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Abstract 

We present a general method for proving 
tractability of reasoning over disjunctions of 
jointly exhaustive and pairwise disjoint rela-
tions. Examples of these kinds of relations 
are Allen's temporal interval relations and their 
spatial counterpart, the R.CC8 relations by 
Randell, Cui, and Colin. Applying this method 
does not require detailed knowledge about the 
considered relations; instead, it is rather suffi­
cient to have a subset of the considered set of 
relations for which path-consistency is known 
to decide consistency. Using this method, we 
give a complete classification of tractability of 
reasoning over RCC8 by identifying two large 
new maximal tractable subsets and show that 
these two subsets together with 'H8, the already 
known maximal tractable subset, are the only 
such sets for RCC8 that contain all base re­
lations. We also apply our method to Allen's 
interval algebra and derive the known maximal 
tractable subset. 

1 Introduction 
In qualitative spatial and temporal reasoning, knowledge 
is often represented by specifying the relationships be­
tween spatial or temporal entities. Of particular interest 
are disjunctions over a set of jointly exhaustive and pair-
wise disjoint (JEPD) relations. JEPD relations are also 
called base relations. Since any two entities are related 
by exactly one of the base relations, they can be used to 
represent definite information with respect to the given 
level of granularity. Indefinite information can be speci­
fied by disjunctions of possible base relations. 

An important reasoning problem is deciding consis­
tency of a set of constraints using these relations, which 
is in many cases NP-hard. Sometimes deciding consis­
tency is tractable if only a subset of all possible dis­
junctions is used. If this subset contains all base rela­
tions, then instances of the NP-hard consistency prob­
lem can be solved by backtracking over tractable sub-
instances [Ladkin and Reinefcld, 1992; Nebel, 1997]. 

Larger tractable subsets often lead to more efficient solu­
tions (cf. [Renz and Nebel, 1998]). The goal is to identify 
the boundary between tractable and NP-hard subsets, 
i.e., all maximal tractable subsets containing all base re­
lations. 

Two examples of these1 types of relations are Allen's 
interval algebra [Allen, 1983] mainly used for temporal 
reasoning and their spatial counterpart, Randell, Cui, 
and Cohn's [1992] Region Connection Calculus RCC-8. 
In the former case, the only maximal tractable subset 
containing all base relations has been identified [Nebel 
and Burckert, 1995], in the latter case, only one max­
imal tractable subset has been identified so far [Renz 
and Nebel, 1999], It was previously unknown whether 
there are others containing all base relations. For both 
subsets path-consistency is sufficient for deciding consis­
tency. Tractability and sufficiency of path-consistency 
have been proven by reducing the consistency problem 
to a tractable propositional satisfiability problem which 
requires very detailed knowledge about the considered 
set of relations and complicated proofs. 

We present a new method for proving tractability 
and showing sufficiency of path-consistency for this kind 
of problem which does not require detailed knowledge 
about the considered set of relations. Applying this 
method, we identify two large new maximal tractable 
subsets of RCC-8 and show that these subsets together 
with the already known maximal tractable subset are the 
only such sets for RCC-8 that contain all base relations. 
We consider only sets containing all base relations, since 
only these sets enable efficient backtracking algorithms. 

The paper is structured as follows. In Section 2 
we introduce RCC-8. In Section 3 we present the 
new method for proving tractability. In Section 4 we 
identify two large subsets of RCC-8 which are candi­
dates for maximal tractable subsets, and apply our 
new method in Section 5 to show that both sets are 
tractable. In Section 6 the new method is used for find­
ing a consistent scenario. In Section 7 we apply the 
method to Allen's interval algebra after which we dis­
cuss and summarize our results. Some of our proofs 
are computer assisted. The programs are available at 
http://www. informatik.uni-freiburg.de/~sppraum. 
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Figure 1: Examples for the eight base relations of  

2 The Region Connection Calculus RCC8 
The Region Connection Calculus RCC-8 [Randell et al., 
1992] is a language for qualitative spatial representation 
and reasoning where spatial regions are regular subsets 
of a topological space. Regions themselves do not have 
to be internally connected, i.e., a region may consist, of 
different disconnected pieces. 

