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Abstract 

Coordination of agent activities is a key problem in multia­
gent systems. Set in a larger decision theoretic context, the 
existence of coordination problems leads to difficulty in eval­
uating the utility of a situation. This in turn makes defin­
ing optimal policies for sequential decision processes prob­
lematic. We propose a method for solving sequential multi-
agent decision problems by allowing agents to reason explic­
itly about specific coordination mechanisms. We define an ex­
tension of value iteration in which the system's state space 
is augmented with the state of the coordination mechanism 
adopted, allowing agents to reason about the short and long 
term prospects for coordination, the long term consequences 
of (mis)coordination, and make decisions to engage or avoid 
coordination problems based on expected value. We also il­
lustrate the benefits of mechanism generalization. 

1 Introduction 
The problem of coordination in multiagent systems (MASs) 
is of crucial importance in AI and game theory. Given a col­
lection of agents charged with the achievement of various ob­
jectives, often the optimal course of action for one agent de­
pends on that selected by another. If the agents fail to coordi-
nate the outcome could be disastrous. Consider, for instance, 
two agents that each want to cross a bridge that can support 
the weight of only one of them. If they both start to cross, 
the bridge wi l l collapse; coordination requires that they each 
"agree" which one of them should go first. 

Coordination problems often arise in fully cooperative 
MASs, in which each agent shares the same util ity function 
or common interests. This type of system is appropriate for 
modeling a team of agents acting on behalf of a single indi­
vidual (each tries to maximize that individual's uti l i ty). In 
the bridge example above, it may be that neither agent cares 
whether it crosses first, so long as they both cross and pur­
sue their objectives. In such a setting, coordination problems 
generally arise in situations where there is some flexibil ity 
regarding the "roles" into which agents fall. If the abilities 
of the agents are such that it makes little difference if agent 
a\ pursues objective o\ and a 2 pursues o2, or vice versa, the 
agents run the risk of both pursuing the same objective—with 
consequences ranging from simple delay in goal achievement 
to more drastic outcomes—unless they coordinate. This is­
sue arises in many team activities ranging from logistics plan­
ning to robotic soccer. 

An obvious way to ensure coordination is to have the 
agents' decision policies constructed by a central controller 
(thus defining each agent's role) and imparted to the agents. 
This is often infeasible. Approaches to dealing with "inde­
pendent" decision makers include: (a) the design of conven­
tions or social laws that restrict agents to selecting coordi­
nated actions [9, 15]; (b) allowing communication among 
agents before action selection [16]; and (c) the use of learn­
ing methods, whereby agents learn to coordinate through re­
peated interaction [5, 6, 8, 11]. 

Unfortunately, none of these approaches explicitly con­
siders the impact of coordination problems in the context of 
larger sequential decision problems. If the agents run the risk 
of miscoordination at a certain state in a decision problem, 
how should this impact their policy decisions at other states'! 
Specifically, what is the long-term (or sequential) value of be­
ing in a state at which coordination is a potential problem? 
Such a valuation is needed in order for agents to make ratio­
nal decisions about whether to even put themselves in the po­
sition to face a coordination problem. 

Unfortunately, there are no clear-cut definitions of sequen­
tial optimality for multiagent sequential decision processes 
in the general case. Most theoretical work on coordina­
tion problems assumes that a simple repeated game is be­
ing played and studies methods for attaining equilibrium in 
the stage game. In this paper, we argue that optimal sequen­
tial decision making requires that agents be able to reason 
about the specific coordination mechanisms they adopt to 
resolve coordination problems. With this ability, they can 
make optimal decisions by considering the tradeoffs involv­
ing probability of (eventual) coordination, the consequences 
of miscoordination, the benefits of coordination, the alter­
native courses of action available, and so on. We develop 
a dynamic programming algorithm for computing optimal 
policies that accounts not only for the underlying system 
state, but also the state of the coordination mechanism be­
ing adopted. Specifically, we show how the underlying state 
space can be expanded minimally and dynamically to ac­
count for specific coordination protocol being used. 

With this definition of state value given a coordination 
mechanism, one can tackle the problem of defining good co-
ordination mechanisms for specific decision problems that 
offer good expected value (we but wi l l make a few remarks 
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near the end of the paper on this point). Our framework there­
fore provides a useful tool for the design of conventional, 
communication and learning protocols [15J. 

