
Path Consistency on Triangulated Constraint Graphs* 

Christian Bliek 
ILOG 

1681 Route des Dolines 
06560 Valbonne, France 

bliekQilog.fr 

Djamila Sam-Haroud 
Artificial Intelligence Laboratory 

Swiss Federal Institute of Technology 
1015 Lausanne, Switzerland 
haroudQlia.di.epf1.ch 

Abstract 
Among the local consistency techniques used in 
the resolution of constraint satisfaction prob­
lems (CSPs), path consistency (PC) has re­
ceived a great deal of attention. A constraint 
graph G is PC if for any valuation of a pair 
of variables that satisfy the constraint in G be­
tween them, one can find values for the interme­
diate variables on any other path in G between 
those variables so that all the constraints along 
that path are satisfied. On complete graphs, 
Montanari showed that PC holds if and only if 
each path of length two is PC. By convention, it 
is therefore said that a CSP is PC if the comple­
tion of its constraint graph is PC. In this paper, 
we show that Montanari's theorem extends to 
triangulated graphs. One can therefore enforce 
PC on sparse graphs by triangulating instead of 
completing them. The advantage is that with 
triangulation much less universal constraints 
need to be added. We then compare the prun­
ing capacity of the two approaches. We show 
that when the constraints are convex, the prun­
ing capacity of PC on triangulated graphs and 
their completion are identical on the common 
edges. Furthermore, our experiments show that 
there is little difference for general non-convex 
problems. 

1 Introduction 
The constraint satisfaction paradigm allows for a natu­
ral formulation of a wide variety of practical problems. 
It consists of representing a problem as a set of vari­
ables taking their values in particular domains, subject 
to constraints which specify consistent value combina­
tions. Solving a CSP amounts to assigning to the vari­
ables, values from their domains, so that all the con­
straints are satisfied. Backtrack search is the principal 
mechanism for solving a CSP. It is commonly combined 
with local consistency techniques to limit the combina­
torial explosion. These techniques reduce the size of the 
search space by removing local inconsistencies. 

"Authors are listed in alphabetical order. 

This paper considers a particular form of local consis­
tency called path consistency (PC). The work presented 

Figure 1: Path Consistency 

considers binary CSPs and builds on their classical con­
straint graph representation, where the vertices represent 
the variables and the edges represent the constraints be­
tween the variables. 

A path P = in a constraint graph 
G is PC if for all pairs of values for that sat­
isfy the constraint in one can find values for 
the intermediate variables so that all the constraints 

in G along the path are sat­
isfied (see figure 1). A constraint graph is PC iff all paths 
in the graph are PC [Mackworth, 1977]. In this paper 
we make the distinction between enforcing PC on CSPs 
and on constraint graphs. A CSP is PC if the comple­
tion of its constraint graph is PC. A CSP will be said to 
be partially PC (PPC) if its constraint graph is PC. 

In practice, we know how to enforce PC on complete 
graphs thanks to the following theorem: 

Theorem 1 (Montanari, 1974) A network with a com­
plete graph is PC iff every path of length two is PC. 

As a result, existing algorithms first complete sparse 
graphs by adding universal binary constraints, then en­
force PC on each path of length two. The algorithms 
with the best time complexity [Mohr and Henderson, 
1986; Han and Lee, 1988] run in time is the 
number of variables and d the maximum domain size. 

Despite its relatively high computational complexity, 
PC on complete graphs has been shown to be a cen­
tral notion for certain classes of problems. In effect, 
it has been shown to be equivalent to global consis­
tency for convex binary problems. This means that if 

456 CONSTRAINT SATISFACTION 



a binary convex CSP is PC, its solutions can be de­
rived backtrack-free. The PC property has also re­
ceived particular attention in the area of temporal rea-
soning [Schwalb and Dechter, 1997] where lower forms 
of consistency prove to be of less interest. 

In this paper we show that Montanari's theorem ex­
tends to triangulated constraint graphs. Triangulated 
constraint graphs can be made PC by ensuring that ev­
ery path of length two is PC. In this case there is no 
need for additional constraints to be synthesized. This 
allows us to devise an algorithm for making a CSP with 
a triangulated constraint graph PPC in time 
is the maximum degree of the graph and e is the num­
ber of edges in the graph. When the original constraint 
graph is not triangulated, we can triangulate it by adding 
universal edges. It is important to note that for sparse 
problems, the number of edges added by triangulation is 
much less than by completion. 

