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Abstract 

The paper describes a branch and bound 
scheme that uses heuristics generated mechan­
ically by the mini-bucket approximation. This 
scheme is presented and evaluated for opt i ­
mization tasks such as f inding the Most Prob­
able Explanation (MPE ) in Bayesian net­
works. The mini-bucket scheme yields mono-
tonic heuristics of varying strengths which 
cause different amounts of pruning, allowing a 
controlled tradeoff between preprocessing and 
search. The resulting Branch and Bound wi th 
Mini-Bucket heuristic ( B B M B ) , is evaluated 
using random networks, probabil istic decoding 
and medical diagnosis networks. Results show 
that the B B M B scheme overcomes the mem­
ory explosion of bucket-el imination allowing a 
gradual tradeoff of space for t ime, and of t ime 
for accuracy. 

1 Introduction 
This paper proposes a new scheme for augmenting 
branch-and-bound search wi th heuristics generated auto­
matical ly by the Mini-Bucket algorithms. Mini-bucket is 
a class of parameterized approximation algorithms based 
on the recently proposed bucket-elimination frame­
work. The approximat ion uses a control l ing parame­
ter which allows adjustable levels of accuracy and effi­
ciency [Dechter and Rish, 1997]. The algorithms were 
presented and analyzed for deterministic opt imizat ion 
tasks and probabil istic tasks, such as f inding the most 
probable explanation (MPE), belief updat ing, and f ind­
ing the maximum a posteriori hypothesis. Encouraging 
empirical results were reported for MPE on randomly 
generated noisy-or networks, on medical-diagnosis CPCS 
networks, and on coding problems [Rish et a/., 1998]. In 
some cases, however, the approximation was largely sub-
opt imal , even when using the highest feasible accuracy 
level. 

One way of improving the mini-bucket scheme is by 
embedding it in a general search a lgor i thm. The in­
termediate functions created by the mini-bucket scheme 
can be interpreted as a heuristic evaluation function and 

used by any heuristic search a lgor i thm. For instance, an 
upper bound on the probabi l i ty of the best possible ex­
tension of any part ia l assignment in an M P E task can be 
derived. The tightness of these bounds can be controlled 
by the accuracy parameter of the mini-bucket scheme. 

In this paper we evaluate this idea using Branch-and-
Bound search which searches the space of part ial assign­
ments in a depth-first manner. It expands a part ial as­
signment only if its upper-bounding heuristic estimate 
is larger than the currently known best lower bound. 
The virtue of branch-and-bound compared to best-first 
search, is that it requires a l imi ted amount of mem­
ory and can be used as an anyt ime scheme - when in­
terrupted, Branch-and-Bound outputs the best solution 
found so far. In [Kask and Dechter. 1999a] we apply 
this approach to Best-First search and compare the two 
schemes. 

The resulting search a lgor i thm, B B M B (Branch and 
Bound wi th Mini-Bucket heuristics) is evaluated and 
compared against other algorithms (such as bucket elimi­
nat ion, the mini-bucket scheme and iterative belief prop­
agation), on a number of test problems, including cod 
ing networks, random networks, and CPCS networks. 
We show that the B B M B scheme is effective for a larger 
range of problems because of its gradual trade-off be­
tween preprocessing and search, and t ime and accuracy. 
Unlike bucket e l iminat ion, B B M B does not suffer from 
memory explosion and is often quicker to find an opt i ­
mal solution. We investigated this approach for the op­
t imizat ion task of f inding the Most Probable Explanation 
(MPE) . 

Section 3 presents an overview of the relevant algo­
r i thms. In Section 4 we describe our branch-and-bound 
scheme and its guiding heuristic funct ion. Section 5 
presents empirical evaluations, while Section 6 provides 
discussion and conclusions. For space reasons we omi t all 
proofs. For more details see [Kask and Dechter, 1999a]. 

