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A b s t r a c t 

This paper introduces a new frame-
work for extending consistent domains 
of numeric CSP. The aim is to offer 
the greatest possible freedom of choice 
for one variable to the designer of a 
C A D application. Thus, we provide 
here an efficient and incremental al­
gor i thm which computes the maximal 
extension of the domain of one vari­
able. The key point of this framework 
is the definit ion, for each inequality, of 
an univariate extrema function which 
computes the left most and right most 
solutions of a selected variable (in a 
space delimited by the domains of the 
other variables). We show how these 
univariate extrema functions can be 
implemented efficiently. The capabil­
ities of this approach are i l lustrated 
on a ballistic example. 

1 I n t r o d u c t i o n 
This paper introduces a new framework for extending 
the domain of one variable in a consistent CSP ' which 
is defined by a set of non-linear constraints over the re­
als. The aim is to offer the greatest freedom of choice 
of possible values for a variable to the designer of a 
CAD application. For example, one starts from the 
knowledge of a solution and tries to widen the varia­
tions of a variable. This problem occurs in a large class 
of electro-mechanical engineering and civi l engineering 
applications, where extending the domain of a variable 
permits the tolerance of any associated component to be 
enlarged, and therefore to lower the cost of this compo­
nent. These problems are often under-constrained. So, 
what the user wants to know is a subset of the solu­
tions. For these applications, classical methods (e.g.,[7; 
10]), based on local consistencies and domain spl i t t ing, 
cannot ensure that a solution exists inside the arbi t rar i ly 

1 An introduction to CSP and numeric CSP can be found 
in [4; 7]. 

small intervals they compute. Moreover, domain split­
t ing is ineffective if the solution set is not a finite set of 
isolated solutions but a collection of intervals. 

The framework we introduce here allows one to enlarge 
the domain of a variable while preserving the consistency 
of the CSP. Sam-Haroud and Faltings [9] have proposed 
an approach for computing safe solutions of non-linear 
constraint systems. Roughly speaking, they f i l l up the 
solution space w i th a set of consistent boxes2. Their 
approach could be used to extend the domain of one 
variable. However, the underlying costs in computation 
time and space are exponential. 
The framework we introduce here is less general but it 
can be implemented efficiently. Before going into the de­
tails, let us outl ine our framework in very general terms. 
The main steps of the right extension3 of the domain of 
a variable are: 

1. Searching for a subset of the solution space; this 
solution space may be reduced to a single point; 

2. Selecting of the variable the domain of which has to 
be extended; 

3. Defining for each inequality of an extrema function 
that computes the left most solution of the selected 
variable in a space delimited by the domains of the 
other variables; 

4. Finding the smallest solution of all extrema func­
tions. 

The following example illustrates this process. 

"Their approach is based upon a classical method used 
in graphical computing for image synthesis (composition of 
shapes, of scenes) known as the 2k trees. The key idea is to 
classify portions of space in three categories: the black shapes 
contain no solution at all, the gray shapes contain solutions, 
but also contain points which .are not solutions, and finally, 
the white shapes contain only points which are solution. The 
gray shapes are split into smaller one that are again classified 
into black, white and gray shapes; the decomposition process 
stops when the size of the shapes becomes smaller than a 
given value. 

3Throughout this paper, we will only consider the right 
extension since the left one can be computed in a symmetrical 
way. 
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E x a m p l e 1 Let us consider the behavior of an electri-
cal shunt motor, the speed of which may be changed. The 
maximum speed can be up to 3 times the value of the min­
imum speed. We only consider two parameters of the mo­
tor: the torque , and the rotation speed N. The motor 
cannot use more than a given power : 
Moreover, the motor cannot operate above a given speed 
and torque: 
We know that the motor is working efficiently for every 
tuple of values 
What we want to compute is the maximum range of val­
ues of the torque which is safe with this motor. In other 
words, we are looking for the maximum domain 
such that every tuple in is a solution of the 
constraint system. 
Now, consider equation in the space delim­
ited by . Its left, most solution is 
the point defined by and N = 2; this point is 
obviously an upper bound of the. domain 

Figure1 1: Relation between TV and Cu 

An ini t ial subset of the solution space can often be 
found by experimentation. Note that the solution space 
may be reduced to a single point and the domains of the 
different variables mav successively be extended. 
The definition of the univariate extrema functions is a 
key point of our approach. Opt imal univariate extrema 
functions can tr iv ia l ly be computed for the so-called 
pr imit ive constraints. For non-pr imi t ive constraints, the 
methods used for computing Box-consistency [ l ] provide 
an efficient way to compute a safe approximation of uni­
variate extrema functions. 
To define formally the extension of the domain of a vari-
able, we introduce an " in terna l " consistency, named in­
consistency, which ensures that every tuple in the Carte­
sian product of the variable domains is a solution of the 
constraint system, i-consistency should not be mistaken 
wi th arc consistency or approximations of arc consis­
tency [3] (e.g. 2B-consistency [7], Box consistency[l]). 
Those consistencies define regions containing all the so­
lutions (and possibly tuples which are not solution) 
whereas i-consistency defines a region which is a subset 
of the set of solutions. Figure 2 shows the relations be­

tween these different families of consistencies. Roughly 
speaking, the smallest external box is the best approxi­
mation which can be computed by approximations of arc 
consistency over continuous domains. 