RCC-8 contains eight JEPD base relations and all 28 

possible disjunctions thereof. The base relations are 
denoted by  
and with the meaning of D is Connected, Ex­
ternally Connected, Partial Overlap, Tangential 
Proper Part, Non-Tangential Proper Part, and their con­
verses. Two-dimensional examples of the base relations 
are shown in Figure 1. In the following we write sets of 
base relations to denote disjunctions of base relations. 
The disjunction of all base relations is called the univer­
sal relation,. The subset of RCC-8 consisting of the eight 
base relations is denoted by  

An important reasoning problem in this framework, 
denoted by RSAT, is deciding consistency of a set of 
constraints of the form where R is an RCC-8 rela­
tion and are spatial variables. The domain of spatial 
variables is the set of all spatial regions of the considered 
topological space. is consistent if it has a solution, 
which is an assignment of spatial regions to the spatial 
variables of in a way that all constraints are satis­
fied. When only relations of a specific subset 
are used in the corresponding reasoning problem is 
denoted by RSAT(S). RSAT is NP-complete in general. 
Consistency of can be approximated by using an 
time path-consistency algorithm, which makes path-
consistent by eliminating all the impossible1 labels (base 
relations) in every subset of constraints involving three 
variables [Mackworth, 1977]. If the empty relation oc­
curs during this process, then is inconsistent, other­
wise the resulting set is path-consistent. 

Renz and Nebel [1999] identified a tractable subset 
of RCC-8 (denoted by containing all base relations 
which is maximal with respect to traetability, i.e., if any 
other RCC-8 relation is added to the consistency 
problem becomes NP-complete. They further showed 
that enforcing path-consistency is sufficient for deciding 

contains 148 relations, i.e., about G0% of 
all RCC-8 relations. 

3 A New Method for Proving 
Traetability of Sets of Relations 

In this section we develop a new method for proving trae­
tability of reasoning over disjunctions of a set of 
binary relations over a domain Let be a finite set 
of binary relations. We assume in the following 
that there is a relation such that . is 
satisfied for all Id is called identity relation. The 
consistency problem CSPSAT(5) for sets over a 
domain is defined as follows [Renz and Nebel, 1999]: 
Instance: A set V of variables over a domain and a 

finite set of binary constraints where  
and  

Question: Is there an instantiation of all variables in 
such that all constraints are satisfied? 

denotes the closure of S under composition inter­
section and converse can be poly-
nomially reduced to if the universal relation 
is contained in [Renz and Nebel, 1999]. Therefore, we 
consider in the following only sets with  

Before we present our new method for showing that 
is tractable for a set we define some ter­

minology. A refinement of a constraint is a con­
straint such that For instance, the con­
straint is a refinement of the constraint 

A refinement of a set of con­
straints is a set of constraints that contains a re-
finement of every constraint of Everv solution of 
is also a solution of A consistent scenario of   
is a refinement of such that is consistent and con­
tains only constraints over relations of We assume 
that a set of constraints contains ordered variables 

The following definition will be central for 
our new method. 
Def in i t ion 1 (reduct ion by refinement) 
Let can be reduced bv refinement to if 
the following two conditions are satisfied: 

1. for every relation S S there is a relation 
with  

2. every path-consistent set of constraints over S 
can be refined to a set by replacing 
with for such that enforcing 
path-consistency to does not result in an incon-
sistency. 

Lemma 2 If path-consistency decides for a 
set and S can be reduced by refinement to T, 
then path-consistency decides CSPrSAT(S). 
Proof. Let be a path-consistent set of constraints over 

Since can be reduced bv refinement to there is 
!Note that we only refine constraints for  

This is no restriction, as by enforcing path-consistency the 
converse constraint will also he refined. Rather it 
offers the possibility of refining, e.g., converse relations to 
other than converse sub-relations, i.e., if, for instance, R is 
refined to r, we can refine to a relation other than r 
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by definition a set of constraints over which is a 
refinement of such that enforcing path-consistency to 

does not result in an inconsistency. Path-consistency 
decides s o i s consistent, and, hence,  
is also consistent.  

Since path-consistency can be enforced in cubic time, 
it is sufficient for proving tractability of CSPSAT(5) to 
show that S can be reduced by refinement to a set for 
which path-consistency decides CSPSAT Note that 
for refining a constraint to a constraint 

it is not required that is also con­
tained in 5. Thus, with respect to common relations, 
the two sets 5 and are independent of each other. 