1.1 Related work 
M P E appears in applications such as medical diagnosis, 
circuit diagnosis, natural language understanding and 
probabil ist ic decoding. For example, given data on cl in­
ical findings, M P E can postulate on a patient's probable 
affl iction. In decoding, the task is to identify the most 
likely input message transmit ted over a noisy channel 
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Figure 1: belief network P(f,d,c,b,a) = 

given the observed output. Researchers in natural lan­
guage consider the understanding of text to consist of 
finding the most likely facts (in internal representation) 
that explains the existence of the given text. In com-
puter vision and image understanding, researchers for-
mulate the problem in terms of finding the most likely 
set of objects that explains the image. Scientific theories 
are models that attempt to fit the given observations, 
and so on. 

It is known that solving the MPE task is NP-hard. 
Complete algorithms for MPE use either the cycle rut-
set technique or the join-tree-clustering [Pearl, 1988] and 
the bucket-elimination scheme [Dechter, 1996]. However, 
these methods work well only if the network is sparse 
enough to allow small cutsets or small clusters. Fol­
lowing Pearl's stochastic simulation algorithms for the 
MPE task [Pearl, 1988], the suitability of Stochastic Lo­
cal Search (SLS) algorithms for MPE was studied in the 
context of Medical diagnosis applications [Peng and lleg-
gia, 1986], [Peng and Reggia, 1989] and more recently 
in [Kask and Dechter, 1999b]. Best first search algo­
rithms were also proposed [Shimony and Charniak, 1991] 
as well as algorithms based on linear programming [San­
tos, 1991]. 

2 Background 
2.1 Notation and definitions 
Belief Networks provide a formalism for reasoning about 
partial beliefs under conditions of uncertainty. They are 
defined by a directed acyclic graph over nodes represent­
ing random variables of interest. 

DEFINITION 2.1 (Belief Networks) Given a set, X -
of random variables over multivalued do­

mains , . . . , a belief network is a pair (G. P) 
where G is a directed acyclic graph and P =  

= are conditional probability ma­
trices associated with The set is called the 
parent set of An assignment =  

can be abbreviated to x = The BN 
represents a probability distribution — 

where, is the projection of x over 
a subset S. An evidence set e is an instantiated subset of 
variables. The argument set of a function h is denoted 
S{h). 

DEFINITION 2.2 (Most Probable Explanat ion) 
Given a belief network and evidence c, the Most Prob­
able Explanation (MPE) task is to find an assignment 

such that 

DEFINITION 2.3 (graph concepts) An ordered graph 
is a pair (G, d) where G is an undirected graph and 
d ■= is an ordering of the nodes. The width 
of a node in an ordered graph is the number of its ear-
lier neighbors. The width w(d) of an ordering d, is the 
maximum width over all nodes. The induced width of 
an ordered graph, w*(d), is the width of the induced or­
dered graph obtained by processing the nodes recursively, 
from last to first; when node X is processed, all its earlier 
neighbors are connected. The moral graph of a directed 
graph G is the undirected graph obtained by connecting 
the parents of all the nodes in G and then removing the 
arrows. An example of a belief network is given in Figure 
la, and its moral graph in Figure lb. 

2.2 Bucket and mini-bucket algorithms 
Bucket elimination is a unifying algorithmic frame­
work for dynamic-programming algorithms applicable 
to probabilistic and deterministic reasoning [Dechter, 
1996]. The input, to a bucket-elimination algorithm con­
sists of a collection of functions or relations (e.g., clauses 
for propositional satisfiability, constraints, or conditional 
probability matrices for belief networks). Given a vari­
able ordering, the algorithm partitions the functions into 
buckets, each placed in the bucket of its latest argument 
in the ordering. The algorithm has two phases. During 
the first, top-down phase, it processes each bucket, from 
the last variable to the first by a variable elimination pro­
cedure that computes a new function, placed in a lower 
bucket. For MPE, this procedure computes a product 
of all probability matrices in the bucket, and maximizes 
over the bucket's variable. During the second, bottom-
up phase, the algorithm constructs a solution by assign­
ing a value to each variable along the ordering, consult­
ing the functions created during the top-down phase. 
THEOREM 2.1 [Dechter, 1996] The time and space com­
plexity of Elim-MPE, the bucket elimination algorithm 
for MPE, are exponential in the induced width w* (d) of 
the network's ordered moral graph along ordering d.  

