
Branch and Bound wi th Mini -Bucket Heuristics

Kalev Kask and Rina Dechter

Department of Information and Computer Science
University of California, Irvine, CA 92697-3425

{kkask,dechter} @ics. uci.edu

Abstract

The paper describes a branch and bound
scheme that uses heuristics generated mechan­
ically by the mini-bucket approximation. This
scheme is presented and evaluated for opt i ­
mization tasks such as f inding the Most Prob­
able Explanation (MPE) in Bayesian net­
works. The mini-bucket scheme yields mono-
tonic heuristics of varying strengths which
cause different amounts of pruning, allowing a
controlled tradeoff between preprocessing and
search. The resulting Branch and Bound wi th
Mini-Bucket heuristic (B B M B) , is evaluated
using random networks, probabil istic decoding
and medical diagnosis networks. Results show
that the B B M B scheme overcomes the mem­
ory explosion of bucket-el imination allowing a
gradual tradeoff of space for t ime, and of t ime
for accuracy.

1 Introduction
This paper proposes a new scheme for augmenting
branch-and-bound search wi th heuristics generated auto­
matical ly by the Mini-Bucket algorithms. Mini-bucket is
a class of parameterized approximation algorithms based
on the recently proposed bucket-elimination frame­
work. The approximat ion uses a control l ing parame­
ter which allows adjustable levels of accuracy and effi­
ciency [Dechter and Rish, 1997]. The algorithms were
presented and analyzed for deterministic opt imizat ion
tasks and probabil istic tasks, such as f inding the most
probable explanation (MPE), belief updat ing, and f ind­
ing the maximum a posteriori hypothesis. Encouraging
empirical results were reported for MPE on randomly
generated noisy-or networks, on medical-diagnosis CPCS
networks, and on coding problems [Rish et a/., 1998]. In
some cases, however, the approximation was largely sub-
opt imal , even when using the highest feasible accuracy
level.

One way of improving the mini-bucket scheme is by
embedding it in a general search a lgor i thm. The in­
termediate functions created by the mini-bucket scheme
can be interpreted as a heuristic evaluation function and

used by any heuristic search a lgor i thm. For instance, an
upper bound on the probabi l i ty of the best possible ex­
tension of any part ia l assignment in an M P E task can be
derived. The tightness of these bounds can be controlled
by the accuracy parameter of the mini-bucket scheme.

In this paper we evaluate this idea using Branch-and-
Bound search which searches the space of part ial assign­
ments in a depth-first manner. It expands a part ial as­
signment only if its upper-bounding heuristic estimate
is larger than the currently known best lower bound.
The virtue of branch-and-bound compared to best-first
search, is that it requires a l imi ted amount of mem­
ory and can be used as an anyt ime scheme - when in­
terrupted, Branch-and-Bound outputs the best solution
found so far. In [Kask and Dechter. 1999a] we apply
this approach to Best-First search and compare the two
schemes.

The resulting search a lgor i thm, B B M B (Branch and
Bound wi th Mini-Bucket heuristics) is evaluated and
compared against other algorithms (such as bucket elimi­
nat ion, the mini-bucket scheme and iterative belief prop­
agation), on a number of test problems, including cod
ing networks, random networks, and CPCS networks.
We show that the B B M B scheme is effective for a larger
range of problems because of its gradual trade-off be­
tween preprocessing and search, and t ime and accuracy.
Unlike bucket e l iminat ion, B B M B does not suffer from
memory explosion and is often quicker to find an opt i ­
mal solution. We investigated this approach for the op­
t imizat ion task of f inding the Most Probable Explanation
(MPE) .

Section 3 presents an overview of the relevant algo­
r i thms. In Section 4 we describe our branch-and-bound
scheme and its guiding heuristic funct ion. Section 5
presents empirical evaluations, while Section 6 provides
discussion and conclusions. For space reasons we omi t all
proofs. For more details see [Kask and Dechter, 1999a].

