
The Difference All-Difference Makes * 

Kostas Stergiou and Toby Walsh 
Department of Computer Science 

University of Strathclyde 
Glasgow, Scotland 

{ k s , t w } @ c s . s t r a t h . a c . u k 

Abstract 

We perform a comprehensive theoretical and ex­
perimental analysis of the use of all-different con­
straints. We prove that generalized arc-consistency 
on such constraints lies between neighborhood in­
verse consistency and, under a simple restriction, 
path inverse consistency on the binary representa­
tion of the problem. By generalizing the arguments 
of Kondrak and van Beek, we prove that a search al­
gorithm that maintains generalized arc-consistency 
on all-different constraints dominates a search algo­
rithm that maintains arc-consistency on the binary 
representation. Our experiments show the practi­
cal value of achieving these high levels of consis­
tency. For example, we can solve almost all bench­
mark quasigroup completion problems up to order 
25 with just a few branches of search. These re­
sults demonstrate the benefits of using non-binary 
constraints like all-different to identify structure in 
problems. 

1 Introduction 

Many real-world problems involve all-different constraints. 
For example, every fixture for a sports team must be on a 
different date. Many of the constraint satisfaction toolkits 
therefore provide specialized algorithms for efficiently rep­
resenting and, in some case, reasoning about all-different 
constraints. Alternatively, we can expand all-different con­
straints into a quadratic number of binary not-equals con­
straints. However, it is less efficient to do this, and the transla­
tion loses some semantic information. The aim of this paper 
is to show the benefits of keeping with a non-binary repre­
sentation. We prove that we can achieve much higher levels 
of consistency in the non-binary representation compared to 
the binary. We show experimentally that these high levels of 
consistency can reduce search dramatically. 

*The authors are members of the APES research group, 
http://www.cs.strath.ac.uk/ apes. We thank our colleagues in the 
group at the Universities of Strathclyde and Leeds, most espe­
cially Paul Shaw. The second author is supported by EPSRC award 
GR/K/65706. 

Many lesser levels of consistency have been defined for 
binary constraint satisfaction problems (see [Debruyne and 
Bessiere, 1997] for references). A problem is (/', j)-consistent 
i f f it has non-empty domains and any consistent instantia­
tion of i variables can be extended to a consistent instan­
tiation involving j additional variables. A problem is arc-
consistent (AC) iff it is ( 1 , Inconsistent. A problem is path-
consistent (PC) iff it is (2, J )-consistent. A problem is strong 
path-consistent i f f it is ( j , Inconsistent for j < 2. A prob­
lem is path inverse consistent (PIC) i f f it is ( 1 , 2)-consistent. 
A problem is neighborhood inverse consistent (NIC) i f f any 
value for a variable can be extended to a consistent instantia­
tion for its immediate neighborhood. A problem is restricted 
path-consistent (RPC) i f f it is arc-consistent and if a variable 
assigned to a value is consistent with just a single value for 
an adjoining variable then for any other variable there exists a 
value compatible with these instantiations. A problem is sin­
gleton arc-consistent (SAC) iff it has non-empty domains and 
for any instantiation of a variable, the problem can be made 
arc-con si stent. 

Many of these definitions can be extended to non-binary 
constraints. For example, a (non-binary) C S P is generalized 
arc-consistent (GAC) iff for any variable in a constraint and 
value that it is assigned, there exist compatible values for all 
the other variables in the constraint [Mohr and Masini, 1988]. 
Regin gives an efficient algorithm for enforcing generalized 
arc-consistency on a set of all-different constraints [Regin, 
1994]. We can also maintain a level of consistency at every 
node in a search tree. For example, the MAC algorithm for 
binary CSPS maintains arc-consistency at each node in the 
search tree [Gaschnig, 1979]. As a second example, on a non-
binary problem, we can maintain generalized arc-consistency 
(MGAC) at every node in the search tree. 