The Mini-bucket elimination is an approximation 
scheme designed to avoid the space and time problems 
of full bucket elimination. In each bucket, all the func­
tions are first partitioned into smaller subsets called 
mini-buckets which are then processed independently. 
Here is the rationale. Let be the functions in 
bucketp. When Elim-MPE processes bucketp, it com­
putes the function The mini-
bucket algorithm, on the other hand, creates a partition­
ing where the mini-bucket contains 
the functions The approximation will com­
pute Clearly, Thus, 
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Figure 2: algorithm Approx-MPE(i) 

(a) A trace of Elim-MPE (b) A trace of approx-mpe(S). 

Figure 3: (a) Algorithm and (b) a trace 
of the algorithm's execution. 

is computed by assigning a value to each variable that 
maximizes the product of functions in the corresponding 
bucket, given the values of preceding variables. 

the algorithm computes an upper bound on the prob­
ability of the MPE assignment. Subsequently, in its 
second phase, the algorithm computes an assignment 
that provides a lower bound. The quality of the up-
per bound depends on the degree of the partitioning 
into mini-buckets. Given a bound parameter i, the algo­
rithm creates an partitioning, where each mini-bucket 
includes no more than variables. Algorithm Approx-

(sometimes called MB(i)) is described in Figure 
2. The algorithm outputs not only an upper bound on 
the and an assignment (whose probability yields a 
lower bound), but also the collection of augmented buck­
ets. By comparing the upper bound to the lower bound 
we can always have a bound on the error for the given 
instance. 
THEOREM 2.2 [Decider and Rush, 1997] Algorithm 

generates an upper bound on the exact 
MPE and its time and space complexity is  

When the bound i is large enough (i.e. when i w*), 
the algorithm coincides with full bucket elimination. 
Example 2.3 Figure illustrates how algorithms 
Elim-MPE and Approx-MPE(i) for i = 3 process the 
network in Figure 1(a) along the ordering 
C, B). Elim-MPE records new functions  

and during its backwards 
phase. Then, in the bucket of A, it computes MPE 

Subsequently, an MPE assignment 
is an 

evidence) is computed by maximizing the product func­
tions in each bucket. Namely,  

and so on. 
The approximation Approx-MPE(3) splits bucket into 
two mini-buckets each containing no more than 3 van-
ables, and generates and An upper 
bound on the MPE value is computed in A 's bucket, 

A suboptimal tuple 

3 Heuristic Search w i th Mini-Bucket 
3.1 Notation 
Given an ordered set of augmented buckets generated by 
the mini-bucket algorithm along we use 
the following convention 

• denotes an input conditional probability matri­
ces placed in bucket (namely, its highest-ordered 
variable is  

• hp, denotes an arbitrary function in bucket p gen­
erated by the mini-bucket algorithm. 

• denotes a function created by the mini-
bucket in bucket  

• denotes an arbitrary function in bucket  

We denote by buckets(l..p) the union of all functions 
in the bucket of through the bucket of Remember 
that denotes the set of arguments of function /. 

3.2 The idea 
We will now show that the new functions recorded by 
the mini-bucket, algorithm can be used to express upper 
bounds on the most probable extension of any partial 
assignment. Therefore, they can serve as heuristics in 
an evaluation function which guides either a best-first 
search or a branch-and-bound search. 

DEFINIT ION 3.1 (Exact Evaluat ion Funct ion) 
Let The probability of the most 
probable extension of xp, denoted is: 

The above product defining f* can be divided into 
two smaller products expressed by the functions in the 
ordered augmented buckets. In the first product all the 
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arguments are instantiated, and therefore the maximiza­
tion operation is applied to the second product only. De­
noting  

and 

we get  

During search, the function can be evaluated over the 
partial assignment while can be estimated by 
a heuristic function. Our first proposal is to estimate 

by a function which is the product 
of all functions generated by the mini-bucket algorithm 
which reside in bucket It can be shown, using prop­
erties of mini-bucket scheme, that this product indeed 
provides an upper bound on , yielding an admissible 
heuristic. 

However, the heuristic function is non-monotonic. 
In fact, even if provided with augmented buckets that are 
generated by exact full bucket elimination, this heuris­
tic may still be nonmonotonic. A heuristic function is 
monotonia if the evaluation function along any path in 
the search tree is not increasing. 