1.1 Related work
M P E appears in applications such as medical diagnosis,
circuit diagnosis, natural language understanding and
probabil ist ic decoding. For example, given data on cl in­
ical findings, M P E can postulate on a patient's probable
affl iction. In decoding, the task is to identify the most
likely input message transmit ted over a noisy channel

426 CONSTRAINT SATISFACTION

http://uci.edu

Figure 1: belief network P(f,d,c,b,a) =

given the observed output. Researchers in natural lan­
guage consider the understanding of text to consist of
finding the most likely facts (in internal representation)
that explains the existence of the given text. In com-
puter vision and image understanding, researchers for-
mulate the problem in terms of finding the most likely
set of objects that explains the image. Scientific theories
are models that attempt to fit the given observations,
and so on.

It is known that solving the MPE task is NP-hard.
Complete algorithms for MPE use either the cycle rut-
set technique or the join-tree-clustering [Pearl, 1988] and
the bucket-elimination scheme [Dechter, 1996]. However,
these methods work well only if the network is sparse
enough to allow small cutsets or small clusters. Fol­
lowing Pearl's stochastic simulation algorithms for the
MPE task [Pearl, 1988], the suitability of Stochastic Lo­
cal Search (SLS) algorithms for MPE was studied in the
context of Medical diagnosis applications [Peng and lleg-
gia, 1986], [Peng and Reggia, 1989] and more recently
in [Kask and Dechter, 1999b]. Best first search algo­
rithms were also proposed [Shimony and Charniak, 1991]
as well as algorithms based on linear programming [San­
tos, 1991].

2 Background
2.1 Notation and definitions
Belief Networks provide a formalism for reasoning about
partial beliefs under conditions of uncertainty. They are
defined by a directed acyclic graph over nodes represent­
ing random variables of interest.

DEFINITION 2.1 (Belief Networks) Given a set, X -
of random variables over multivalued do­

mains , . . . , a belief network is a pair (G. P)
where G is a directed acyclic graph and P =

= are conditional probability ma­
trices associated with The set is called the
parent set of An assignment =

can be abbreviated to x = The BN
represents a probability distribution —

where, is the projection of x over
a subset S. An evidence set e is an instantiated subset of
variables. The argument set of a function h is denoted
S{h).

DEFINITION 2.2 (Most Probable Explanat ion)
Given a belief network and evidence c, the Most Prob­
able Explanation (MPE) task is to find an assignment

such that

DEFINITION 2.3 (graph concepts) An ordered graph
is a pair (G, d) where G is an undirected graph and
d ■= is an ordering of the nodes. The width
of a node in an ordered graph is the number of its ear-
lier neighbors. The width w(d) of an ordering d, is the
maximum width over all nodes. The induced width of
an ordered graph, w*(d), is the width of the induced or­
dered graph obtained by processing the nodes recursively,
from last to first; when node X is processed, all its earlier
neighbors are connected. The moral graph of a directed
graph G is the undirected graph obtained by connecting
the parents of all the nodes in G and then removing the
arrows. An example of a belief network is given in Figure
la, and its moral graph in Figure lb.

2.2 Bucket and mini-bucket algorithms
Bucket elimination is a unifying algorithmic frame­
work for dynamic-programming algorithms applicable
to probabilistic and deterministic reasoning [Dechter,
1996]. The input, to a bucket-elimination algorithm con­
sists of a collection of functions or relations (e.g., clauses
for propositional satisfiability, constraints, or conditional
probability matrices for belief networks). Given a vari­
able ordering, the algorithm partitions the functions into
buckets, each placed in the bucket of its latest argument
in the ordering. The algorithm has two phases. During
the first, top-down phase, it processes each bucket, from
the last variable to the first by a variable elimination pro­
cedure that computes a new function, placed in a lower
bucket. For MPE, this procedure computes a product
of all probability matrices in the bucket, and maximizes
over the bucket's variable. During the second, bottom-
up phase, the algorithm constructs a solution by assign­
ing a value to each variable along the ordering, consult­
ing the functions created during the top-down phase.
THEOREM 2.1 [Dechter, 1996] The time and space com­
plexity of Elim-MPE, the bucket elimination algorithm
for MPE, are exponential in the induced width w* (d) of
the network's ordered moral graph along ordering d.