We will now develop a method for showing that a set 
of relations can be reduced by refinement to 
another set In order to manage the different 
refinements, we introduce a refinement matrix that con­
tains for every relation S S all specified refinements. 

Definit ion 3 (refinement matr ix) A refinement 
matrix of has Boolean entries such that 
for true only if R 5. 
For example, if the relation {DC, EC,PO,TPP} is al­
lowed to be refined only to the relations {DC,TPP} and 
{DC}, then M[{DC, EC, PO,TPP}][/?] is true only for 
R = {DC,TPP} and for R = {DC} and false for all 
other relations M is called the basic refinement 
matrix if M[S][R] = true if and only if S = R. 

We propose the algorithm CHECK-REFINEMENTS (see 
Figure 2) which takes as input a set of relations S and a 
refinement matrix M of 5. This algorithm computes all 
possible path-consistent triples of relations 
of 5 (step 4) and enforces path-consistency (using a 
standard procedure PATH-CONSISTENCY) to every re­
finement for which = true 
for all {1,2,3}, (steps 5,6). If one of 
these refinements results in the empty relation, the al­
gorithm returns f a i l (step 7). Otherwise, the result­
ing relations are added to M by setting 

(step 8). 
This is repeated until M has reached a fixed point (step 
9), i.e., enforcing path-consistency cm any possible re-
finement does not result in new relations anymore. If no 
inconsistency is detected in this process, the algorithm 
returns succeed. 

A similar algorithm, GET-REFINEMENTS, returns 
the revised refinement matrix if CHECK-REFINEMENTS 
returns succeed and the basic refinement matrix if 
CHECK-REFINEMENTS returns f a i l . Since is a finite 
set of relations, M can be changed only a finite number 
of times, so both algorithms always terminate. 
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Proof. Suppose that CHECK-REFINEMENTS(5 ,M) re­
turns succeed and GET-REFINEMENTS(S, M) returns 
the refinement matrix Suppose further that enforc­
ing path-consistency to results in an inconsistency 
which is detected first for the three variables xa,Xb,xc. 
Suppose that for every pair of variables  

and Enforcing path-consistency to  
can be done by successively enforcing path-consistency 
to every triple of variables of Suppose that we start 
with the triple We have that — 
true for every After enforc­
ing path-consistency to this triple we obtain the rela­
tions for which a g a i n = true, other­
wise C H E C K - R E F I N E M E N T S , M) would have returned 
f a i l . The same holds when we proceed with enforcing 
path-consistency to every triple of variables, we always 
end up with relations for which = true. 
Therefore, for all possible relations we can 
obtain by enforcing path-consistency to we have 
that = true for all  
If this triple of relations were inconsistent, CHECK-
REFINEMENTS(S,M) would have returned f a i l .  

If CHECK-REFINEMENTS returns succeed and GET-
REFINEMENTS returns we have pre-computed all 
possible refinements of every path-consistent triple of 
variables as given in the refinement matrix Thus, 
applying these refinements to a path-consistent set of 
constraints can never result in an inconsistency when 
enforcing path-consistency. 
Theorem 5 Let and let M be a refinement 
matrix of S. GET-REFINEMENTS returns the re­
finement matrix If for every SS there is a  
with = true, then S can be reduced by refine­
ment to T. 

10. return succeed 
Figure 2: Algorithm CHECK-REFINEMENTS 



Proof. By the given conditions, we can refine every 
path-consistent set of constraints overS to a set 
of constraints over such that = true for 
every xi and  

is a fixed point with respect to GET-REFINEMENTS, 
i.e., GET-REFINEMENTS returns thus it fol­
lows from Lemma 4 that enforcing path-consistency to 

does not result in an inconsistencv.  

By Lemma 2 and Theorem 5 we have that the procedures 
CHECK-REFINEMENTS and GET-REFINEMENTS can be 
used to prove tract ability for sets of relations. 
Corol lary 6 Let be two sets such that path-
consistency decides and let M be a re­
finement matrix of S. GET-REFINEMENTS re­
turns M'. If for every S S there is 
with = true, then path-consistency decides 
CSPSAT(S). 
In the following sections we apply this method to the 
Region Connection Calculus RCC-8 and to Allen's inter­
val algebra for proving certain subsets to be tractable. 
For RCC-8 it will help us make a complete analysis 
of tractability by identifying two large new maximal 
tractable subsets. Later, it will turn out that the new 
method can be used for identifying the fastest possible 
algorithms for finding a consistent scenario. 