We next modify to make it monotone and more 
accurate. The modified heuristic function adds to 
the product of all those functions in buckets 
that were generated in buckets processed before bucket 
p. The rationale is that some conditional probability 
matrices in are approximated by functions that 
are placed below bucket (because they are not defined 
over  

DEFINITION 3.2 Given an ordered set of augmented 
buckets, the heuristic function is the product of 
all the h functions that satisfy the following two prop­
erties; 1) They are generated in buckets 
and 2) They reside in buckets 1 through p. Namely, 

where  
is generated by a bucket processed before bucket p.) 

THEOREM 3.1 ( M i n i - B u c k e t Heur i s t i c ) For every 
partial assignment of the first  
variables, the evaluation function  
is: 1) Admissible - it never underestimates the probabil­
ity of the best extension of Monotonia, namely 

The following proposition shows how and 
can be updated recursively based on and 

and functions residing in bucket, (From now 
on we will use H to mean Ho.) 

P r o p o s i t i o n 1 Given a partial assignment = 
both and can be computed re­

cursively by 

( i ) 

3.3 Search with Mini-Bucket Heuristics 
The tightness of the upper bound generated by the mini-
bucket approximation depends on its /-bound. Larger 
values of i yield better upper-bounds, but require more 
computation. Therefore, Branch-and-Bound search, if 
parameterized by allows a controllable tradeoff be­
tween preprocessing and search, or between heuristic 
strength and its overhead. 

In Figure 4 we present algorithm BBMB(i) . This al­
gorithm is initialized by running the mini-bucket, algo­
r i thm, producing the set of ordered augmented buckets. 
It then traverses the search space in a depth-first man­
ner, instantiating variables from first to last. Through­
out the search, the algorithm maintains a lower bound 
on the probability of the MPE assignment, which corre­
sponds to the probability of the best full variable instan­
tiation found thus far. It uses the heuristic evaluation 
function to prune the search space. Search ter­
minates when it reaches a time-bound or when the first 
variable has no values left. In the latter case, the algo­
rithm has found an optimal solution. 

The heuristic function generated by the mini-bucket 
approximation can also be used to guide any type 
algorithm. For a description of Best-First search with 
mini-bucket heuristics see [Ka.sk and Dechter, 1999a]. 

4 Experimental Methodology 
We tested the performance of our scheme on sev-

KASK AND DECHTER 429 

(2) 

Figure 4: Algorithm BBMB(i) 

Algor i thm B B M B ( i ) 
Input : A belief network BN — ordering d. 
Output : An MPE assignment, or a lower bound and an 
upper-bound on the MPE. 
1. Ini t ial ize: Run algorithm which generates a 
set of ordered augmented buckets and an upper-bound on 
MPE. Set lower bound L to 0. Set, current variable index 

to 0. 
2. Search: Execute the following procedure until variable 
A'i has no legal values left. 
• Expand: Given a partial instantiation compute 
all partial assignments for each value v of 

For each node compute its heuristic value 

Prune those assignments for which is smaller 
than the lower bound L. 
• Forward: If has no legal values left, goto Back­
track. Otherwise let be the best extension 
to according to /. then set 
and goto Backtrack. Otherwise remove v from the list of 
legal values. and goto Expand. 
• Backtrack: K Exit. Otherwise s e t a n d 
repeat the Forward step. 
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'Fable 1: Random MPE. Time bound 30 sec. 100 samples. 

eral types of networks. On each problem instance we 
ran bucket elimination (Elim-MPE), mini-bucket ap-
proximation with various i-bounds and branch 
and bound with some levels of mini-bucket heuristics 

The main measure of performance of the approxima­
tion algorithm given a fixed time bound, is the accuracy 
ratio between the probability of the 
solution found by the test algorithm and the prob­
ability of the optimal solution whenever  
is available. We also record the running time of each 
algorithm. 