The Mini-bucket elimination is an approximation
scheme designed to avoid the space and time problems
of full bucket elimination. In each bucket, all the func­
tions are first partitioned into smaller subsets called
mini-buckets which are then processed independently.
Here is the rationale. Let be the functions in
bucketp. When Elim-MPE processes bucketp, it com­
putes the function The mini-
bucket algorithm, on the other hand, creates a partition­
ing where the mini-bucket contains
the functions The approximation will com­
pute Clearly, Thus,

KASK AND DECHTER 427

Figure 2: algorithm Approx-MPE(i)

(a) A trace of Elim-MPE (b) A trace of approx-mpe(S).

Figure 3: (a) Algorithm and (b) a trace
of the algorithm's execution.

is computed by assigning a value to each variable that
maximizes the product of functions in the corresponding
bucket, given the values of preceding variables.

the algorithm computes an upper bound on the prob­
ability of the MPE assignment. Subsequently, in its
second phase, the algorithm computes an assignment
that provides a lower bound. The quality of the up-
per bound depends on the degree of the partitioning
into mini-buckets. Given a bound parameter i, the algo­
rithm creates an partitioning, where each mini-bucket
includes no more than variables. Algorithm Approx-

(sometimes called MB(i)) is described in Figure
2. The algorithm outputs not only an upper bound on
the and an assignment (whose probability yields a
lower bound), but also the collection of augmented buck­
ets. By comparing the upper bound to the lower bound
we can always have a bound on the error for the given
instance.
THEOREM 2.2 [Decider and Rush, 1997] Algorithm

generates an upper bound on the exact
MPE and its time and space complexity is

When the bound i is large enough (i.e. when i w*),
the algorithm coincides with full bucket elimination.
Example 2.3 Figure illustrates how algorithms
Elim-MPE and Approx-MPE(i) for i = 3 process the
network in Figure 1(a) along the ordering
C, B). Elim-MPE records new functions

and during its backwards
phase. Then, in the bucket of A, it computes MPE

Subsequently, an MPE assignment
is an

evidence) is computed by maximizing the product func­
tions in each bucket. Namely,

and so on.
The approximation Approx-MPE(3) splits bucket into
two mini-buckets each containing no more than 3 van-
ables, and generates and An upper
bound on the MPE value is computed in A 's bucket,

A suboptimal tuple

3 Heuristic Search w i th Mini-Bucket
3.1 Notation
Given an ordered set of augmented buckets generated by
the mini-bucket algorithm along we use
the following convention

• denotes an input conditional probability matri­
ces placed in bucket (namely, its highest-ordered
variable is

• hp, denotes an arbitrary function in bucket p gen­
erated by the mini-bucket algorithm.

• denotes a function created by the mini-
bucket in bucket

• denotes an arbitrary function in bucket

We denote by buckets(l..p) the union of all functions
in the bucket of through the bucket of Remember
that denotes the set of arguments of function /.

3.2 The idea
We will now show that the new functions recorded by
the mini-bucket, algorithm can be used to express upper
bounds on the most probable extension of any partial
assignment. Therefore, they can serve as heuristics in
an evaluation function which guides either a best-first
search or a branch-and-bound search.

DEFINIT ION 3.1 (Exact Evaluat ion Funct ion)
Let The probability of the most
probable extension of xp, denoted is:

The above product defining f* can be divided into
two smaller products expressed by the functions in the
ordered augmented buckets. In the first product all the

428 CONSTRAINT SATISFACTION

arguments are instantiated, and therefore the maximiza­
tion operation is applied to the second product only. De­
noting

and

we get

During search, the function can be evaluated over the
partial assignment while can be estimated by
a heuristic function. Our first proposal is to estimate

by a function which is the product
of all functions generated by the mini-bucket algorithm
which reside in bucket It can be shown, using prop­
erties of mini-bucket scheme, that this product indeed
provides an upper bound on , yielding an admissible
heuristic.

However, the heuristic function is non-monotonic.
In fact, even if provided with augmented buckets that are
generated by exact full bucket elimination, this heuris­
tic may still be nonmonotonic. A heuristic function is
monotonia if the evaluation function along any path in
the search tree is not increasing.

We next modify to make it monotone and more
accurate. The modified heuristic function adds to
the product of all those functions in buckets
that were generated in buckets processed before bucket
p. The rationale is that some conditional probability
matrices in are approximated by functions that
are placed below bucket (because they are not defined
over

DEFINITION 3.2 Given an ordered set of augmented
buckets, the heuristic function is the product of
all the h functions that satisfy the following two prop­
erties; 1) They are generated in buckets
and 2) They reside in buckets 1 through p. Namely,

where
is generated by a bucket processed before bucket p.)