Given an incomplete constraint graph, we then com­
pare the pruning capacity of PC depending on whether 
it is enforced on a triangulation or a completion of the 
graph. We prove that for convex problems, the pruning 
capacity of the two is identical on the common edges. 
This means that, in this case, the extra edges synthe-
sized for completion do not affect the labeling of the 
common edges. We also propose an algorithm for filling 
in these extra edges. 

Finally, we present some experiments illustrating that 
significant gains in computational effort can be obtained 
using our algorithms. Furthermore it appears that there 
is little difference in the pruning capacity of PPC and 
PC for general non-convex CSPs with triangulated con­
straint, graphs. 

2 Background 
In tins paper, we consider binary CSPs (V, C, D) where 
V' is the set of variables, D is the set 

of domains and variable i takes its 
value in domain Dt. The variables of V are subject to 
a set of constraints C — represent the legal 
value combinations from We use the (0,1) 
matrix representation of constraints proposed in [Mon-
tanari, 1974] and assume that is always the trans­
position of is called a universal 
constraint. A constraint is connected row-convex (CRC) 
if after removing the empty rows from its matrix repre­
sentation it is row-convex and connected, i.e. all the 1 
entries in a row are consecutive and two successive rows 
either intersect or are consecutive [Deville et al., 1997]. 

A CSP is strongly PC if in addition to PC it also is arc 
consistent (AC). A CSP is globally consistent if any par­
tial instantiation of a subset of variables can be extended 
to a solution without backtracking. 

Let us now recall the necessary background from graph 
theory. An undirected graph G is triangulated if every 
cycle of length strictly greater than 3 possesses a chord, 
that is, an edge joining two non-consecutive vertices of 
the cycle. For a graph G = (V, E), with an or­

dering of V is a bijection of  
onto V. For each v in V\ the adjacency set is 
defined as A vertex v is sim-
plicial if is complete. Every triangulated graph 
has a simplicial vertex. A triangulated graph remains 
triangulated after removing a simplicial vertex and its 
incident edges from the graph. The order in which sim­
plicial vertices are successively removed is called a per­
fect elimination order. For a given perfect elimination 
order, we will use the notation  
and will denote the subgraph of G induced by St. 

where is the prece­
dence relation of the given order. Observe that since the 
elimination order is perfect, the subgraph of G induced 
by F, is complete. 

The material cited below is taken from[Kjaerulff, 1990]. 
A perfect elimination order can be found in time 
using the maximum cardinality search algorithm. A non-
triangulated graph can always be transformed into a tr i­
angulated one by adding edges. Finding a minimal trian­
gulation, where every edge is necessary for the graph to 
be triangulated can be done in time, where / 
is the number of added edges. This bound is improved on 
average by a procedure called recursive thinning which 
we use in this work. 

3 PC on Triangulated Constraint 
Graphs 

In this section we extend theorem 1 to triangulated 
graphs. We show the following result: 
Theorem 2 A triangulated constraint graph, G is PC iff 
every path of length 2 is PC. 
Proof: Since G is triangulated, we can find a perfect 
elimination order which defines Si, and as dis­
cussed above. We demonstrate that G is PC by induc­
tion on i. Since every path of length 2 is PC, we know by 
construction that is PC. Assuming that G, is PC, we 
set out to prove that. is PC. We do this by showing 
that any path P from u to in is PC. 

If P is in then P is PC by assumption. So we need 
to consider two cases. Either 1) as illustrated on the left 
in figure is an endpoint of P, or 2) 
P goes through as shown on the right in figure 2. 

Figure 2: Two cases of inductive proof 

Let us consider these two cases below: 

BLIEK AND S A M - H A R O U D 457 



1. This path is considered for PC only if there is a 
constraint Let us show that one can find 
values for the intermediate variables so that all the 
constraints along a path P are satisfied. Let be 
the variable that precedes in P. So in addition 
to the constraint we also have a constraint 

Since G is triangulated, the graph induced 
by is complete. So there is a constraint 
Now in G every path of length 2 is PC, so for ev­
ery pair of values that satisfy we can find 
a value for v that satisfies and The 
part of the path P between and is in 
and is therefore PC by assumption. So for the pair 
of values found for we know that we can find 
values for the intermediate variables on this path 

Hence we are able to find a set of values for 
all the intermediate variables between and 
that satisfy the constraints along P. 