Following [Debruyne and Bessiere, 1997], we call a con-

414 CONSTRAINT SATISFACTION 

http://www.cs.strath.ac.uk/


sistency property A stronger than B {A > B) i f f in any prob­
lem in which A holds then B holds, and strictly stronger 
{A > B) i f f it is stronger and there is at least one problem 
in which B holds but A does not. We call a local consis­
tency property A incomparable with B {A ~ B) i f f A is not 
stronger than B nor vice versa. Finally, we call a local con­
sistency property A equivalent to B i f f A implies B and vice 
versa. The following identities summarize results from (De-
bruyne and Bessiere, 1997] and elsewhere: strong PC > SAC 
> PIC > RPC > AC, NIC > PIC, NIC ~ SAC, and NIC -
strong PC. 

3 Generalized arc-consistency 
All-different constraints are network decomposable iDechter, 
1990] (abbreviated to decomposable in this paper) as they can 
be represented by binary constraints on the same set of vari­
ables. In this section, we give some theoretical results which 
identify the level of consistency achieved by GAC on decom­
posable constraints like the all-different constraint. 

In general, GAC on decomposable constraints may only 
achieve the same level of consistency as AC on the binary 
representation. The problem is that decomposable constraints 
can often be decomposed into smaller constraints. For ex­
ample, we can decompose an n-ary all-different constraint 
into n(n - l ) / 2 binary all-different constraints, and enforc­
ing GAC on these only achieves the same level of consistency 
as AC on the binary representation. We can achieve higher 
levels of consistency if we prohibit too much decomposition 
of the non-binary constraints. For example, we can insist that 
the constraints are triangle preserving. That is, we insist that, 
if there is a triangle of variables in the constraint graph of 
the binary representation, then these variables must occur to­
gether in a non-binary constraint. Binary constraints can still 
occur in a triangle preserving set of constraints, but only if 
they do not form part of a larger triangle. Under such a re­
striction, GAC is strictly stronger than PIC, which itself is 
strictly stronger than AC. 

Theorem 1 On a triangle presenting set of decomposable 
constraints GAC is strictly stronger than PIC on the binary 
representation. 

Proof: Consider a triple of variables, xi,, xj xk,. and any 
value for xi, from its generalized arc-consistent domain. The 
proof divides into four case. In the first, , and appear in 
one constraint, and and in another. As each of these 
constraints is arc-consistent, we can find a value for con­
sistent with , , and for consistent with . As the (non-
binary) constraints are triangle preserving, there is no direct 
constraint between and so the values for and are 
consistent with each other. Hence, the binary representation 
of the problem is PIC. The other three cases follow a similar 
argument. To show that GAC is strictly stronger, consider an 
all-different constraint on 4 variables each with domains of 
size 3. This problem is PIC but not GAC. 

A corollary of this result is that GAC on a triangle preserv­
ing set of decomposable constraints is strictly stronger than 
RPC or AC on the binary representation. We can also put an 
upper bound on the level of consistency that GAC achieves. 

Theorem 2 NIC on the binary representation is strictly 
stronger than GAC on a set of decomposable constraints. 

Proof: Consider any variable and value assignment. NIC 

ensures that we can assign consistent values to the vari­

able's neighbors. However, any (non-binary) constraint in­

cluding this variable has all its variables in the neighbor­

hood. Hence, the (non-binary) constraint is GAC. To prove 

strictness, consider a problem with five all-different con-

Finally, GAC on decomposable constraints, is incompara­

ble to strong PC and SAC, even when restricted to triangle 

preserving sets of constraints. 
Theorem 3 On a triangle preserving set of decomposable 
constraints, GAC is incomparable to strong PC and to SAC. 
Proof: Consider an all-different constraint on 4 variables, 
each with the same domain of size 3. The binary representa­
tion of the problem is strong PC and SAC, but enforcing GAC 
shows that it is insoluble. 