THEOREM 3.1 (M i n i - B u c k e t Heur i s t i c) For every
partial assignment of the first
variables, the evaluation function
is: 1) Admissible - it never underestimates the probabil­
ity of the best extension of Monotonia, namely

The following proposition shows how and
can be updated recursively based on and

and functions residing in bucket, (From now
on we will use H to mean Ho.)

P r o p o s i t i o n 1 Given a partial assignment =
both and can be computed re­

cursively by

(i)

3.3 Search with Mini-Bucket Heuristics
The tightness of the upper bound generated by the mini-
bucket approximation depends on its /-bound. Larger
values of i yield better upper-bounds, but require more
computation. Therefore, Branch-and-Bound search, if
parameterized by allows a controllable tradeoff be­
tween preprocessing and search, or between heuristic
strength and its overhead.

In Figure 4 we present algorithm BBMB(i) . This al­
gorithm is initialized by running the mini-bucket, algo­
r i thm, producing the set of ordered augmented buckets.
It then traverses the search space in a depth-first man­
ner, instantiating variables from first to last. Through­
out the search, the algorithm maintains a lower bound
on the probability of the MPE assignment, which corre­
sponds to the probability of the best full variable instan­
tiation found thus far. It uses the heuristic evaluation
function to prune the search space. Search ter­
minates when it reaches a time-bound or when the first
variable has no values left. In the latter case, the algo­
rithm has found an optimal solution.

The heuristic function generated by the mini-bucket
approximation can also be used to guide any type
algorithm. For a description of Best-First search with
mini-bucket heuristics see [Ka.sk and Dechter, 1999a].

4 Experimental Methodology
We tested the performance of our scheme on sev-

KASK AND DECHTER 429

(2)

Figure 4: Algorithm BBMB(i)

Algor i thm B B M B (i)
Input : A belief network BN — ordering d.
Output : An MPE assignment, or a lower bound and an
upper-bound on the MPE.
1. Ini t ial ize: Run algorithm which generates a
set of ordered augmented buckets and an upper-bound on
MPE. Set lower bound L to 0. Set, current variable index

to 0.
2. Search: Execute the following procedure until variable
A'i has no legal values left.
• Expand: Given a partial instantiation compute
all partial assignments for each value v of

For each node compute its heuristic value

Prune those assignments for which is smaller
than the lower bound L.
• Forward: If has no legal values left, goto Back­
track. Otherwise let be the best extension
to according to /. then set
and goto Backtrack. Otherwise remove v from the list of
legal values. and goto Expand.
• Backtrack: K Exit. Otherwise s e t a n d
repeat the Forward step.

http://Ka.sk

'Fable 1: Random MPE. Time bound 30 sec. 100 samples.

eral types of networks. On each problem instance we
ran bucket elimination (Elim-MPE), mini-bucket ap-
proximation with various i-bounds and branch
and bound with some levels of mini-bucket heuristics

The main measure of performance of the approxima­
tion algorithm given a fixed time bound, is the accuracy
ratio between the probability of the
solution found by the test algorithm and the prob­
ability of the optimal solution whenever
is available. We also record the running time of each
algorithm.

We report the distribution of problems with respect to
5 predefined ranges of accuracy :

We recorded the
number of problems that Elim-MPE solved as well as
the average induced width of the test problems. Be-
cause of space restrictions in most cases we report, only
the number of problems that fall in the highest accu­
racy range However, since most problems
were solved by BBMB optimally, we lose only minimal
information.

In addition, during the execution of BBMB we also
stored the current lower bound at regular time inter­
vals. Comparing the lower bound against the optimal
solution, allows reporting the accuracy of BBMB as a
function of time.

4.1 Random Bayesian Networks and
Noisy-OR Networks

Random Bayesian networks and Noisy-OR networks
were randomly generated using parameters (N, K, C, P),
where N is the number of variables, K is their domain
size, C is the number of conditional probability matri­
ces and P is the number of parents in each conditional
probability matrix.