We report the distribution of problems with respect to 
5 predefined ranges of accuracy :  

We recorded the 
number of problems that Elim-MPE solved as well as 
the average induced width of the test problems. Be-
cause of space restrictions in most cases we report, only 
the number of problems that fall in the highest accu­
racy range However, since most problems 
were solved by BBMB optimally, we lose only minimal 
information. 

In addition, during the execution of BBMB we also 
stored the current lower bound at regular time inter­
vals. Comparing the lower bound against the optimal 
solution, allows reporting the accuracy of BBMB as a 
function of time. 

4.1 Random Bayesian Networks and 
Noisy-OR Networks 

Random Bayesian networks and Noisy-OR networks 
were randomly generated using parameters (N, K, C, P), 
where N is the number of variables, K is their domain 
size, C is the number of conditional probability matri­
ces and P is the number of parents in each conditional 
probability matrix. 

The structure of each test problem is created by ran­
domly picking C variables out of N and for each, ran­
domly selecting P parents from preceding variables, rel-
ative to some ordering. For random Bayesian networks, 
each probability table is generated randomly. For Noisy-
OR networks, each probability table represents an OR-
function with a given noise and leak probabilities : 

Tables 1 and 2 present results of experiments with ran­
dom Bayesian networks and Noisy-OR networks respec­
tively. In each table, parameters N, K and P are fixed, 
while C, controlling network's sparseness, is changing. 
For each C, we generate 100 problem instances. Each 
entry in the table reports the number of instances that 
fall in a specific: range of accuracy, as well as the average 
running time of each algorithm (note that BBMB time 
includes the preprocessing time by MB). 

For example, Table 1 reports the results with random 
problems having There are 5 hori­
zontal blocks, each corresponding to a different, value of 
C. Each block has two rows, one for MB and one for 
BBMB, reporting the number of problems in accuracy 
range of 0.95 and the average running time. 

The second column reports the results of Elim-MPE, 
namely the number of instances it solved, their average 

and running time. The rest of the columns report 
results of MB and BBMB for various levels of Look­
ing at the first line, in Table 1 we see that in the best 
accuracy range, solved only 
14 problems using 0.03 seconds on the average. BBMB 
with solved instances in this range while  
ing 6.30 seconds on the average. Note that Elim-MPE 
on the other hand solved 91 instances using much more 
time than BBMB with any  

Each row demonstrates a tradeoff between preprocess­
ing by MB and subsequent search by BBMB. As ex­
pected, MB can solve more instances as / increases while 
its average time increases. At the same time, the search 
time of BBMB decreases as increases. We observe 
that the total BBMB time improves when increases 
until a threshold point and then worsens. We have high­
lighted the best performance point in each row. Below 
this threshold, the heuristic function is weak, resulting 
in long search. Above the threshold, the extra prepro­
cessing is not cost effective. As problems become harder 
BBMB achieves its best performance at higher thresh­
olds. For example, when C is 100 and 105, the threshold 
is when C is 110, 115 and 120, it is and 
when C is 125, it is  

Table 2 reporting on Noisy-OR shows similar results 
(based on 0.95 range). On this class BBMB is very 
effective and solved all problems exactly, while Elim-
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MPE solved almost none. For 6 BBMB can solve 
all 100 instances, with threshold  

In Figures 5 and 6 we provide an alternative view of 
the performance of BBMB(i) . Let be the 
fraction of the problems solved completely by BBMB(i) 
by time /. Each graph in Figures 5 and 6 plots 

for some specific value i. Figure 5 shows 
the distribution o f f o r random Bavesian 

V 

networks when N=256, C=125, K=2 and P=2 (corre­
sponding to the last row in Table 1), whereas Figure 6 
shows the distribution of for Noisy-OR net­
works when N = 128, 0 = 95 and P=2 (corresponding to 
the second row in Table 2). 

Figures 5 and (> display a trade off between preprocess­
ing and search. Clearly, if  
then completely dominates FBBMB(j)(t). 
For example, in Figure 5 BBMB(JO) completely domi­
nates When and  
intersect, they display a trade-off a.s a function of time. 
For example, if we have only few seconds, BBMB(tJ) is 
better than BBMB(I4) . However, when sufficient time 
is allowed, BBMB(14) is superior to BBMB(G). 