We focus on ful ly cooperative MASs, assuming that a 
common coordination mechanism can be put in place, and 
that agents have no reason to deliberate strategically. How­
ever, we expect most of our conclusions to apply mutatis mu­
tandis to more general settings. We introduce Markov deci­
sion processes (MDPs) and multiagent MDPs (MMDPs) in 
Section 2. We define coordination problems and discuss sev­
eral coordination mechanisms in Section 3. In Section 4 we 
describe the impact of coordination problems on sequential 
optimality criteria, show how to expand the state space of the 
M M D P to reason about the state of the specific mechanisms 
or protocols used by the agents to coordinate, and develop 
a version of value iteration that incorporates such consider­
ations. We illustrate the ability of generalization techniques 
to enhance the power of coordination protocols in Section 5, 
and conclude with some remarks on future research direc­
tions in Section 6. 

2 Multiagent MDPs 

2.1 Markov Decision Processes 

We begin by presenting standard (single-agent) Markov deci­
sion processes (MDPs) and describe their multiagent exten­
sions below (see [3, 13] for further details on MDPs). A fully 
observable MDP M = (S, A, Pr, R) comprises the follow­
ing components. S is a finite set of states of the system be­
ing controlled. The agent has a finite set of actions A with 
which to influence the system state. Dynamics are given by 
Pr : here denotes the 
probability that action a, when executed at state induces a 
transition to is a real-valued, bounded reward 
function. The process is fully observable: though agents can­
not predict with certainty the state that wi l l be reached when 
an action is taken, they can observe the state precisely once 
it is reached. 

An agent finding itself in state at time must choose an 
action The expected value of a course of action depends 
on the specific objectives. A finite horizon decision problem 
with horizon T measures the value of as 
(where expectation is taken w.r.t. Pr). A discounted, infinite 
horizon problem measures value as 
Here is a discount factor that ensures the infi­
nite sum is bounded. 

For a finite horizon problem with horizon a nonstation-
ary policy A associates with each state 
s and stage-to-go T an action to be executed at s 
with t stages remaining. An optimal nonstationary policy is 
one with maximum expected value at each state-stage pair. A 
stationary policy for an infinite horizon problem 
associates actions with states alone. 

A simple algorithm for constructing optimal policies (in 
both the finite and infinite horizon cases) is value iteration 
f 13]. Define the <-stage-to-go value function by setting 

Figure 1: A Simple MMDP with a Coordination Problem. 

For a finite horizon problem with horizon T, we set = 1 (no 
discounting) and during these calculations set to the 
action a maximizing the right-hand term, terminating the it­
eration at t = T. For infinite horizon problems, the sequence 
of value functions produced by value iteration converges 
to the optimal value function V*. For some finite t, the ac­
tions a that maximize the right-hand side of Equation 1 form 
an optimal policy, and approximates its value. 

2.2 The M u l t i a g e n t Extens ion 
We now assume that a collection of agents is controlling the 
process. The individual actions of agents interact in that the 
effect of one agent's actions may depend on the actions taken 
by others. We take the agents to be acting on behalf of some 
individual; therefore, each has the same utility or reward 
function R. The system is fully observable to each agent. 

We model this formally as a multiagent Markov deci­
sion process (MMDP). MMDPs are much like MDPs with 
the exception that actions (and possibly decisions) are "dis­
tributed" among multiple agents. An MMDP M = 

consists of five components. The set 
a is a finite collection of n agents, with each agent i  
having at its disposal a finite set A, of individual actions. An 
element of the joint action space, =  
represents the concurrent execution of the actions a, by each 
agent i. The components S, Pr and R are as in an MDP, ex­
cept that Pr now refers to joint actions  

Taking the joint action space to be the set of basic ac­
tions, an MMDP can be viewed as a standard (single-agent) 
MDP. Specifically, since there is a single reward function, 
the agents do not have competing interests; so any course 
of action is equally good (or bad) for all. We define opti­
mal joint policies to be optimal policies over the joint action 
space: these can be computed by solving the (standard) MDP 

using an algorithm like value iteration. 

Example An example MMDP is illustrated in Figure 1. The 
MMDP consists of two agents a 1 and a2, each with two ac­
tions a and 6 that can be performed at any of the six states. 
A l l transitions are deterministic and are labeled by the joint 
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actions that induce that transition. The joint action (a, b) 
refers to al performing a and al performing 6, and others 
similarly (with * referring to any action taken by the cor­
responding agent). At the "source" state s1,a1 alone de­
cides whether the system moves to s2 (using a) or s3 (us­
ing 6). At S3, the agents are guaranteed a move to s6 and 
a reward of 5 no matter what joint action is executed. At 
s2 both agents must choose action a or both must choose 
b in order to move to s4 and gain a reward of 10; choosing 
opposite actions results in a transition to s5 and a reward 
of -10. The set of optimal joint policies are those where 
a1 chooses a at s1 (a2 can choose a or 6), and a1 and a 2 
choose either (a, a) or (b,b) at s2. 