Consider the problem in the proof of Theorem 2 with five 
all-different constraints. This problem is GAC, but enforcing 
strong PC or SAC shows that it is insoluble. 

These results are summarized in Figure 1. 

Figure 1: The consistency of GAC on a triangle preserving 
set of decomposable constraints. 

4 Quasigroup problems 
Quasigroup problems lend themselves to a non-binary rep­
resentation using all-different constraints. A quasigroup is a 
Latin square, a n by n multiplication table in which each entry 
appears once in every row and column. Quasigroups model a 
variety of practical problems like tournament scheduling and 
designing drug tests. Quasigroup completion, the problem 
of completing a partial filled quasigroup, has been proposed 
as a constraint satisfaction benchmark [Gomes and Selman, 
1997]. 

An order n quasigroup completion problem can be repre­
sented as a non-binary constraint satisfaction problem with 
n1 variables, each with a domain of size n. The constraints 
are 2n all-different constraints of size n, one for each row and 
column, and any number of unitary constraints or preassign-
ments. The special structure of these constraints allows us to 
prove some tighter results. 

STERGIOU AND WALSH 415 



Theorem 4 In quasigroup completion problems, GAC is 
equivalent to NIC. 
Proof: We need to show that GAC implies NIC. The neigh­
borhood of any variable in an order n quasigroup comple­
tion problem are the 2n — 1 variables that appear in the 2 
all-different constraints that contain the variable. As these 
constraints are GAC, we can find consistent instantiations 
for each of the variables. In the binary representation, none 
of these variables have a direct constraint with each other. 
Hence, this is a consistent instantiation for the neighborhood. 
D 

GAC on quasigroup problems remains strictly stronger 
than PIC and incomparable to strong PC and to SAC. 
Theorem 5 In quasigroup completion problems, GAC is 
strictly stronger than PIC. 
Proof: By theorem 1, GAC is stronger than PIC. To show that 
it is strictly stronger, consider an order 4 quasigroup, in which 
3 diagonal elements have domains {1} , and all the other el­
ements (including the other diagonal element) have domains 
{2, 3,4}. This problem is PIC but is not GAC. D 

Theorem 6 In quasigroup completion problems, GAC is in­
comparable to strong PC and to SAC. 

Proof: Consider the problem from the last proof. This prob­
lem is strong PC and SAC but is not GAC. 

Consider an order 3 quasigroup. Let every element have a 
domain {1,2, 3} except the top right which has the domain 
{1 ,2} , the bottom left which has the domain { 1 , 3} and the 
bottom right which has the domain {2,3} . This problem is 
GAC but enforcing strong PC or SAC shows that it is insolu­
ble. D 

What can we learn from these results? First, on quasi­
group completion problems, we achieve the maximum level 
of consistency (viz. NIC) possible for a GAC procedure on 
decomposable constraints. And second, we achieve this at 
very moderate cost. Regin's algorithm for achieving GAC on 
a set of all-different constraints has a cost that is polynomial 
in n. By comparison, enforcing NIC on binary constraints is 
exponential in the size of the neighborhood (which is O(n) in 
this case). 

5 Maintaining GAC and AC 
We now compare an algorithm that maintains GAC on de­
composable constraints over one that maintains AC on the 
binary representation. We say that algorithm A dominates 
algorithm B if when A visits a node then B also visits the 
equivalent node in its search tree, and strictly dominates if it 
dominates and there is one problem on which it visits strictly 
fewer nodes. Using the previous results, we can reduce our 
analysis to comparing algorithms that maintain NIC, PIC and 
AC. In fact, we do better than this and prove some general re-
sults about algorithms that maintain any level of consistency 
stronger than FC in which we just filter domains. This cov­
ers algorithms that maintain NIC, PIC and AC, as well those 
that maintain RPC and SAC. We shall use /1-consistent and 
inconsistent to denote any two such levels of consistency. 