The same pattern appears in Figure 6. BBMB(6) 
completely dominates BBMB(2), while there is a trade­
off between BBMB(2) and BBMB(14) depending on the 
amount of time allowed. 

4.2 Random Coding Networks 
Our random coding networks fall within the class of 
car block codes. They can be represented as four-layer 
belief networks (Figure 7). The second and third layers 
correspond to input information bits and parity check 
bits respectively. Each parity check bit represents an 
XOR function of input bits u,. Input and parity check 
nodes are binary while the output nodes are real-valued. 
In our experiments each layer has the same number of 
nodes because we use code rate of where 
K is the number of input bits and N is the number of 
transmitted bits. 

Given a number of input bits K, number of parents P 
for each XOR bit and channel noise variance a cod-
ing network structure is generated by randomly picking 
parents for each XOR node. Then we simulate an in­
put signal by assuming a uniform random distribution 
of information bits, compute the corresponding values 
of the parity check bits, and generate an assignment to 
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Figure 5: Random Bavesian. N=25t>, C=125, K=2 , 
P=2. 100 samples. 

Table 3: Random coding. Time ,30sec. 2000 samples. 

the output nodes by adding (laussian noise to each in­
formation and parity check bit. The decoding algorithm 
takes as input the coding network and the observed real 
valued output assignment and recovers the original in­
put bit vector by computing or approximating an MPE 
assignment. 

We tested two sets of random coding networks - K=50 
and K—100 input bits. Table 3 reports results on ran­
dom coding networks having K=50. In addition to Elim-
MPE and BBMB. we also ran Iterative Belief Propaga­
tion (IBP) which was recently observed as the best per­
forming decoding algorithm. It is identical to iterative 
application of PeaiTs belief updating on tree-like net­
works [Pearl, 1988]. For each we generated and tested 
2000 samples divided into 200 different networks each 
simulated with 10 different, input bit vectors. 

In Table 3 we observe a familiar pattern of 
preprocessing search tradeoff. For each level of noise 
there is an empirical optimal balancing preprocessing 
cost, and search. For = 0.22 the threshold is 6. As 
noise increases, the threshold increases. Also, as noise 
increases, the role of search becomes more significant. 
Although IBP is superior (because it is faster) for small 

Table 2: Noisy-OR MPE. Noise 0.2, Leak 0.01. Time 
bound 30 sec. 100 samples. 10 evidence. 



Figure 6: Noisy-OR. N = 128, C=95, P=2. 100 samples. 

Figure 7: Belief network for structured (10,5) block code 
with parent set size P—3 

noise, it has a shortcoming for high noise levels since its 
performance cannot be improved with extra time while 
BBMB can. 

Fable 4 reports the Bit Error Rate for 
and is a standard measure 

used in the coding literature denoting the fraction of in­
put bits that were decoded incorrectly. When compared 
using is about the same as when 
the noise is small, but slightly better when the noise is 
large. 

Figure 8 shows the distribution of for 
Random Coding networks when K=T00 and =r 0.28. 
We observe that no algorithm completely dominates any 
other algorithm. However, we can see a trade-off depend-

MB / BBMB i= 14 IBP 
0,22 0.0012/0.00024 0.00024 
0.28 0.010/0.0015 0 0015 
0.32 0.025/0.0041 0.0034 
0.40 0.090/0.021 0.016 
0 51 0 184/0102 0.084 

Table 4: Random coding BER 

Figure 8: BBMB Random Coding. K = 1()0, = 0.28. 
500 samples. 

ing on the time available. When the time allowed is small 
(less then 10 seconds), with i less than 14 is 
better. However, when more time is allowed, 
is clearly superior. 

4.3 CPCS Networks 
As another realistic domain, we used the networks 
derived from the Computer-Based Patient Care Simu­
lation system, and based on and Quick 
Medical Reference expert systems [Pradhan et al., 1994]. 
The nodes in networks correspond to diseases and 
findings. Representing it as a belief network requires 
some simplifying assumptions, 1) conditional indepen­
dence of findings given diseases, 2) noisy-OR dependen-
cies between diseases and findings, and 3) marginal in­
dependencies of diseases. For details see [Pradhan et al., 
1994]. 