The structure of each test problem is created by ran­
domly picking C variables out of N and for each, ran­
domly selecting P parents from preceding variables, rel-
ative to some ordering. For random Bayesian networks,
each probability table is generated randomly. For Noisy-
OR networks, each probability table represents an OR-
function with a given noise and leak probabilities :

Tables 1 and 2 present results of experiments with ran­
dom Bayesian networks and Noisy-OR networks respec­
tively. In each table, parameters N, K and P are fixed,
while C, controlling network's sparseness, is changing.
For each C, we generate 100 problem instances. Each
entry in the table reports the number of instances that
fall in a specific: range of accuracy, as well as the average
running time of each algorithm (note that BBMB time
includes the preprocessing time by MB).

For example, Table 1 reports the results with random
problems having There are 5 hori­
zontal blocks, each corresponding to a different, value of
C. Each block has two rows, one for MB and one for
BBMB, reporting the number of problems in accuracy
range of 0.95 and the average running time.

The second column reports the results of Elim-MPE,
namely the number of instances it solved, their average

and running time. The rest of the columns report
results of MB and BBMB for various levels of Look­
ing at the first line, in Table 1 we see that in the best
accuracy range, solved only
14 problems using 0.03 seconds on the average. BBMB
with solved instances in this range while
ing 6.30 seconds on the average. Note that Elim-MPE
on the other hand solved 91 instances using much more
time than BBMB with any

Each row demonstrates a tradeoff between preprocess­
ing by MB and subsequent search by BBMB. As ex­
pected, MB can solve more instances as / increases while
its average time increases. At the same time, the search
time of BBMB decreases as increases. We observe
that the total BBMB time improves when increases
until a threshold point and then worsens. We have high­
lighted the best performance point in each row. Below
this threshold, the heuristic function is weak, resulting
in long search. Above the threshold, the extra prepro­
cessing is not cost effective. As problems become harder
BBMB achieves its best performance at higher thresh­
olds. For example, when C is 100 and 105, the threshold
is when C is 110, 115 and 120, it is and
when C is 125, it is

Table 2 reporting on Noisy-OR shows similar results
(based on 0.95 range). On this class BBMB is very
effective and solved all problems exactly, while Elim-

430 CONSTRAINT SATISFACTION

N
C.P.K

Elirn
M P E

[t i m e]
• w*

opt
M B /

B B M B
i = 2

[t i m e]

MB /
B B M B

i = 4
[t i m e]

MB /
B B M B

i = 6
[t i m e]

MB /
B B M B

i = 8
[t i m e]

M B /
B B M B
i = 10

[t i m e]

MB /
B B M B
i=12

| t i m e]

M B /
B B M B
i=14

256
100,2,2

91[4.91]
14 6

>0.95 14[0.03]
89(6 30]

30(0.03]
100(1 04]

44[0.04]
100(0.21]

50[0.07]
100[0 .18]

63[0.15]
100[0.18]

68[0 40]
100(0.45]

8 l [l .20)
100(1.28]

256
105,2,2

69[7 l l]
15.8

>0.95 6[0.03]
83(8.86]

20(0.03]
99 [1.38]

29(0 04]
100(0.69]

42 [0 .08]
100[0.19]

47[0.17]
100[026

67(0.49]
100[0.52]

75[1.54]
100[1.63]

256
110,2,2

41[9.06]
17 5

>0,95 8(0.04)
77(141]

15[0.03]
100(3 68]

23(0.04]
99 1 07]

33[0 08]
100[0.41]

47 [0 .18]
100[0.85]

55[0.57]
100[0.70]

67(1.85]
100[1.98]

256
115,2,2

17(12.3]
19.1

>0.95 6(0.03]
71[175]

10 [0.03]
98(5.74]

16(0.05]
100(1 78]

22[0.09]
100[0.85]

43 [0 .21]
1 0 0 [0 . 7 l]

37[0.66]
100[0 84]

5l[2.17]
100[2.34]

256
120,2,2

11(9.99]
20.3

>0.95 4(0 04]
57(20.4]

10(0 04]
95(6.50]

10[0.05]
97[2.60]

29[0.08]
100 [1.96]

80 [0 .22]
100 [0 .0 7]

39[066]
100[1.00

53[2.10]
100[235]