2. If P goes through then let and be the vari­
ables that respectively precede and follow in 
the path P. Note that both and are in Since 
there is a constraint a constraint  
and that the graph induced by is complete, we 
know that there is a constraint Now consider 
the path that goes directly f r o m t o   
without passing through is in G\ 
and therefore by assumption PC. This means that 
for any pair of values for (u,w) we can find values 
for the intermediate variables so that all the con­
straints along are satisfied. Since in G 
every path of length 2 is we also know that for 
the pair of values found for (y, z) we can find a value 
for that satisfies both and By 
doing so we just have found a set values that satisfy 
all the constraints along the original path P.  

4 From Triangulated to Completed 
Graphs 

Given the result in the previous section, the question 
arises whether more priming can be obtained by com­
pleting a triangulated graph. As demonstrated in sec­
tion 6 this may indeed occasionally occur. However, in 
this section we show that for the class of convex prob­
lems, no additional pruning is obtained by completing 
the graph. The notion of convexity we refer to is a broad 
one. It includes the conventional definition of convexity 
in continuous domains, as well as its CRC extension to 
the discrete case. This extended convexity property is 
closed under composition and intersection of constraints. 

To show our result on convex problems we need the 
following lemma. 
Lemma 1 If G — (V,E) is an incomplete triangulated 
graph, then one can add a missing edge (u,w)J with 

so that 
1. the graph is triangulated and 
2. the graph induced by is 

complete. 

Proof: Since G is triangulated, it has a perfect elimi­
nation order defining and Let be the small­
est index such that is complete. Consider a variable 

for which there is no edge in G. By 
taking (u, w) = we now prove the two claims 
of the lemma. 

1. Since Gi is complete, there is an edge between 
and every variable in Fi. The graph induced by 
in therefore remains com­
plete. As a result, the considered elimination order 
is also perfect for Since a graph with a perfect 
elimination order is triangulated, is triangulated. 

2. Let us first show that Suppose it is not. 
In that case we necessarily have that a y X that 
precedes for which E. But 
then, since G is triangulated, there would also be an 
edge which contradicts our assumption. 
Finally, since X = and G is triangulated, we 
know that the graph induced by X is complete.  

This lemma is illustrated in figure 3. In this case 

Figure 3: Completing Triangulated Graphs 

= and 
The variables of are colored gray. The construction 
would for example add the dashed edge which is 
currently missing. 

Let us now turn to the main result of this section. 
Theorem 3 For a convex CSP with a triangulated con­
straint graph G, strong PC on G is equivalent to strong 
PC on the completion of G. 

By equivalent we mean that the relations computed 
for the constraints in G are identical. 
Proof: Suppose we have a triangulated graph G = 
(V, E) that is strongly PC. We will add to G the miss­
ing edges one by one until the graph is complete. To 
prove the theorem, we show that the relations of the 
constraints can be computed from the existing ones so 
that each intermediate graph, including the completed 
graph, is strongly PC. 

To add the edges, we use the construction proposed for 
the proof of lemma 1. At all times during the constraint 
addition process, the graph therefore remains triangu­
lated. After the addition of a single edge to G, 
we obtain For this edge the 
new relation is computed as follows: 

(1) 

458 CONSTRAINT SATISFACTION 



where is the composition operator. For example, in 
figure 3, is obtained by intersecting the compo­
sitions obtained via the variables in  

is the universal relation when  
If after making G strongly PC the relations in G are 

empty, the construction above would, as desired, com­
pute the empty relations for the missing edges. In what 
follows we therefore assume that the relations in G after 
strong PC are not empty. 

We now show that is PC. Since is triangulated, 
by theorem 2 it is sufficient to prove that every path of 
length 2 is PC. By assumption, paths of length 2 that 
do not go through and are PC. So let us con­
sider paths of length 2 that go through and  
By lemma 1 and the construction used in its proof, we 
know that the set of intermediate variables on the rele­
vant paths is and that induces a complete subgraph 
of G. This situation is illustrated in figure 4, where the 
variables in are colored gray. Note that by construc­
tion the graph A induced by and the graph B 
induced by are complete. We have to consider 

Figure 4: Added edges are PC 

two cases1. With either 1) P =  
or 2) P ~ . Let us consider each of these 
cases in turn. 