We assume throughout a static variable and value ordering. 
We can then associate each node in the search tree with the 

sequence of value assignments made. We say that a node 
is A-compatible with another node 

where j < i, if enforcing A-consistency at ' does 
not remove a, from the domain of the respective variable. 
First, we give a necessary and sufficient condition for a node 
to be visited. 

Theorem 7 A node is visited by an algorithm that maintains 
A-consistency iff it is consistent, it is A-compatible with all 
its ancestors, and its parent can be made A -consistent 

Proof: The proofs of the first and third conjuncts are 
similar to those in [Kondrak and van Beek, 1997]. For the 
second, suppose that node is not A-compatible 
with one of its ancestors and it is visited. Let 
with j < i, be the shallowest of those ancestors. Since 

is an ancestor of , it is also vis­
ited. When we visit node and A -consistency 
is enforced, is pruned out from the domain of . Node 

cannot therefore be extended to 
This is a contradiction. 

WLOG assume that node i is the 
shallowest node that can be made A-consistent, its child 

is consistent and A-compatible with all its an­
cestors, but the child is not visited. Since ( is con­
sistent and ,4-compatible with all its ancestors, a, is in the 
domain of . At node , we do not annihilate 
any of the domains of future variables because the node can 
be made .4-consistent. The branch will therefore be extended 
to the remaining values of the next variable . One of these 
values is a,- and therefore node is visited. 

This results lets us rank algorithms in the hierarchy pre­
sented in [Kondrak and van Beek, 1997]. 

Theorem 8 If A-consistency is (strictly) stronger than In­
consistency then maintaining A-consistency (strictly) domi­
nates maintaining B-consistency. 
Proof: Al l nodes visited by an algorithm that maintains 
.4-consistcncy, are .4-consistent with all their ancestors and 
have parents that can be made A -consistent. But as A-
consistency is stronger than B-consistency, all these nodes 
are B-consistent with all their ancestors and have parents that 
can be made B-consistent. Hence maintaining A-consistency 
dominates maintaining inconsistency. To show strictness, 
consider any problem that is inconsistent but is not A-
consistent. 

From this result, it follows that MGAC on decomposable 
constraints strictly dominates MAC on the binary representa­
tion, and that MAC itself strictly dominates FC. We can also 
prove the correctness of MGAC and MAC using the follow­
ing general result. . 
Theorem 9 Maintaining A-consistency is correct. 
Proof: Soundness is trivial as only consistent nodes are 
visited. For completeness, suppose that some n-level node 
is consistent. Since this node is consistent, all its ances­
tors are also consistent. WLOG consider the deepest node 

that is not visited, and its parent is 
visited. When node is visited A -consistency 
is enforced, and since all its descendants are consistent, there 
is no domain wipe-out. Therefore, k is visited. 

416 CONSTRAINT SATISFACTION 



6 Experimental results 
To demonstrate the practical relevance of these theoretical re­
sults, we ran experiments in three domains. 

6.1 Quas ig roup comp le t i on 

Gomes and Selman have proposed random quasigroup com­
pletion problems as a benchmark that combines some of the 
best features of random and structured problems [Gomes and 
Selman, 1997]. For these problems, there is a phase transi­
tion from a region where almost all problems are soluble to a 
region where almost all problems are insoluble as we vary the 
percentage of variables preassigned. The solution cost peaks 
around the transition, with approximately 42% of variables 
preassigned [Gomes and Selman, 1997]. 