The value function determined by solving the MMDP for 
the optimal joint policy is the optimal joint value function and 
is denoted In the example above, an infinite horizon prob­
lem with a discount rate of 0.9 has = 29.9, while for 
a finite horizon problem, is given by  

MMDPs, while a natural extension of MDPs to cooper­
ative multiagent settings, can also be viewed as a type of 
stochastic game as formulated by Shapley [14]. Stochastic 
games were originally formulated for zero-sum games only 
(and as we wil l see, the zero-sum assumption alleviates cer­
tain difficulties), whereas we focus on the (equally special) 
case of cooperative games. 

3 Coordination Problems and Coordination 
Mechanisms 

The example MMDP above has an obvious optimal joint pol­
icy. Unfortunately, if agents a1 and a2 make their decisions 
independently, this policy may not be implementable. There 
are two optimal joint action choices at s2: (a,a) and (6, 6). 
If, say, al decides to implement the former and a2 the latter, 
the resulting joint action (a, 6) is far from optimal. This is a 
classic coordination problem: there is more than one optimal 
joint action from which to choose, but the optimal choices 
of at least two agents are mutually dependent (we define this 
formally below). Notice that the uncertainty about how the 
agents wil l "play s2" makes a l 's decision at s1 rather diffi­
cult: without having a good prediction of the expected value 
at s2. agent al is unable to determine the relative values of 
performing a or 6 at s1 (more in this in Section 4). 

In the absence of a central controller that selects a single 
joint policy to be provided to each agent, ensuring coordi­
nated action choice among independent decision makers re­
quires some coordination mechanism. Such a mechanism re­
stricts an agent's choices among the potentially individually 
optimal actions, perhaps based on the agent's history. We de­
scribe some of these below, including learning, conventional 
and communication techniques. 

In the remainder of this section, we focus on repeated 
games, returning to general MMDPs in the next section. An 
identical-interest repeated game can be viewed as an MMDP 
with only one state—joint actions are played at that state re­
peatedly. An immediate reward R(a) is associated with each 
joint action. Our aim is to have the individual actions selected 
by each agent constitute an optimal joint action. Formally, a 

stage game G comprises action sets A, for each agent i, joint 
action space A, and reward function R. The stage game is 
played repeatedly. 

Definition Joint action a A is optimal in stage game G if 
R(a) R(a') for all A. Action is poten­
tially individually optimal (PIO) for agent i if some opti­
mal joint action contains We denote by the set of 
such actions for agent  

Definition Stage game G = R) induces a co-
ordination problem (CP) iff there exist actions  

such that is not optimal. 

Intuitively, a CP arises if there is a chance that each agent se­
lects a PlO-action, yet the resulting joint action is suboptimal. 

CPs in repeated games can often be "reduced" by eliminat­
ing certain PlO-actions due to considerations such as domi­
nance, risk (e.g., see the notions of risk-dominance and trac­
ing used by Harsanyi and Selten to select equilibria [7]), or 
focusing on certain PlO-actions due to certain asymmetries. 
These reductions, if embodied in protocols commonly known 
by all agents, can limit choices making the CP "smaller" 
(thus potentially more easily solved), and sometimes result 
in a single "obvious" action for each agent. We do not con­
sider such reductions here, but these can easily be incorpo­
rated into the model presented below. 

A coordination mechanism is a protocol by which agents 
restrict their attention to a subset of their PlO-actions in a CP. 
A mechanism has a state, which summarizes relevant aspects 
of the agent's history and a decision rule for selecting actions 
as a function of the mechanism state. While such rules often 
select actions (perhaps randomly) from among PlO-actions, 
there are circumstances where non-PIO-actions may be se­
lected (e.g., if the consequences of uncoordinated action are 
severe). Mechanisms may guarantee immediate coordina­
tion, eventual coordination, or provide no such assurances. 
To illustrate, we list some simple (and commonly used) co-
ordination methods below. In Section 4, we wil l focus pri­
marily on randomization techniques with learning. However, 
communication and conventional methods can be understood 
within the framework developed below as well. 

Randomization wi th Learning This is a learning mecha­
nism requiring that agents select a PlO-action randomly un­
til coordination is achieved (i.e., an optimal joint action is 
selected by the group). At that point, the agents play that 
optimal joint action forever. We assume that actions are se­
lected according to a uniform distribution.1 The mechanism 
has k -f 1 states, where k is the number of optimal joint ac­
tions: k states each denote coordination on one of the opti­
mal actions, and one denotes lack of coordination. The state 
changes from the uncoordinated state to a coordinated state as 
soon as an optimal action is played. This requires that agents 
be able to observe actions or action outcomes. 