1. If P = we need to prove that for every 
pair of values for that satisfies  
we can find a value for so that as defined 
by (1), and are satisfied. 
A is complete, strongly path-consistent and convex, 
it is therefore also globally consistent [Sam-Haroud 
and Faltings, 1996]. So that for every pair of values 
that satisfy we can find values for all the 
variables in so that all other edges in .4 
are also satisfied (see figure 4). Similarly, since B is 
complete, strongly path-consistent and convex it is 
globally consistent. This means that for the above 
values of the variables in Fi, we can find a value for 
Vj so that all constraints in B are satisfied. For the 
considered values the constraint is therefore 
satisfied. For any pair of values for we 
are hence able to find values for the variables in 

so that all constraints in are 
satisfied. For the values for the relations 

and participating in (1) are therefore 
satisfied by the values for the variables in The 
values for therefore satisfy  

*The reasoning is the same for the symmetrical cases. 

2. If P = the relation of the 
new edge ensures by definition that for every pair 
of values in we can find a value for so 
that the and are verified. 

We now show that is AC. When since G' 
is PC we know that for every value pair in or 
in we can find a value pair that satisfies  
Since G is AC this means that for any support respec­
tively on or on we are able to find a 
support on As a consequence is not only PC 
but also AC. When = 0 , = x 
Since G is AC, G' will therefore be AC as well.  

Corollary 1 is a direct consequence of theorem 3. 

Corol lary 1 For convex problems, insolubility is de-
tected using PC by graph completion iff it is detected 
using PC by graph triangulation. 

5 Algorithms 
By theorem 2 we know that triangulated graphs can 
be made PC by enforcing that every path of length 
two is PC. For problems with a triangulated constraint 
graph we can therefore make the CSP PPC by a sim­
ple modification of existing PC algorithms2. The result­
ing algorithm is Algorithm 1. The procedure Related-

Triplets(q) returns all those triplets in which q partici­
pates and that correspond to actual triangles in G. The 
difference with a classical PC algorithm, referred to as 
PC in the rest of the paper, is that PC revises all pos­
sible triplets, not only those corresponding to triangles 
in G. To determine the complexity of this algorithm for 
discrete problems, consider the number of revisions that 
can be made based on each edge Revisions based 
on will be made only when a pair of values is re­
moved. If is the maximum domain size, then one can 
remove at most pairs from any relation. Each removal 

*'PPC is close to Schwalb and Dec-liter's PLPC algorithm 
from which it borrows the name. PLPC (Partial Loose PC) 
enforces a partial form of path consistency on disjunctive 
temporal CSPs. It only considers the paths of length two 
with at least two non-universal constraints. 

BLIEK AND SAM-HAROUD 459 



prompts revisions only of the 2 neighboring edges in each 
triangle. If is the degree of variable a modifica­
tion of will prompt at most 2 min 
revisions. Summing over all edges we find that at most 

revisions will be performed, where is the maximum 
degree. This should be compared to the revi­
sions performed by the classical PC algorithm. Using 
the results presented in [Chiba and Nishizeki, 1985], one 
may use the arboricity of G instead of resulting in 
a number of revisions The same reference also 
presents upper bounds on a both for general graphs and 
for specific types of graphs. 

For the experiments below we report the number of re­
visions since this measure is independent of the specific 
techniques one might use for updating the relations. In 
practice one can for example use the techniques based on 
the principle of minimal support used in PC-6 [Chmeiss, 
1996]. In this case at most value pairs may be 
deleted in the relations. Per value pair at most 
supports may be visited leading to a time complexity of 

However, per value pair only support in­
formation concerning the smallest supporting element is 
stored, resulting in a space complexity. In case 
of CRC constraints one can use the techniques described 
in [Deville et a/., 1997] to obtain a time complexity of 

and a space complexity of  
The PPC algorithm makes CSPs with triangulated 

constraint graphs PPC. CSPs whose constraint graph is 
not triangulated can be made PPC by triangulating the 
graph with universal constraints before running PPC. 
For convex problems PPC is equivalent to PC. If de­
sired, the relations of the missing edges can be computed 
as proposed in the proof of theorem 3. Tins fill algorithm 
is shown in Algorithm 2 below. 