4 Candidates for Maximal Tractable 
Subsets of RCC8 

In order to identify maximal tractable subsets of a set of 
relations with an NP-hard consistency problem, two dif­
ferent tasks have to be done. On the one hand, tractable 
subsets have to be identified. On the other hand, NP-
hard subsets have to be identified. Then, a tractable 
subset is maximal tractable if any superset is NP-hard. 
If tractability has not- yet been shown for certain subsets, 
the NP-hardness results restrict the number of different 
subsets that still have to be analyzed for tractability. 

In this section we present new NP-hardness results for 
RCC-8 and identify those subsets that are candidates for 
maximal tractable subsets, i.e., if any other relation is 
added to one of those candidates they become NP-hard. 
Before this, we summarize Renz and Nebel's [1999] NP-
hardness proofs that were necessary for showing that 
is a maximal tractable subset of RCC-8. 

Lemma 7 (Renz and Nebel , 1999)  
is NP-hard if where: 

(N)TPP indicates either TPP or NTPP. 

Renz and Nebel [1999] proved maximality of by 
showing that NTPP}) is NP-hard and 
that the closure1 of plus any relation of  
N) contains the relation {EQ, NTPP}. This NP-hardness 
proof, however, does not make use of all relations of 
but only of the relations {EC, TPP} and {EC, NTPP}. 

Thus, any set of RCC-8 relations that contains all base 
relations plus the relations {EC, TPP}, {EC, NTPP}, and 
{EQ,NTPP} is NP-hard. 

This result rules out a lot of subsets of RCC-8 to be 
tractable, but still leaves the problem of tractability open 
for a large number of subsets. We found, however, that 
it is not necessary that both relations, {EC,TPP} and 
{EC, NTPP}, must be added to {EQ,NTPP} in order 
to enforce NP-hardness. It is rather sufficient for NP-
hardness that only one of them is added to {EQ, NTPP}. 

This is shown in the following two lemmata. They 
are proven by reducing 3SAT, the NP-hard satisfiability 
problem of propositional formulas that contain exactly 
three literals per clause [Garey and Johnson, 1979], to 
the respective consistency problem. Both reductions are 
similar to the reductions given in [Renz and Nebel, 1999): 
every literal as well as every literal occurrence L is re­
duced to a constraint where and 

— L is true iff holds and false 
iff holds. "Polarity constraints1' enforce that 

holds iff holds, and vice versa. 
"Clause constraints" enforce that at least one literal of 
every clause is true. 
Lemma 8 If NTPP}, {EC, NTPP}}) 5, 
then is NP-complete. 
Proof Sketch. Transformation of 3SAT to RSAT(S). 

= {NTPP} and = {EQ}. Polarity constraints: 

Lemma 9 7/ , {EC, TPP}}) S, then 
RSAT(S) is HP-complete. 
Proof Sketch. Transformation of 3SAT to RSAT(S). 

- {NTPP} and = {EQ}. Polarity constraints: 

Clause, constraints for each clause c =  

All the above relations are contained in S.  

Using these results, four other relations can be ruled 
out to be contained in any tractable subset of RCC-8, 
since the closure of the base relations plus one of the four 
relations contains {EQ,NTPP} as well as {EC,TPP}. 
Def in i t ion 10 The two sets and are defined as 
follows: 

contains 76 relations, contains 180 relations. 
Corol lary 11  
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Lemmata 8 and 9 give us a sufficient but not neces­
sary condition of whether a subset of is NP-hard, 
namely, if contains {EQ, NTPP} and one of 
{EC,TPP} or {EC, NTPP}, RSAT(S) is NP-hard, other­
wise the complexity of RSAT(S) remains open. 

We computed all subsets of that are candidates 
for maximal tractable subsets with respect to the above 
two NP-hardness proofs, i.e., we enumerated all subsets 
5 with S = that contain all base relations and 
the universal relation, and checked whether they fulfilled 
the following two properties: 

1. S does not contain ({EQ,NTPP} and {EC,TPP)) 
or ({EQ,NTPP} and {EC, NTPP}), and 

2. the closure of S plus any relation of contains 
({EQ,NTPP} and {EC,YPP}) or ({EQ,NTPP} and 
{EC, NTPP}). 