We can model this protocol as a finite-state machine 
(FSM). The FSM for the CP at s2 in Figure 1 is illustrated in 

1 In this and other mechanisms, reduction methods can be used 
to reduce the number of actions considered by each agent. 
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Figure 2: A simple FSM for the randomization mechanism: 
solid arrows denote state transitions, labeled by inputs (ob­
served joint actions); dashed arrows indicate outputs (action 
choices). 

Figure 2. When the agents are uncoordinated (state U), they 
each choose action a and 6 randomly. If the observed joint 
action is not coordinated, the remain in state (/; but if they 
coordinate, they move to the appropriate state (A or B) and 
stay there (executing the corresponding action). 

For many problems, we can view the mechanism as having 
only two states: coordinated (C) and uncoordinated (U). If 
C\ we simply require that the agent memorize the action on 
which the group coordinated. For the purposes of comput-
ing expected value below, we often need only distinguish be­
tween C and U states (without regard to the actual action cho­
sen). We note that randomization works quite well if there 
is a small group of agents with few actions to choose from; 
but as these sets grow larger, the probability of transitioning 
from U to C gets exponentially smaller. Randomization en­
sures eventual coordination, at a rate dictated by the number 
of agents and number of choices available to them. 

Fictitious play (FP) is a related learning technique com­
monly studied in game theory [4, 6] where each agent i ob­
serves the actions played in the past by other agents and plays 
a best response given the empirical distribution observed. We 
refer to [6] for details, but note that the state of the mecha­
nism consists of "counts" of the PlO-actions played by other 
agents; thus FP has an infinite number of states. For fully 
cooperative games, FP converges to an optimal joint action 
if attention is restricted to PlO-actions and agents randomize 
over tied best responses [2, 12].2 It also has the property that 
once a coordinated action is played, it is played forever. Un­
like randomization, FP tends to lead to faster coordination as 
the number of agents and actions increase [2]. 

Lexicographic Conventions Conventions or social laws 
(e.g., driving on the right-hand side of the road) are often used 
to ensure coordination [9, 15]. Lexicographic conventions 
can be applied to virtually any CP. Given some commonly-
known total ordering of both agents and individual actions, 
the set of optimal actions can be totally ordered in several dif­
ferent ways. Lexicographic conventions ensure immediate 
coordination, but can have substantial overhead due to the re­
quirement that each agent have knowledge of these orderings 

2 Hence, it might best be described as a learning technique with 
randomization, rather than a randomization technique with learning. 

of both agents and actions. This may be reasonable in a fixed 
setting, but may be harder to ensure over a variety of decision 
problems (e.g., involving different collections of agents). In 
contrast, the learning models described above can be viewed 
as "meta-protocols" that can be embodied in an agent once 
and applied across multiple decision problems. 

Communication Finally, a natural means of ensuring co-
ordination is through some form of communication. For ex­
ample, one agent may convey its intention to perform a spe­
cific PlO-action to another, allowing the other agent to se­
lect a matching PlO-action. There are a number of well-
known difficulties with devising communication and negoti­
ation protocols, involving issues as varied as synchronization 
and noisy channels. We do not delve into such issues here. 
We assume that some agreed upon negotiation protocol is in 
place. Realistically, we must assume that communication has 
some cost, some risk of failure or misinterpretation, and de­
lays the achievement of goals. As such, we model commu­
nication as actions in an MMDP which have effects not on 
the underlying system state, but on the "mental state" of the 
agents involved. Rather abstractly, we can say that the state 
of a communicative coordination mechanism for an agent i is 
its estimate of the "mental state" of other agents. For exam­
ple, after negotiation, agent a1 may believe that a 2 is com­
mitted to performing action 6. The "mental state" of other 
agents wil l generally only be partially observable, and the 
state of the mechanism wil l be estimated by each agent. 

4 Dynamic Programming wi th Coordination 
4.1 Sequential Optimally and State Value 
CPs arise at specific states of the MMDP, but must be con­
sidered in the context of the sequential decision problem as a 
whole. It is not hard to see that CPs like the one at s2 in Fig­
ure 1 make the joint value function misleading. For example, 

= 10 and = 5, suggesting that a1 should 
take action a at s1 with 2 stages-to-go. But assumes 
that the agents wil l select an optimal, coordinated joint ac­
tion at s2. As discussed above, this policy may not be imple-
mentable. Generally, the optimal joint value function wil l 
overestimate the value of states at which coordination is re­
quired, and thus overestimate the value of actions and states 
that lead to them. 