256
125,2,2

2(21.1]
22.4

>0.95 2(0.03]
49(21.5]

8[0.04]
86[9.44]

9[0 05]
95[4,79]

21(0.09)
96[2.17]

28(0.25]
100[l.02]

35(0.78;
100[1.52]

35[2.50]
100[3.34]

N
C,P

Elirn
MPE

(t ime]
opt

MB /
B B M B

i = 2
[t i m e]

MB /
B B M B

1 = 6

M"B /
B B M B
i=10

[t ime]

MB /
BBMB
1=14

#ltime]
128

90,2
0(10.9]

20 4
>0.95 3l[0,04]

100(0.54]
42 [0.05]
1 0 0 [0 . l l]

49(0 22]
100[0.25]

71 [2.22]
100[2.22]

128
95,2

I [7.67]
21.5

>0 95 2 6 [0.02]
99(0.78]

86[0.04]
100(C). 11]

4 4 [0.22]
100[0 27]

59 [2.45]
100[2 46]

128
100,2 23.6

>0 95 10[0 05]
98[1.01]

26[0.06]
100[0.25]

4 4(0.27]
100(0.33

57[2.77]
100(2 79]

128
105,2

0[-]
24.7

>0.95 16 [0.03]
99[2 18]

29[0.04]
100[0.45]

88[0.26;
100(0.37]

48[3.17]
100(3 20]

MPE solved almost none. For 6 BBMB can solve
all 100 instances, with threshold

In Figures 5 and 6 we provide an alternative view of
the performance of BBMB(i) . Let be the
fraction of the problems solved completely by BBMB(i)
by time /. Each graph in Figures 5 and 6 plots

for some specific value i. Figure 5 shows
the distribution o f f o r random Bavesian

V

networks when N=256, C=125, K=2 and P=2 (corre­
sponding to the last row in Table 1), whereas Figure 6
shows the distribution of for Noisy-OR net­
works when N = 128, 0 = 95 and P=2 (corresponding to
the second row in Table 2).

Figures 5 and (> display a trade off between preprocess­
ing and search. Clearly, if
then completely dominates FBBMB(j)(t).
For example, in Figure 5 BBMB(JO) completely domi­
nates When and
intersect, they display a trade-off a.s a function of time.
For example, if we have only few seconds, BBMB(tJ) is
better than BBMB(I4) . However, when sufficient time
is allowed, BBMB(14) is superior to BBMB(G).

The same pattern appears in Figure 6. BBMB(6)
completely dominates BBMB(2), while there is a trade­
off between BBMB(2) and BBMB(14) depending on the
amount of time allowed.

4.2 Random Coding Networks
Our random coding networks fall within the class of
car block codes. They can be represented as four-layer
belief networks (Figure 7). The second and third layers
correspond to input information bits and parity check
bits respectively. Each parity check bit represents an
XOR function of input bits u,. Input and parity check
nodes are binary while the output nodes are real-valued.
In our experiments each layer has the same number of
nodes because we use code rate of where
K is the number of input bits and N is the number of
transmitted bits.

Given a number of input bits K, number of parents P
for each XOR bit and channel noise variance a cod-
ing network structure is generated by randomly picking
parents for each XOR node. Then we simulate an in­
put signal by assuming a uniform random distribution
of information bits, compute the corresponding values
of the parity check bits, and generate an assignment to

KASK AND DECHTER 431

Figure 5: Random Bavesian. N=25t>, C=125, K=2 ,
P=2. 100 samples.

Table 3: Random coding. Time ,30sec. 2000 samples.

the output nodes by adding (laussian noise to each in­
formation and parity check bit. The decoding algorithm
takes as input the coding network and the observed real
valued output assignment and recovers the original in­
put bit vector by computing or approximating an MPE
assignment.

We tested two sets of random coding networks - K=50
and K—100 input bits. Table 3 reports results on ran­
dom coding networks having K=50. In addition to Elim-
MPE and BBMB. we also ran Iterative Belief Propaga­
tion (IBP) which was recently observed as the best per­
forming decoding algorithm. It is identical to iterative
application of PeaiTs belief updating on tree-like net­
works [Pearl, 1988]. For each we generated and tested
2000 samples divided into 200 different networks each
simulated with 10 different, input bit vectors.