To our surprise, this resulted in only three different sub­
sets of of which is of course one of them. The 
other two subsets are denoted bv and  

contains 158 different RCC-8 relations, contains 
160 different relations. We have that  
Lemma 12 For every subset S of RCC-8: // RSAT(S) 
is tractable, then  
Proof. By computing the closure of every set contain­
ing the base relations, the universal relation, and two 
arbitrary RCC-8 relations, the resulting set is either con­
tained in one of the sets or is NP-hard 
according to Lemma 8, Lemma 9, or Corollary 11.  

So far we did not say anything about, tractability of 
or or subsets thereof. It might be that both sets 
are NP-hard or that there is a large number of different 
maximal tractable subsets that are contained in the two 
sets. What we obtained so far is, thus, only a restriction 
of the number of different subsets we have to check for 
tractability. However, we will see in the next section that 
both and are in fact tractable. 

5 A Complete Analysis of Tractabi l i ty 
In [Renz and Nebel, 1999] tractability of was shown 
by reducing to HORN SAT. This was possi­
ble because contains exactly those relations that are 
transformed to propositional Horn formulas when using 

"The names were chosen, since all -relations not con­
tained in contain and all not contained 
in contain  

the propositional encoding of RCC-8. This propositional 
Horn encoding of was also used for proving that 
path-consistency decides [Renz and Nebel, 
1999], by relating positive unit resolution, which is a 
complete decision method for propositional Horn formu­
las, to path-consistency. The propositional encoding of 

and is neither a Horn formula nor a Krom formula 
(two literals per clause), so it is not immediately possible 
to reduce the consistency problem of these subsets to a 
tractable propositional satisfiability problem. Therefore 
we have to find other ways of proving tractability. 

Let us have a closer look at the relations of the two 
sets and and how they differ from  

Proposi t ion 13 For all relations we have 
that {EQ} R. For all refinements of R with  
{EQ} = B and {EQ} we have that  

and are both subsets of so if we can prove the 
following conjecture, then both sets tire tractable: 
Conjecture 14 Let be a path-consistent set of con­
straints over or over If is obtained from by 
eliminating the identity relation from every con­
straint with then enforcing path-
consistency to does not result in an inconsistency. 
If we can prove this conjecture, then, by Proposition 13, 

contains only constraints over Since path-
consistency decides we then have that if is 
path-consistent, is consistent and, therefore, is also 
consistent, i.e., path-consistency decides consistency for 
sets of constraints over and over In [Gerevini and 
Renz, 1998] it was shown that the relation can 
always be eliminated from every constraint of a path-
consistent set of constraints over without changing 
consistency of the set. This was, again, shown by ap­
plying positive unit resolution to the propositional Horn 
encoding of a method which is not applicable in our 
case. Instead, we can now apply the new method devel­
oped in Section 3, namely, we can check whether and 

can be reduced by refinement to Conjecture 14 
gives the refinement matrix we have to check. We define 
this particular refinement matrix for arbitrary sets 6" of 
disjunctions over a set of JEPD relations: 

Proposi t ion 16 
• CHECK-REFINEMENTS retains succeed. 
• CHECK-REFINEMENTS returns succeed. 

Theorem 17 Path-consistency decides as 
well as  

Proof. It follows from Proposition 13 and Proposi­
tion 16 that Theorem 5 can be applied with 
Since path-consistency decides it follows 
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from Corollary G that path-consistency decides 
as well as   

Together with Lemma 12 it follows that and  
arc the only maximal tractable subsets of RCC-8 that 
contain all base relations. 
Theorem 18 For every subset S of RCC-8 that contains 
all base relations and the universal relation: RSAT(cS) is 
tractable iff  

6 Finding a Consistent Scenario 
Gerevini and Renz [1998] gave an time algorithm 
for computing a consistent scenario for a set of con­
straints over Their algorithm is based on first elimi­
nating {EQ} from every constraint and then successively 
refining constraints to constraints over base relations in 
a particular order and enforcing path-consistency in be-
tween. As shown in the previous section it is also pos­
sible to eliminate {EQ} from all constraints over and 
over so it is possible to apply Gerevini and Ren/As 
algorithm also for and By applying the method 
developed in Section 3 we can, however, improve this al­
gorithm for all three maximal tractable subsets of RCC-8. 

Lemma 19 and can be reduced by refine­
ment to B, the set of all RCC-8 base relations. 
This gives us the possibility of computing a consistent 
scenario of a path-consistent set of constraints over a 
tractable subset by a simple table lookup scheme, which 
is the fastest possible way. 