A more realistic estimate of this value would ac­
count for the means available for coordination. For instance, 
if a lexicographic convention were in place, the agents are 
assured of optimal action choice, whereas if they randomly 
choose PlO-actions, they have a 50% chance of acting opti­
mally (with value 10) and a 50% chance of miscoordinating 
(with value -10). Under the randomization protocol, we have 

(s2) = 0 and (S3) = 5, making the optimal decision at 
s1, with two stages to go, "opting out of the CP:" al should 
choose action 6 and move to S3. 

Unfortunately, pursuing this line of reasoning (assuming a 
randomization mechanism for coordination) will lead the a1 
to always choose b at s1, no matter how many stages remain. 
If we categorically assert that = 0, we must have 
that for any stage t 1. This ignores the 
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fact that the coordination mechanism in question does not re­
quire the agents to randomize at each interaction: once they 
have coordinated at s2, they can choose the same (optimal) 
joint action at all future encounters at s2. Clearly, the 
depends on the state of the coordination mechanism. If the 
agents have coordinated in the past, then = 10, since 
they are assured coordination at this final stage; otherwise 

= 0. By the same token, depends on the state 
of the mechanism for arbitrary t 1, as does the value of 
other states. 

The optimal value function V is not a function of the sys­
tem state alone, but also depends on the state of the mecha­
nism. By expanding the state space of the original MMDP 
to account for this, we recover the usual value function def­
inition. In this example, we define the expanded MMDP to 
have states of the form (s, c), where s is some system state 
and c is the state of the randomization mechanism. We use 
C and U to refer to coordinated and uncoordinated states of 
the mechanism, respectively (with C standing for either A or 
B in the FSM of Figure 2). Transitions induced by actions 
are clear: each action causes a system state transition as in 
the MMDP, while the coordination state changes from U to 
C only if the agents choose action (a, a) or (b, b) at s2 (and 
never reverts to U). The coordination protocol also restricts 
the policies the agents are allowed to use at s2. If they find 
themselves at (expanded) state (s2, U), they must random­
ize over actions a and 6. As such, the transition probabilities 
can be computed easily: (s2,U) moves to both (s4, C) and 
(S5, U) with probability 0.5.3 

The expanded MMDP can be viewed a combination of the 
original MMDP and the partially specified controller shown 
in Figure 2. The state space of the expanded MMDP is given 
by the cross-product of the MMDP and FSM state spaces, 
while the FSM restricts the choices that can be made when the 
agents are at state s2 (for each state A, B or U of the FSM). 
Generally speaking, the protocol restricts action choices at 
the state where the CP arose, while optimal choices should 
be made at all other states. Notice that these choices are op­
timal subject to the constraints imposed by the protocol (or 
finite-state controller). 

With this expanded state space, we can trace value iteration 
on our running example to illustrate how the agents reason 
about sequential optimality in a way that accounts for the CP 
and the coordination mechanism. We assume a finite horizon 
problem without discounting. 

Example For all stages t 0, obviously > 
so if the agents are in a state of coordination, a 1 

should choose action a at s1 and "opt i n " to the CP by mov­
ing to s2. Matters are more complex if the agents are unco­
ordinated. For all stages 
So with 8 or fewer stages remaining, a1 should choose to 
"opt out" (choose 6) at For all stages t 10, how­
ever, = 22.5 
while Thus, a1 should "opt in " to the 

3 More precisely, transitions to states and  
with probability 0.25 each. 

4The values and U) are equal for 8 t 10. 

CP at if there are 12 or more stages remaining. 

This example shows how knowledge of the state of the co-
ordination mechanism allows the agents to make informed 
judgments about the (long term) benefits of coordination, 
the costs of miscoordination, and the odds of (immediate or 
eventual) coordination. Because of the cost of miscoordina­
tion (and its 50% chance of occurrence), the agents avoid s2 
with fewer than eight stages to go. The safe course of action 
is deemed correct. However, with eight or more stages re­
maining, they move from (s1, U) to (s2 , U): the 50% chance 
of coordination not only provides the agents with a 50% 
chance at the reward of 10, but also with a 50% chance at least 
two more passes through s4. The long term benefits of coor­
dination (with a sufficient horizon) make the risk worthwhile 
when compared to the safe alternative. 

It is important to note that the state of the coordination 
mechanism must be taken into account at each (system) state 
of the MMDP. For instance, though the state of the mecha­
nism can have no influence on what the agents do at state s3 
(there is only one "choice"), it is relevant to determining the 
value of being at state s3. 