The variables are assumed to be ordered according to a 
perfect elimination order. Observe that it is not required 
to update the sets when G changes, since the order 
in which the edges are added to does not matter. 

Algorithm 2 computes at most relations. 
Since each relation is computed by intersecting at most 

compositions, the number of revisions Algorithm 2 
needs to perform is therefore For CRC con­
straints one can, as before, use the techniques described 

in [Deville et al., 1997] to perform the actual computa­
tions. In this case the missing relations can be filled in 
in time  

6 Experiments 
In this section, we report some preliminary experiments 
that compare the number of revision steps carried out by 
PC and PPC for three types of randomly generated prob­
lems. The convex case is illustrated by tests on linear 
continuous and CRC problems, the non-convex one by 
tests on randomly generated discrete problems. For the 
linear problems, the constraints generated are inequali­
ties. They are discretized similarly to what is described 
in the work of [Sam-Haroud and Faltings, 1996] and rep­
resented by (0,1) matrices. The constraint graph of each 
generated instance is triangulated before running PPC. 
The domain size is 8 for all the types of problems. Each 
test is averaged over 25 instances. 

Table 1 shows the comparison for different sizes of con­
straint graphs and a fixed density p. The density chosen 
(p = 0.1) corresponds to sparse graphs and illustrates 
the most favorable case for PPC. Table 2 compares PC 
and PPC for problems of fixed size (n — 20) and differ­
ent densities. Since PPC is of interest on sparse CSPs, 
we report the experiments on sparse graphs 
For higher densities, the number of revisions of PPC ap­
proaches that of PC. Note that PPC and PC are identical 
for complete graphs. 

By theorem 3 for convex problems the relations com­
puted by PPC and PC on the common edges are iden­
tical. For non-convex problems, we also compare the 
pruning capacity of PPC to the one of is the ratio 
between the number of tuples removed by PPC over the 
number of tuples removed by PC on the common edges. 
For the tests conducted on random problems, insolubil­
ity detected by PC was also detected by PPC. 

The tests reported for non-convex problems are gener­
ated in the phase transition [Grant and Smith, 1996] as 
this seems to best illustrate the difference of behavior be­
tween PPC and PC. Indeed, several hundreds of tests run 
out of the phase transition showed no difference of prun­
ing between PC and PPC on the common edges. Note 
that the randomly generated linear and CRC problem 
instances do not necessarily fall in the phase transition. 

It is worth mentioning that despite the worst case com­
plexity of for triangulation algorithms, the 
effective time devoted to triangulation is negligible com­
pared to the running time of PPC. 

More experiments clearly need to be conducted for 
better stating the effectiveness of PPC. The preliminary 
results we report are however encouraging enough to 
warrant PPC being investigated as alternative to PC for 
sparse problems. 

7 Conclusion 
Path consistency is an important notion in constraint 
satisfaction. A new algorithm, called PPC, is proposed 
that makes triangulated constraint graphs PC. PC can 

460 CONSTRAINT SATISFACTION 



Linear CRC Random 
n P PC PPC 
10 0.1 1,944 211 
15 0.1 10,293 334 
20 0.1 33,220 550 
25 0.1 85,463 644 
30 0.1 183,253 1,641 
35 0.1 356,825 4,532 
40 0.1 619,999 9,666 

n V PC PPC 
10 0.1 1,827 222 
15 0.1 9,117 374 
20 0.1 32,213 559 
25 0.1 84,796 950 
30 0.1 185,807 1,825 
35 0.1 361,000 5,160 
40 0.1 624,314 14,621 

Table 1: Revisions performed by PC and PPC on sparse graphs for different problem sizes 

Linear CRC Random 
n P PC PPC 
20 0.1 33,220 550 
20 0.2 37,440 1,660 
20 0.3 38,187 5,329 
20 0.4 38,719 8,907 
20 0.5 39,054 13,736 