Lemma 20 Let S be one of For every re­
lation R S, base(R) is the following base relation: 

Theorem 21 A consistent scenario of a path-
consistent set of constraints over or over  
can be computed in tune, by replacing every con­
straint w i t h w h e r e R ' — base(R). 

7 Applying the New Method to Allen's 
Interval Algebra 

The method developed in Section 3 can also be applied 
to Allen's interval algebra [Allen, 1983] which consists of 
the 13 JEPD relations before (<), meets (in), overlaps 
(o), starts (s), during (d), finishes (f), their converse re­
lations >, mi, oi, si, di, fi, and the identity relation equal 
(=) that describe the possible relationships between two 

convex intervals. The full algebra consists of the 213 pos­
sible disjunctions of the base relations and has an NP-
complete consistency problem. Tractable subclasses of 
the interval algebra for which path-consistency decides 
consistency were identified by Vilain et al. [1989], the 
"Pointisable" subclass V (about 2% of the full algebra), 
and by Nebel and Biirckert [1995], the "ORD-Horn" sub­
class (about 10% of the full algebra) which is the only 
maximal tractable subclass of the interval algebra that 
contains all base relations. 

Since the only maximal tractable subclass of the inter­
val algebra containing all base relations has already been 
identified, we cannot provide any new results on that 
topic. We can, however, validate the usefulness of our 
new method by showing that traetability of the ORD-
Horn subclass and sufficiency of path-consistency for de­
ciding consistency for this subclass can also be proven 
using our method. For this we apply the same strategy 
as for C8 and Q8, namely, we use the identity-refinement 
matrix (cf. [Ligozat, 1996]). 

Proposi t ion 22 GET-REFINEMENTS returns 
which has the following property: For every 

there is an such that = true. 

This was computed in less than 25 minutes on a Sun 
Sparc Ultral . We can now apply Theorem 5: 

Theorem 23 can be reduced by refinement to  

Not all of the 188 pointisable relations are necessary for 
this refinement, but only 30 of them which are obtained 
according to the following refinement scheme. 

Lemma 24 For every relation point (R) is the 
following pointisable relation where and 

Using this refinement scheme, every path-consistent set 
of constraints over ORD-Horn can be refined to a path-

consistent set by replacing every constraint 
with where = point(R). This can be 
useful for some tasks such as finding a consistent scenario 
(cf. [Gerevini and Cristani, 1997]). 

8 Discussion & Further Work 
The method we developed for proving traetability of rea­
soning over sets of relations is very simple, does not re­
quire detailed knowledge about the considered relations, 
and seems to be very powerful. The only difficulty of 
this method is finding an adequate refinement matrix. 
However, the simple heuristic of eliminating all iden­
tity relations was successful for all maximal tractable 
fragments of RCC-8 and Allen's interval algebra which 
contain all base relations. This leads to an interesting 
question, namely, whether it is a general property of sets 
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of relations containing all base relations for which path-
consistency decides consistency that the identity rela­
tion can be eliminated from all constraints of a path-
consistent set without making the set inconsistent. 

The complete analysis of tractability for RCC-8 gives 
the possibility to develop more efficient algorithms for 
deciding consistency. As Renz and Nebel [1998] have 
shown in an empirical study, running different strategies 
in parallel is very effective; almost all apparently hard in­
stances of the phase-transition region up to a certain size 
were solved in a few seconds. The two maximal tractable 
subsets of RCC-8 identified in this paper suggest several 
new strategies that should be empirically studied. Both 
subsets are larger than H8, but their average branching 
factor is higher (C8: 1.523, Q8: 1.516, H8: 1.438). 

9 Summary 
We developed a general method for proving sufficiency of 
path-consistency for deciding consistency of disjunctions 
over a set of JEPD relations. We applied this method 
to the Region Connection Calculus RCC-8 and identified 
two large new maximal tractable subsets. Together with 
H8, the already known maximal tractable subset, these 
are the only such sets for RCC-8 that contain all base 
relations and can, hence, be used to increase efficiency 
of backtracking algorithms for reasoning over NP-hard 
subsets. We also applied our method to Allen's interval 
algebra which resulted in a simple proof of tractability 
of reasoning in the ORD-Horn subclass. 
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