In general, reasoning with coordination mechanisms al­
lows one to account for the factors mentioned above. Natu­
rally, the tradeoffs involving long term consequences depend 
on the decision problem horizon or discount factor. The key 
factor allowing computation of value in this case is an un­
derstanding of the coordination mechanism used to (stochas­
tically) select joint actions in the presence of multiple equi­
libria, and the ability to associate a value with any state of 
the MMDP (given the state of the mechanism). Shapley's 
stochastic games [14] provide a related sequential multiagent 
decision model with a a well-defined value for game states. 
This value, however, is a consequence of the zero-sum as­
sumption, which removes the reliance of state value on the 
selection of a (stage game) equilibrium. In particular, it does 
not apply to fully cooperative settings where CPs arise. 

4.2 Value I te ra t ion w i t h State Expansion 
Value iteration can be revised to construct an optimal value 
function and policy based on any given coordination mecha­
nism. A straightforward version is specified in Figure 3. We 
discuss several optimizations below. 

A list CP of state-game CPs and associated mechanisms 
is kept as they are discovered. A CP exists if the set of op­
timal joint actions at a state/stage pair (the Q-values in step 
3(a)i) induces a CP in the sense defined earlier. Notice that 
CPs are defined using the value function Vt not immediate 
reward. We assume that each CP is associated with a state 
and the collection of actions involved in the optimal joint ac­
tions. Any state s, with a CP wi l l have the availability of ac­
tions involved in the CP restricted by the state of the mech­
anism. The set is the set of actions permitted at s-
given the mechanism state—this may include randomization 
actions as well (if has no CP, this set is just and agents 
can only use permitted actions (step 3(a)i). If a CP is discov­
ered among the maximizing (permitted) actions at si, a new 
mechanism C is introduced and the state is split and replaced 
by all pairs of states (where c is some state of C). 
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Figure 3: Value Iteration with State Expansion 

To illustrate, suppose the value function V1 induces the 
following choices at s,: 

a 6 c 
a 10 0 0 
b 0 10 0 
c 0 0 7 

If randomization is used to coordinate on a/6, expected value 
is 5 (and the mechanism requires agents to randomize over 
their PlO-actions). In contrast, the Q-value of (c, c) is better 
than that of attempting to coordinate, thus the value of s, is 
defined as 7 if the agents are uncoordinated (and 10 if they 
are coordinated). Notice that new CPs may be introduced at 
the same state and the process can be iterated.5 In this prob­
lem, each state s is split into three states: (s, A) (agents have 
coordinated on joint action (a, a) at (s, B) (coordinated 
on (6,6)), and (s, U) (have not coordinated w.r.t. a and 6). 

If a mechanism has been introduced for the same state and 
actions at an earlier stage, a new mechanism is not generated. 
Value (and policy choice) is defined by comparing the value 
of actions not involved in the CP and the value of behaving 
according to the rules of the mechanism (step 3(a)iv). At the 
next iteration all states are split according all mechanisms in­
troduced, since this may be required to predict the value of 
reaching state s,. If multiple CPs exist, each underlying sys­
tem state is expanded many times in this (naive) algorithm. 

Implicit in this discussion is that assumption that the tran­
sitions induced by a coordination protocol over the expanded 
state space are well defined: this will generally involve ex­
tending the underlying system dynamics by rules involving 
mechanism state evolution. The mechanism designer must 
provide such rules (as discussed in Section 3.2). 

An important optimization is to have the algorithm only 
expand states with mechanisms whose state is required to 
predict value. This can be effected rather easily. If system 
state Si transitions to state Sj, and Sj has been split in St to in­
volve some mechanism in CP, s, must be split in state S t + 1 . 
But if Si moves only to states that are unaffected by some (or 
all) CPs, Si need not be split using the state of those CPs. This 

5 However, the splitting must eventually terminate. 

Figure 4: A More Complex Coordination Problem. 

allows one to only refer to the state of a mechanism when it 
is necessary for predicting value: the state space need not be 
split uniformly. 

Other optimizations of the algorithm are possible. For ex­
ample, one can "cluster** together states of the coordination 
mechanism together that provide for the same optimal action 
and value at a given state. For instance, though FP has an infi­
nite number of distinct states, for any finite number of stages-
to-go, only a finite number of distinction are relevant (much 
like state abstraction methods used in MDPs and reinforce­
ment learning [1, 3]). Finally, we note that modeling com-
muncation protocols requires introducing communication ac­
tions, in addition to the state-splitting mechanism above. 

4.3 Examples 
We describe the results of applying the algorithm to several 
small test problems in this section. We focus here on the use 
of the simple randomization mechanism described above. 