We encoded the problem in ILOG Solver, a C++ con­
straint toolkit which includes Regin's algorithm for main­
taining GAC on all-different constraints. We used the Bre-
laz heuristic for variable selection (as in [Gomes and Sel­
man, 1997]) and Geelen's promise heuristic for value order­
ing (as in [Meseguer and Walsh, 1998]). Gomes et al. ob­
served that search costs to solve random quasigroup comple­
tion problems can be modeled by a "heavy-tailed" distribu­
tion [Gomes et al, 1997]. We therefore focus on the higher 
percentiles. Table 1 gives branches explored to complete an 
order 10 quasigroup with p% of entries preassigned, main­
taining either AC on the binary representation or GAC on the 
all-different constraints. We sec a very significant advantage 
for MGAC over MAC. With a random value ordering, the 
worst case for MGAC was also 2 branches. CPU times re­
flect the difference in explored branches. For example, some 
instances at the phase transition for quasigroups of order 20 
were solved by MGAC in seconds, while MAC took hours. 

Table 1: Percentiles in branches searched to complete a quasi­
group of order 10 using either MAC or MGAC. * means that 
the instance was abandoned after 10000 branches. 100 prob­
lems were solved at each data point. 

Table 2 shows that, as we increase problem size, almost 
all the problems remain trivial. The only exception was a 

single order 25 problem with 42% of its variables preas­
signed. Search was abandoned at the cuttoff l imit of 10,000 
branches. Apart from this, all instances were solved in less 
than 5 branches. This is a significant improvement over the 
results of [Gomes et al, 1997] where, despite the use of ran­
dom restarts, problems of order 25 were too expensive to 
solve, especially at the phase transition. 

Table 2: Percentiles in branches explored to complete quasi­
groups of order 10, 15, 20 and 25 using MGAC. 

6.2 Quas igroup existence 
A variety of automated reasoning programs have been used to 
answer open questions in finite mathematics about the exis­
tence of quasigroups with particular properties iFujita et al, 
1993]. Is GAC useful on these problems? We follow [Fujita 
et al, 1993] and look at the so-called QG3, QG4, QG5, QG6 
and QG7 class of problems. For example, the QG5 problems 
concern the existence of idempotent quasigroups (those in 
which a-a = a for each element a) in which (6a 6)6 = a. For 
the definition of the other problems, see [Fujita et al., 1993]. 
In these problems, the structure of the constraint graph is dis­
turbed by additional non-binary constraints. These reduce the 
level of consistency achieved compared to quasigroup com­
pletion problems. Nevertheless, GAC significantly prunes the 
search space and reduces runtimes. 

To solve these problems, we again use the Solver toolkit, 
maintaining either GAC on the all-different constraints, or 
AC on the binary representation, and the fail-first heuristic 
for variable ordering. To eliminate some of the symmetric 
models, as in [Fujita et al, 1993], we added the constraint 
that a n > a - 1 for every element a. Table 3 demon­
strates the benefits of MGAC over MAC. In QG3 and QG4, 
MAC explores twice as many branches as MGAC, in QG5 
the difference is orders of magnitude, whilst there is only a 
slight difference in QG6 and QG7. MGAC dominates MAC 
in terms of CPU time as well as in terms of explored branches. 
It would be interesting to identify the features of QG5 that 
gives MGAC such an advantage over MAC, and those of QG6 
and QG7 that lessen this advantage. 

We now compare our results with those of FINDER 
[Slaney, 1992], MACE [McCune, 1994], MGTP [Fujita et 

STERGIOU AND WALSH 417 



Table 3: Branches explored using MAC on the binary representation and MGAC on the all-different constraints. 

0/., 1993], SATO [Zhang and M., 1994], and SEM [Zhang 
and Zhang, 1995]. Table 4 shows that Solver outperforms 
MGTP and FINDER by orders of magnitude, and explores 
less branches than SEM. SEM and SATO have sophisticated 
branching heuristics and complex rules for the symmetry 
breaking that are far more powerful than the symmetry break­
ing constraint we use [Zhang and Zhang, 1995]. It is there­
fore impressive that our simple Solver program is competitive 
with well-developed systems like SEM and SATO. 

To conclude, despite the addition of non-binary constraints 
that disturb the structure of the constraint graph, MGAC sig­
nificantly reduces search and runtimes on quasigroup exis­
tence problems. We conjecture that the performance of SEM 
and SATO could be improved by the addition of a specialized 
procedure to maintain GAC on the all-different constraints. 