In Table 3 we observe a familiar pattern of
preprocessing search tradeoff. For each level of noise
there is an empirical optimal balancing preprocessing
cost, and search. For = 0.22 the threshold is 6. As
noise increases, the threshold increases. Also, as noise
increases, the role of search becomes more significant.
Although IBP is superior (because it is faster) for small

Table 2: Noisy-OR MPE. Noise 0.2, Leak 0.01. Time
bound 30 sec. 100 samples. 10 evidence.

Figure 6: Noisy-OR. N = 128, C=95, P=2. 100 samples.

Figure 7: Belief network for structured (10,5) block code
with parent set size P—3

noise, it has a shortcoming for high noise levels since its
performance cannot be improved with extra time while
BBMB can.

Fable 4 reports the Bit Error Rate for
and is a standard measure

used in the coding literature denoting the fraction of in­
put bits that were decoded incorrectly. When compared
using is about the same as when
the noise is small, but slightly better when the noise is
large.

Figure 8 shows the distribution of for
Random Coding networks when K=T00 and =r 0.28.
We observe that no algorithm completely dominates any
other algorithm. However, we can see a trade-off depend-

MB / BBMB i= 14 IBP
0,22 0.0012/0.00024 0.00024
0.28 0.010/0.0015 0 0015
0.32 0.025/0.0041 0.0034
0.40 0.090/0.021 0.016
0 51 0 184/0102 0.084

Table 4: Random coding BER

Figure 8: BBMB Random Coding. K = 1()0, = 0.28.
500 samples.

ing on the time available. When the time allowed is small
(less then 10 seconds), with i less than 14 is
better. However, when more time is allowed,
is clearly superior.

4.3 CPCS Networks
As another realistic domain, we used the networks
derived from the Computer-Based Patient Care Simu­
lation system, and based on and Quick
Medical Reference expert systems [Pradhan et al., 1994].
The nodes in networks correspond to diseases and
findings. Representing it as a belief network requires
some simplifying assumptions, 1) conditional indepen­
dence of findings given diseases, 2) noisy-OR dependen-
cies between diseases and findings, and 3) marginal in­
dependencies of diseases. For details see [Pradhan et al.,
1994].

In Table 5 we have results of experiments with two
binary CPCS networks, cpes360b (N = 360, C = 335)
and (N = 422, C = 348), with 1000 and 150
instances respectively. Each instance had 10 evidence
nodes picked randomly.

Since network is solved quite effectively by
MB we see that added search time is small, serv­
ing primarily to prove the optimality of the MB solution.
On the other hand, on can solve a third of
the instances accurately when is small, and more as
increases. can solve all instances accurately for

when search takes little additional time.

5 Discussion and Conclusion
Our experiments demonstrate that combining branch-
and-bound with mini-bucket heuristics (BBMB) pro­
vides a powerful method of attacking optimization prob­
lems such as the MPE.

432 CONSTRAINT SATISFACTION

C P C S 3 6 0 b M B / M B / M B / M B /
1000 B B M B B B M B B B M B B B M B

sample i = 4 i = 8 i = I 2 i=1C
>0 .95 9 3 9 [0 . 9 4] 950[0.96] 983(2 04] 991(16 4]

1 0 0 0 [0 . 9 6] 1000(0.97] 1000[204] 1000(10 4]
>0 .50 13(0.94] 8[0.96] 0(2.01] 6[16 1]

0(-] 0[-] 0[-] 0[-]
>0 .20 44(0 95] 38(0.97] 11 (2 03] 3(10.0]

0[-] 0[-] 0[-] 0[-]
> 0 01 4[0.94] 4[0.90] 0[-] 0[-]

0[-] 0[-] ol-l 0[-]
< 0 01 0[-] 0[-] 0[-] 0[-]

0[-] 0[-] 0[-] 0[-]
CPCS422b MB / MB / MB / M B /

150 B B M B B B M B B B M B B B M B
samples 1 = 4 1 = 8 i=12 i = 16

>0 .95 56(23 l] 67(23.1] 78[23.2] 98[39 9]
144[25 5] 148(24 5] 15U(28 .4] 150(40.0]

> 0 50 14 [22.9] 8(22 9] 19(23.. 4] 22[40 1]
1(4 5,0] O[-] 0[-] ()[-]

>0 .20 12(23.0] 10(22.9] 23[23 4] 17[40.1]
()(-] 0[-] 0[-] 0[-]

>0 .01 34(23 1] 27(23 1] 15(23 2] 8(10.0]
2(4 5.0] 2(45 0] 0[-] 0[-]

<0 .01 34(23 1] 32(22.9] 15(23 0] 5(40 0]
3[4 5 0] 0[-] 0[-] 0[-] _

Table 5: CPCS networks. Time 30 and 45 resp.