In Table 5 we have results of experiments with two 
binary CPCS networks, cpes360b (N = 360, C = 335) 
and (N = 422, C = 348), with 1000 and 150 
instances respectively. Each instance had 10 evidence 
nodes picked randomly. 

Since network is solved quite effectively by 
MB we see that added search time is small, serv­
ing primarily to prove the optimality of the MB solution. 
On the other hand, on can solve a third of 
the instances accurately when is small, and more as 
increases. can solve all instances accurately for 

when search takes little additional time. 

5 Discussion and Conclusion 
Our experiments demonstrate that combining branch-
and-bound with mini-bucket heuristics (BBMB) pro­
vides a powerful method of attacking optimization prob­
lems such as the MPE. 
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C P C S 3 6 0 b M B / M B / M B / M B / 
1000 B B M B B B M B B B M B B B M B 

sample i = 4 i = 8 i = I 2 i=1C 
>0 .95 9 3 9 [ 0 . 9 4 ] 950[0.96] 983(2 04] 991(16 4] 

1 0 0 0 [ 0 . 9 6 ] 1000(0.97] 1000[204] 1000(10 4] 
>0 .50 13(0.94] 8[0.96] 0(2.01] 6[16 1] 

0(-] 0[-] 0[-] 0[-] 
>0 .20 44(0 95] 38(0.97] 11 (2 03] 3(10.0] 

0[-] 0[-] 0[-] 0[-] 
> 0 01 4[0.94] 4[0.90] 0[-] 0[-] 

0[-] 0[-] ol-l 0[-] 
< 0 01 0[-] 0[-] 0[-] 0[-] 

0[-] 0[-] 0[-] 0[-] 
CPCS422b MB / MB / MB / M B / 

150 B B M B B B M B B B M B B B M B 
samples 1 = 4 1 = 8 i=12 i = 16 

>0 .95 56(23 l ] 67(23.1] 78[23.2] 98[39 9] 
144[25 5] 148(24 5] 15U(28 .4 ] 150(40.0] 

> 0 50 14 [22.9] 8(22 9] 19(23.. 4] 22[40 1] 
1(4 5,0] O[-] 0[-] ()[-] 

>0 .20 12(23.0] 10(22.9] 23[23 4] 17[40.1] 
()(-] 0[-] 0[-] 0[-] 

>0 .01 34(23 1] 27(23 1] 15(23 2] 8(10.0] 
2(4 5.0] 2(45 0] 0[-] 0[-] 

<0 .01 34(23 1] 32(22.9] 15(23 0] 5(40 0] 
3[4 5 0] 0[-] 0[-] 0[-] _ 

Table 5: CPCS networks. Time 30 and 45 resp. 

On the one hand it avoids the storage bottleneck of full 
bucket elimination while frequently solving problems op­
timally. On the other hand, it improves output quality 
substantially over the mini bucket approximation, espe­
cially when the former is highly suboptimal. However, 
the most important feature of is the ability to 
control the balance between preprocessing (for heuristic 
generation) and search, using its bounding 
Pure search and pure bucket-elimination  
are two extremes ends of that spectrum. 

In all our experiments, including random Bayesian 
networks. Noisy OH networks, coding networks and 
medical diagnosis CPCS networks, we observed that op­
timal performance- (measured by time within a certain 
accuracy range) occurred at an intermediate threshold 
point of Weaker heuristics, lying below the thresh­
old, and stronger heuristics, lying above the threshold, 
were less cost-effective. We also observed that as prob­
lems grew harder, stronger heuristics became more cost 
effective. The control of the gradual change of space-
time-accuracy tradeoff of now makes a larger set 
of problem solvable. 

Although the best threshold point may not be pre-
dictable for every problem instance, a preliminary em­
pirical analysis can be informative when given a class of 
problems that is not too heterogeneous. 

We have also tested the mini-bucket heuristic func­
tion with Best-First search. We found that if we are in­
terested in the optimal solution only, is often 
significantly faster than when given sufficient 
time and space. However, unlike BBMB, is not 
an anytime algorithm [Kask and Dechter, 1099a]. 
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