6.3 Small-worlds problems 
Recently, [Watts and Strogatz, 1998] has shown that graphs 
that occur in many biological, social and man-made systems 
arc often neither completely regular nor completely random, 
but have instead a "small world" topology in which nodes 
are highly clustered, whilst the path length between them is 
small. Walsh has argued that such a topology can make search 
problems hard since local decisions quickly propagate glob­
ally [Walsh, 1999]. To construct graphs with such a topology, 
we start from the constraint graph of a structured problem like 
a quasigroup and introduce randomness by deleting edges at 
random from the binary representation. Deleting an edge at 
random breaks up an all-different constraint on n variables 
into two all-different constraints on n — 1 variables. For ex­
ample, if x1, X2, x3 . . . , Xk are all-different and remove the 
edge between x1 and x2 then we are left with all-different 
constraints on x1, x3 . . . , xk and x2, x3 . . . , xk. 

Figures 2 and 3 show percentiles in the number of branches 
explored and in CPU time to find the optimal coloring of or­
der 10 quasigroups in which we delete p% of edges from the 
binary representation. The hardest problems had 5% of their 
edges removed. MGAC dominates MAC by orders of mag­
nitude in the hard region both in terms of branches explored 
and CPU time. All instances were solved by MGAC within 
120 seconds while approximately 10% of the instances could 
not be solved by MAC within 1 hour. As p increases, prob­
lems become very easy and both MGAC and MAC quickly 
find a solution. MAC starts to outperform MGAC in terms 
of CPU time as the overhead of GAC on the large number of 

418 CONSTRAINT SATISFACTION 

all-different constraints is greater. 

Figure 2: Percentiles in branches explored by MAC and 
MGAC to color small world problems. 

Figure 3: Percentiles of CPU seconds used by MAC and 
MGAC to color small world problems. 

7 Related work 
[Gomes and Selman, 1997] solved quasigroup completion 
problems using the MAC algorithm and a binary represen­
tation. They found that a randomization and restart strategy 
could eliminate the heavy-tailed behavior of the backtracking 
algorithm. However, they were still not able to consistently 
solve quasigroup completion problems of order 25 or larger. 

[Meseguer and Walsh, 1998] solved quasigroup comple­
tion problems using forward checking (FC) on the binary 
representation. They found that discrepancy and interleaved 
based methods can reduce the heavy tail. However, their ex­
periments were limited to quasigroups of order 20 and less. 

[Bacchus and van Beek, 1998] have compared generalized 
FC on non-binary constraints with FC on the hidden variable 
and dual encodings into binary constraints. They show that 



Table 4: Branches explored and models found on QG5 problems by a variety of different programs. 

a simple extension of FC on the hidden variable encoding 
dominates generalized FC on the non-binary representation. 

8 Conclusions 
We have shown experimentally and theoretically the bene­
fits of achieving generalized arc-consistency on decompos­
able constraints like all-different constraints. Generalized 
arc-consistency on such constraints lies between neighbor­
hood inverse consistency and, under a simple restriction, path 
inverse consistency on the binary representation of the prob­
lem. On quasigroup completion problems, generalized arc-
consistency achieves neighborhood inverse consistency. By 
generalizing the arguments of [Kondrak and van Beek, 19971, 
we proved that a search algorithm that maintains generalized 
arc-consistency on decomposable constraints dominates a 
search algorithm that maintains arc-consistency on the binary 
representation. Our generalization also proves the correctness 
of the algorithms that maintain arc-consistency or generalized 
arc-consistency. Our experiments demonstrated the practical 
value of achieving these high levels of consistency. For exam­
ple, we solved almost all benchmark quasigroup completion 
problems up to order 25 with just a few branches of search. 
On quasigroup existence problems, we are competitive with 
the best programs, despite lacking their specialized branching 
heuristics and symmetry breaking rules. 