On the one hand it avoids the storage bottleneck of full
bucket elimination while frequently solving problems op­
timally. On the other hand, it improves output quality
substantially over the mini bucket approximation, espe­
cially when the former is highly suboptimal. However,
the most important feature of is the ability to
control the balance between preprocessing (for heuristic
generation) and search, using its bounding
Pure search and pure bucket-elimination
are two extremes ends of that spectrum.

In all our experiments, including random Bayesian
networks. Noisy OH networks, coding networks and
medical diagnosis CPCS networks, we observed that op­
timal performance- (measured by time within a certain
accuracy range) occurred at an intermediate threshold
point of Weaker heuristics, lying below the thresh­
old, and stronger heuristics, lying above the threshold,
were less cost-effective. We also observed that as prob­
lems grew harder, stronger heuristics became more cost
effective. The control of the gradual change of space-
time-accuracy tradeoff of now makes a larger set
of problem solvable.

Although the best threshold point may not be pre-
dictable for every problem instance, a preliminary em­
pirical analysis can be informative when given a class of
problems that is not too heterogeneous.

We have also tested the mini-bucket heuristic func­
tion with Best-First search. We found that if we are in­
terested in the optimal solution only, is often
significantly faster than when given sufficient
time and space. However, unlike BBMB, is not
an anytime algorithm [Kask and Dechter, 1099a].

[Dechter, 1996] R. Dechter. Bucket elimination: A uni­
fying framework for probabilistic inference algorithms.
In Uncertainty in Artificial Intelligence (UA1-96),
pages 211-219', 1996.

[Kask and Dechter, 1999a] K. Kask and R. Dechter. On
the power of mini-bucket heuristics for improved
search. UCl Technical report, 1999.

[Kask and Dechter, 1999b] K. Kask and Ft. Dechter.
Stochastic local search for bayesian networks. In
Workshop on AI and Statistics (AISTAT99), 1999.

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intel­
ligent Systems. Morgan Kaufrnann, 1988.

[Peng and Reggia, 1986] V. Peng and J.A. Reggia.
Plausability of diagnostic hypothesis. In National
Conference, on Artificial Intelligence (AAAI86), pages
140 145,1986.

Peng and Reggia, 1989] Y. Peng and .l.A. Reggia. A
connectionist model for diagnostic problem solving.
IKVJE Transactions on Systems, Man and ('ybernet-
ir.s, 1989.

Pradhan et al., 11)94] M. Pradhan, G. Provan, B. Mid-
dleton, and M. Henrion. Knowledge engineering for
large belief networks. In proc. Tenth. Conf. on Uncer­
tainty in Artificial Intelligence, 1994.

[Rish et al., 1998] 1. Rish, K. Kask, and R. Dechter. Ap­
proximation algorithms for probabilistic decoding. In
Uncertainty in Artificial Intelligence (l'Al-98), 1998.

Santos, I99.l] E. Santos. On the generation of alter­
native explanations with implications for belief revi­
sion. In Uncertainty in Artificial Intelligence (UAI-
91), pages 339-347. 1991.

[Shimony and Charniak, 199l] S.P. Shimony and
P. Charniak. A new algorithm for finding map assign­
ments to belief networks. In P. Bonissone, M. Hen­
rion, L. kamal, and ./. Lemmer Uds. Uncertainty in
Artificial Intelligence, volume'6, pages 185 193, 1991.

References
[Dechter and Rish, 1997] R. Dechter and I. Rish. A

scheme for approximating probabilistic inference. In
Proceedings of Uncertainty in Artificial Intelligence
(UAI97), pages 132 141, 1997.

KASK AND DECHTER 433

