agents and the gen­
eralization to a set of agents requires an additional set of 
probability parameters. 
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Figure 6: The decision tree obtained by C4.5. 

5.2 Experiments and Performance Results 
To evaluate the qual i ty of various rule sets generated by 
different learning algorithms the performance obtained 
was expressed in terms of the to ta l expected damage 
to friendly forces after launching interceptors. The to­
tal expected damage is defined as a sum of the resid­
ual warhead sizes of the attacking targets. Thus, if a 
target was aimed for interception, then it contributed 
((1 i nterception _probabiIity) warhead_size) to the 
total damage. If a target was not intercepted, it con­
t r ibuted all of its warhead size value to the damage. 

To find a meaningful size of the t ra in ing set which 
could guarantee the soundness of the learning hypothe­
sis, we generated several sets of t ra in ing examples. As 
the number of the examples increased, the resulting per­
formances improved drastically up to a certain point, 
after which performance did not improve. In anti-air de­
fense scenarios that included two batteries and two tar­
gets the sufficient number of t ra in ing instances we found 
was 250 examples. By using the compiled condition-
action rules obtained by different learning methods, we 
tested the performances of the methods on a new set of 
250 cases. The results of performance (damage's) and 
runt ime (sec.) are described in Table 2. 

Table 2: Performance and runt ime of algorithms in the 
two units and two targets setting. 

Methods Perf( Damages) Time 
Deliberative 

R M M 199.4 ± 97.9 0.12 ±0 .09 
Reactive 

Daves 
C4.5 
FOIL 

' CN2 

229.5 ± 105.9 
241.6 ± 102.2 
244.1 ± 104.8 
245.7 ± 100.5 

0.07 ± 0.07 
0.03 ± 0.01 
0.08 ± 0.08 
0.04 ± 0.04 

ANOVA 8.935 162.173 

We analyzed the performance results in Table 2 us­
ing the standard analysis of variance (ANOVA) method. 
Since the computed value of / — 8.94 in ANOVA exceeds 

we know that the five teams wrere not all 
equally effective at the 0.01 level of significance, i.e., the 
differences in their performance were not due to chance 



with probabi l i ty of 0.99. As we expected, the pure delib­
erative procedure R M M showed the best performance. 
The Bayesian classifier computes the probabilities for 
two classes, and enables the defense agents to select the 
target which has the highest probabi l i ty of being in the 
class of targets to be intercepted. The Bayesian classifier 
showed reasonable performance and runtime. When the 
pure reactive procedures, C4.5, CN2, and FOIL , were 
used, they could not uniquely decide the target in some 
cases, if the sensory input values of attr ibutes were sim­
ilar. If the defense agents sti l l were ambiguous in target 
interception after applying condition-action rules, they 
randomly selected the target. The agent's performance 
by using C4.5 was better than those of FOIL and CN2 
while it took less runt ime. 

As expected, R M M required the longest runt ime, and 
C4.5 needed the shortest runt ime among the five deci­
sion procedures. A NOVA revealed that the differences 
in running t ime were not due to chance wi th probabil-
ity 0.99 again. When making a decision, the defense 
agents compared the current sensory input w i th one of 
the condition-action rules to classify a new example. The 
learning results obtained f rom CN2 and FOIL were rep­
resented by the sequential comparisons while C4.5 used 
the decision tree. Due to this difference CN2 and FOIL 
took longer to run than C4.5. The advantage of decision 
tree was in that it reduced the number of matches by 
disregarding nodes in the tree unrelated to the input. 

To measure the efficiency of an adaptive and deliber­
ative agent architecture which uses the reactive rules to 
filter the alternatives considered by a deliberative pro­
cedure, we experimented wi th the scaled-up setting de­
picted in Figure 3. In this sett ing, there were six batter­
ies and 18 targets. The R M M agents we implemented for 
these experiments modeled only their closest neighbors 
for coordinated decision-making to reduce their delibera­
tion time. Since, as shown in Tabic1 2, the Bayes classifier 
and C4.5 performed best among the reactive rule sets, we 
used these two as filtering cri teria for ADA agents. As 
training data for the two learning algorithms, we gen­
erated 13800 tuples, which consist of 10200 for Don't 
Select Target class, and 3600 for Select Target class. The 
results of performance (damages) and runt ime (sec.) in 
the scaled-up setting are described in Table 3. 

Table 3: Performance and runt ime of algorithms in the 
scaled-up setting. 

Table 3 presents the average total expected damage af­
ter 200 tr ials. We focus on the performances of three dif­
ferent agents: R M M , Bayes-RMM (Bayesian rules used 

to filter alternatives for deliberations using R M M ) , and 
C4.5-RMM. The performance of the R M M agent was, 
again, the best. The performances of Bayes-RMM and 
C4.5-RMM agent were 94.3% and 92.1% of the R M M 
agent's performance, respectively. Further, the runtimes 
of adaptive and deliberative agents were drastically re­
duced. The size of the set of filtered plausible alterna­
tive actions were 7, and 9 out of 18 targets for Bayesian 
classifier and C4.5, respectively. The total runtime for 
Bayes-RMM agent was 9.23 on the average, and the 
C4.5-RMM agent needs 9.31 seconds for its target selec­
tion in the simulated anti-air defense environment. This 
result indicates that the combination of reactive and de­
liberative decision-making procedures saves the agent's 
deliberation time while offering good performance, com­
pared wi th pure deliberative procedure. Also, among the 
reactive procedures, the performance of Bayesian classi­
fier was better than that of C4.5 since it included the 
additional probabilistic information. Since the defense 
batteries controlled by C4.5 alone randomly selected the 
targets after filtering out unprofitable targets, its perfor­
mance was the worst. 

6 Conclusions 

We investigated a set of condition-action rule sets 
achieved by compiling decision-theoretic reasoning im­
plemented in R M M method using various learning al­
gorithms. We found that the compiled rules reduce the 
complexity and running time in complex multi-agent sce­
narios. This approach enables an adaptive and deliber­
ative agent to reach a decision wi th in a reasonable time 
period. 

We experimented wi th the anti-air defense domain to 
assess the quality of the flexible decision-making proce­
dure. Ant i-air defense is certainly a real-time task, and 
any overhead or loss of t imely response can result in ad­
dit ional damages. The combination of reactive and de­
liberative decision-making methods avoided catastrophic 
failure, and provided good-quality decisions in the time-
constrained anti-air defense. 

In our future research, we wi l l consider how an au­
tonomous agent can decide on its coordinated action in 
an any-time fashion [ l lorv i tz, 1988; Horvitz et al., 1989; 
Dean and Boddv, 1988]. Our framework wil l provide 
the rational action under uncertain deadline by calcu­
lating the computational gain, representing the tradeoff 
between the costs and the benefits of computation. 
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