Testing a finite horizon version of the problem in Figure 1 
shows that a single CP exists (at state s2). The state space is 
eventually expanded so that each state is split into two (re­
ferring to coordination or lack of it at s2). The optimal de­
cision at (s\, U) is to "opt out" with fewer than eight stages 
to go and "opt in" with eight or more stages remaining. The 
infinite horizon version of this problem gives rise to station­
ary policies. When the discount rate = 0.9 (or higher), a1 
"opts in" at but for = 0.85 (or lower), a] "opts 
out" and avoids the CP—because of discounting, the delay 
in expected payoff of coordination ensures that "opting in" 
is not worth the cost. With = 0.9, the value of opting in is 
17.14 and opting out is 16.54 (assuming the agents act opti­
mally thereafter), while with = 0.85, the value of opting 
in is 8.62 and opting out is 9.36 (within tolerance 0.001). 

A more complex example is illustrated in Figure 4. Two 
agents have independent tasks. Agent al moves box 61 and 
a2 moves 62 to the goal state repeatedly. Once a box is 
dropped at the goal, a reward is received and a new box ap­
pears in the original location (so the problem is a continuous, 
infinite horizon MMDP). While the objectives are indepen­
dent, both agents are rewarded with the same constant reward 
whenever either of their boxes is delivered. The optimal poli­
cies are not independent however. The dark shaded region 
at the bottom is "risky:" if both agents are in the region, a 
large (variable) penalty is given. They must coordinate their 
moves to ensure that no more than one agent is in the risky 
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region at any time. The agents* actions are stochastic: they 
can move in any (feasible) compass direction but with proba-
bility 0.1 they fail to move (they can also stay in place inten­
tionally). Complicating the problem is the fact that the light 
shaded region is "sticky:" the agents' moves are more prone 
to failure (with varying probability). If stickiness is low, the 
optimal policy is for both agents to traverse the top of the grid 
repeatedly. But if stickiness is relatively high (or the problem 
is heavily discounted, making speedy delivery more impor­
tant), one or both agents wi l l want to traverse the risky area, 
in which case coordination is needed. The problem has 900 
nominal states (though a number of these are not reachable) 
and 25 joint actions. 

We give a brief summary of the results in this domain with 
the following specific parameter settings: a reward of 5 is 
given for each box delivered; a penalty of -20 is given when­
ever both agents are in the risky area; stickiness (the prob­
ability of not moving) is 0.7 in the sticky region; and = 
0.95. With these settings, the optimal joint policy (roughly) 
requires that one agent move across the top of the grid and 
one move across the bottom.6 Generally, if an agent is closer 
to the top it wil l move across the top; but if both agents are 
close (and equally close) to the bottom, they must coordinate 
(since either could move to the top). 

CPs arise at eight states of the MMDP Thus there are eight 
coordination mechanisms needed to solve this problem, ex­
panding the state space by a factor of 256 (no distinctions 
need be made among coordinated choices, so each mecha­
nism has only two states). We focus on two MMDP states 
where CPs arise and their interaction: =  
where both agents are located at grid cell 4 each holding 
boxes, and = which is similar, but with 
both agents at location 6. The optimal joint policy at re­
quires one agent to move up (to traverse the sticky region) 
and the other to move down (to traverse the risky region) on 
the way to the goal. The optimal policy at is similar: 
one agent should move up, the other right. The optimal joint 
value function has 

If the agents have coordinated at all other states where CPs 
arise, we have the following optimal values for the four states 
of the expanded MMDP corresponding to each of and 

(here we use to denote that the agents have not coor­
dinated at S4,4, and c4 to denote that they have coordinated at 

similarly for  

In both states if the agents are uncoordinated, 
the optimal policy requires them to randomize, regardless of 
the state of the other coordination mechanism. Notice that 
the values for most of the expanded states where the agents 
are uncoordinated are less than the corresponding values for 
the optimal joint policy (which is identical to the expected 
values at the states where C4C6 holds), as expected. The one 

6 If the penalty is negligible or if the stickiness is even higher, the 
agents will both tend to move across the bottom, perhaps with one 
waiting for the other. If the stickiness is negligible, then both agents 
will traverse the top of the grid. 

exception is at when holds, expected value is iden­
tical whether or not c6 holds, since the optimal policy wi l l 
never take the agents from to In contrast, when 
u4 holds, the status of c6 has a dramatic impact on expected 
value: if the agents are uncoordinated at they wil l ran­
domize and with probability 0.25 both choose to move down 
(hence to Their state of coordination at s6 ,6 is thus im­
portant to predicting expected value. Being uncoordinated 
at has very low value, since randomization has a good 
chance of moving both agents to the risky area—the risk is 
worthwhile, however, so randomization is the optimal choice 
at Also when the agents are coordinated at the sta­
tus of c4 has a rather small effect on value. Because coordi­
nation at ensures that one agent takes the "sticky" route 
to the goal region, the agents get "out of synch'* and the odds 
of them both reaching the pickup location (cell 4) at the same 
time (within a reasonable time frame) is quite small. Hence, 
whether or not the agents are coordinated at has little im­
pact on expected value at  

Randomization is an important aspect of this problem. If 
the agents were to choose from among their P10 actions inde­
pendently, but deterministically, without reasoning about the 
consequences of miscoordination, they can end up in cycles 
that never reach the goal state. 