71 P PC PPC 
20 0.1 32,213 559 
20 0.2 37,593 2,257 
20 0.3 38,393 5,692 
20 0.4 38,811 8,919 
20 0.5 39,043 13,339 

n P " PC ' PPC P (%) 
20 0.1 32,366 749 99.65 
20 0.2 35,017 3,263 99.98 
20 0.3 55,330 13,982 100.0 
20 0.4 112,986 45,979 100.0 
20 0.5 223,459 148,330 100.0 

Table 2: Revisions performed by PC and PPC on given problem size for different densities 

thus be enforced on incomplete constraint graphs by tr i­
angulating instead of completing them. When the prob­
lem is sparse, this spares a significant amount of work 
compared to the classical PC algorithm. We have also 
shown that for convex CSPs with triangulated constraint 
graphs, the PPC and PC algorithms will compute the 
same labeling on the common edges. 

pA'cessive memory requirements of existing PC al­
gorithms limit their applicability [Chmeiss and .legou, 
1996]. Since on sparse graphs PPC has a lower space 
complexity than PC, PPC might prove to be a viable 
alternative when memory is a limiting factor. 

For non-convex problems, PPC exhibits a good prun­
ing capacity compared to PC and can be computed much 
more efficiently than PC on sparse graphs. We therefore 
expect that it might be beneficial to interleave it with 
backtrack algorithms to search for solutions. This will 
be a topic of future research. 

8 Acknowledgments 
We would like to thank Jean-Charles Regin for point­
ing out the results on arboricity. Most of this work was 
performed at the Artificial Intelligence Laboratory of the 
Swiss Federal Institute of Technology in Lausanne where 
Christian Bliek was sponsored by the Swiss National Sci­
ence Foundation under project number 2000-52363.97 
through the ERCIM Fellowship Program. 

References 
[Chiba and Nishizeki, 1985] N. Chiba and T. Nishizeki. 

Arboricity and subgraph listing algorithms. SIAM 
Journal on Computing, 14, 1985. 

[Chmeiss and Jegou, 1996] A. Chmeiss and P. .legou. 
Path-consistency: When space misses time. In AAAI-
96, pages 196 201, Portland, Oregon, 1996. 

[Chmeiss, 1996] A. Chmeiss. Sur la consistance de 
cheinin et ses formes partielles. In Aries du Congres 
RFIA-96, pages 212 219, Rennes. France, 1996. 

[Deville et al, 1997] Y. Deville, (). Barette, and P. Van 
Hentenrvck. Constraint satisfaction over connected 
row convex constraints. In IJCAf-97, pages 405 410, 
Nagoya, Japan, 1997. 

[Grant and Smith, 1996] S. A. Grant and B. Smith. The 
arc and path consistency phase transitions. In CP-96, 
pages 541-542, 1996. 

[Han and Lee, 1988] C. Han arid C. Lee. Comments on 
Molir and Henderson's path consistency algorithm. 
Artificial Intelligence, 36, 1988. 

[Kjamilff, 1990] U. Kjaeruhff. Triangulation of graphs -
algorithms giving small total state space. Research 
Report. R-90-09, Aalborg University, Denmark, 1990. 

[Mackworth, 1977] A.K. Mack worth. Consistency in 
networks of relations. Artificial Intelligence, 8:99 118, 
1977. 

[Mohr and Henderson, 1986] R. Molir and T.C. Hender-
son. Arc and path consistency revisted. Artificial In­
telligence, 28:225 233, 1986. ' 

[Montanari, 1974] Ugo Montanari. Networks of con­
straints: Fundamental properties and applications to 
picture processing. Information Science, 7:95 132, 
1974. 

[Sam-Haroud and Faltings, 1996] D. Sam-Haroud and 
B.V. Faltings. Consistency techniques for continuous 
constraints. Constraints, 1:85 118, 1996. 

[Schwalb and Dechter, 1997] E. Schwalb and 
R. Dechter. Processing disjunctions in temporal 
constraint networks. Artificial Intelligence, 93:29 61, 
1997. 

BLIEK AND SAM-HAROUD 461 

n P PC PPC P (%) 
10 0.1 1,971 339 99.75 
15 0.1 13,870 407 99.51 
20 0.1 32,366 749 99.65 
25 0.1 97,180 1,388 99.84 
30 0.1 143,116 5,441 99.80 
35 0.1 348,399 5,477 100.0 
40 0.1 665,871 33,623 99.92 