What general lessons can be learnt from this study? First, 
it can be very beneficial to identify structure in a problem 
by means of a non-binary representation. We can use this 
structure to enforce higher levels of consistency than can be 
practical in a binary representation. Second, theory can be 
motivated by experiment. We were led to attempt our the­
oretical analysis by the exceptionally good experimental re­
sults on quasigroup completion problems. And finally, the 
all-different constraint really can make a big difference. 

References 
(Bacchus and van Beek, 1998] F. Bacchus and P. van Beek. 

On the conversion between non-binary and binary con­
straint satisfaction problems. In Proc. ofAAAl-98, pages 
311-318.1998. 

iDebruyne and Bessiere, 1997] R. Debruyne 
and C. Bessiere. Some practicable filtering techniques for 
the constraint satisfaction problem. In Proc. ofIJCAl-97, 
pages 412-417. 1997. 

[Dechter, 1990] R. Dechter. On the expressiveness of net­
works with hidden variables. In Proc. of AAA1-90, pages 
555-562.1990. 

[Fujita et al., 1993] Masayuki Fujita, John Slaney, and Frank 
Bennett. Automatic generation of some results in finite 
algebra. In Proc. ofIJCAl-93, pages 52-57. 1993. 

[Gaschnig, 1979] J. Gaschnig. Performance measurement 
and analysis of certain search algorithms. Tech. rep. CMU-
CS-79-124, Carnegie-Mellon University, 1979. PhD the­
sis. 

[Gomes and Selman, 1997] C. Gomes and B. Selman. Prob­
lem structure in the presence of perturbations. In Proc. of 
AAAJ-97, pages 221-226. 1997. 

iGomes et at., 1997] C. Gomes, B. Selman, and N. Crato. 
Heavy-tailed distributions in combinatorial search. In 
G. Smolka, editor, Proc. ofCP97, pages 121-135. 1997. 

[Kondrak and van Beek, 1997] G. Kondrak and P. van Beek. 
A Theoretical Evaluation of Selected Backtracking Algo­
rithms. Artificial Intelligence, 89:365-387,1997. 

[McCune, 1994] W. McCune. A Davis-Putnam Program and 
its Application to Finite First-Order Model Search: Quasi­
group Existence Problems. Tech. Rep. ANL/MCS-TM-
194, Argonne National Laboratory, 1994. 

[Mescguer and Walsh, 1998] P. Meseguer and T. Walsh. In­
terleaved and discrepancy based search. In Proc. ofECAl-
98. Wiley, 1998. 

[Mohr and Masini, 1988] R. Mohr and G. Masini. Good old 
discrete relaxation. In Proc. of ECAI-88, pages 651-656, 
1988. 

[Regin, 1994] J-C. Regin. A filtering algorithm for con­
straints of difference in CSPs. In Proc. ofAAAI-94, pages 
362-367. 1994. 

(Slaney, 1992] J. Slaney. FINDER, Finite Domain Enumer­
ator: Notes and Guide. Tech. Rep. TR-ARP-1/92, Aus­
tralian National University, 1992. 

[Walsh, 19991 T. Walsh. Search in a small world. In Proc. 
IJCAI-99, 1999. 

[Watts and Strogatz, 1998] D.J. Watts and S.H. Strogatz. 
Collective dynamics of 'small-world' networks. Nature, 
393:440-442,1998. 

[Zhang and M., 1994] H. Zhang and Stickel M. Implement­
ing the Davis-Putnam Algorithm by Tries. Tech. rep., Uni­
versity of Iowa, 1994. 

[Zhang and Zhang, 1995] J. Zhang and H. Zhang. SEM: a 
System for Enumerating Models. In Proc. of 1JCA1-95, 
pages 298-303, 1995. 

STERGIOU AND WALSH 419 