5 Generalization of Coordination Decisions 
One difficulty with the algorithm above is the potential for 
uninhibited state expansion, and the corresponding compu­
tational cost. In the simple experimental domain with two 
agents collecting boxes in a grid world, eight CPs occurred 
across the 900 problem states, requiring the state space to be 
increased by a factor of 256 (to 230,400 states). Fortunately, 
in many circumstances we can introduce a single coordina­
tion mechanism to deal with multiple, related CPs. In the grid 
problem, for example, once the agents coordinate at a state by 
one agent moving up and the other down, they can maintain 
these "roles" at other states exhibiting similar CPs. 

We do not propose a method for constructing such gen­
eralizations automatically—this could use, say, generaliza­
tion techniques from reinforcement learning [1]—but we i l ­
lustrate potential benefits with the simple example shown in 
Figure 5. It is similar to the MMDP in Figure 1 except that 
miscoordination at has a larger penalty, and an analogous 
"low cost** CP has been added. If a single mechanism is used 
for both CPs (at and ), once coordination is attained 
at it is automatic at As in the original MMDP, with 
fewer than 12 stages-to-go, the optimal action at is 
to "opt out** and take the sure reward 5. With 12 or more 
stages remaining, the optimal action at is the 
agents move to the low risk CP and try to coordinate there. 
Never do the agents move to in an uncoordinated state. 
Even though there is no immediate benefit to moving to it 
gives the agents an opportunity to "train,** or learn to coordi­
nate with minimal risk. Once they coordinate, they immedi­
ately exploit this learned protocol and choose at 
(thereby moving to Reasoning about the long term 

7Though with higher penalties, it is not. 
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Figure 5: An M M D P with Similar Coordination Problems 

prospects of coordination and its costs, the agents realize that 
risk-free training is worthwhile. 

If we retain the original penalty of -10 at s5, this reasoning 
fails: there is essentially less risk involved in training at the 
high stakes CP, so the agents wi l l never move to s7 to train. 

The infinite horizon problem is similar. With a discount 
rate of 0.95, the optimal policy requires the agents to move to 
s7 until they coordinate, at which point they repeatedly move 
to s2. Interestingly, adding the "training states'' increases the 
expected reward accrued by the agents. Without the training 
states, 46.68 since the agents accept the risk 
of getting several -20 rewards to ensure coordination. With 
the training states, they can learn to coordinate without the 
severe penalties, and 49.57. 

6 Concluding Remarks 
We have introduced a novel method of defining value func­
tions (and consequently, optimal policies) for multiagent de­
cision problems that accounts for specific means of coordina­
tion. We also defined a value iteration algorithm for comput­
ing optimal policies that recognizes and reasons about CPs. 

Further experimentation is needed with other coordination 
mechanisms and their impact on policy value. We have de­
scribed experiments in this paper using randomization, and 
have begun to investigate communication methods, and hope 
to explore other models like FP We intend to introduce eco­
nomic models (such as auctions) so that agents may integrate 
reasoning about their activity in markets into their decision 
processes. We must explore automated generalization meth­
ods further; it has the potential to substantially reduce the re­
quired number of mechanisms, alleviate computational diff i­
culties, and increase objective policy value. 

We would also like address the problem of designing ro­
bust, computationally effective and value-increasing coordi­
nation protocols in the framework. In a certain sense, such 
an undertaking can be viewed as one of designing social laws 
[15]. It is also related to the issues faced in the design of pro­
tocols for distributed systems and the distributed control of 
discrete-event systems [10]. But rather than designing proto­
cols for specific situations, metaprotocols that increase value 

over a wide variety of CPs would be the target. The frame-
work developed here can also help decide whether sophisti­
cated protocols are worthwhile. For instance, a lexicographic 
protocol induces immediate coordination with a measurable 
(in our model) increase in expected value over (say) a ran­
domization method. This increase can then be used to de­
cide whether the overhead of incorporating a lexicographic 
convention (e.g., ensuring agents have common orderings) 
is worthwhile. Similar remarks can be applied to the design 
of agents (e.g., is communicative ability worthwile given the 
class of decision problems they wi l l face). 
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