Figure 2: Relations between i-consistency and some par­
tial consistencies 

Outl ine of the paper: Section 2 introduces the no­
tation and recalls the basics on CSP over continuous 
domains which are needed in the rest- of the paper. Sec­
tion 3 is devoted to the description of the i-consistent 
extension process. Extrema functions are formally de­
fined and an efficient algorithm is introduced. Section 
4 outlines the capabilities of our approach on a ballistic 
example. 

2 Prel iminaries 
2.1 Notation 
We use the following notations, possibly subscripted: 

• x,y,z denote variables over the reals; 

• u, v denote real constants; 

• f,g denote functions over the reals; 

• c denotes a constraint over the reals; 

The next subsection recalls a few notions of numeric 
CSP; Details can be found in [2; 10; 3]. 

2.2 Interval constraint system 
A K:-ary constraint c is a relation over the reals. 
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acceptable values for denotes a 
set of constraints4. 

D e f i n i t i o n 3 ( k - b o x ) A k-box is the part 
of a k-dimension space defined by the Cartesian product 
of intervals 

By construction, all the k-boxes are convex. 

2 .3 L o c a l c o n s i s t e n c i e s 

Local consistencies over continuous domains are based on 
arc consistency[8] which was originally defined for finite 
domains. This section introduces two local consistencies 
that wi l l be used in the rest of the paper. 

Davis ([4]) has studied the application of the Waltz 
algori thm ([12]) over continuous domains and has shown 
important theoretical l imitat ions. The Waltz algori thm 
was then extended by Faltings ([5; 6]) in order to deal 
w i th ternary constraints defined by continuous and dif-
ferentiable curves. 

D e f i n i t i o n 5 (Set E x t e n s i o n ) Let S be a subset of R. 
The approximation of S —denoted h u l l — is the small-
est interval I such that 

2.4 B o x - c o n s i s t e n c y 
Roughly speaking, Box-consistency [ l ; 10] is a local con­
sistency over continuous domains which computes a safe 
approximation of the solution of each variable involved 
in a given constraint. 

The essential point is that the variable x is Box -
consistent for constraint = 0 if the 
bounds of the domain of x correspond to the leftmost 
and the rightmost 0 of the opt imal interval extension of 

4 I t is worthwhile to notice that the set of constraints C 
represents a con junct ion of constraints that have to be sat­
isfied. Disjunctions may only occur inside a single constraint, 
e.g. the single constraint is equivalent to the disjunc­
tion 

3 Ex tens ion of t he d o m a i n of a var iable 
o f a CSP 

This section introduces the way a domain of a single vari­
able can be extended while preserving consistency of the 
whole CSP. We start by defining two local consistencies 
which are needed to characterize the extended domains. 

Next, we formally define the univariate extrema func­
tions that actually compute the bounds of the i-
consistent extensions of the domain of a variable. 

3 . 1 e - c o n s i s t e n c y 
Various approximations of arc consistency (e.g. 2B -
consistency[7], Box consistency[l]) have been intro­
duced for continuous domains, e consistency is the best 
approximation of the solution space which can be com­
puted by these part ia l consistencies. For instance, e 
consistency corresponds to the "smallest external box" 
on Fig. 2. More formally, e-consistency is defined as 
follows: 

] 

i 

In other words, a CSP P = ( X , D , C ) is e-consistent 
iff P' = is arc consistent and V corresponds 
to the smallest box containing all values of D'. So, for 
inequality c, e-consistency on the corresponding equa­
tion ccqu (see section 3.4) yields a box which bounds the 
maximal extension that can be performed for any vari­
able occurring in c. 

3.2 i~consistency 
D e f i n i t i o n 8 ( i - cons is tency ) 

In other words, a CSP P — ( X , D , C ) is i consistent iff 
V only contains tuples which are solutions. 

Ward et al. [13] have proposed four kinds of interval 
propagation. One of them is related to i-consistency. 
Each interval is labeled w i th one of these kinds: 

5Note that we could also perform a fruitful i- consistent 
extension of to [6,14] with the new box. But this ex­
tension of is much smaller than the one we would have 
obtained if we had extended the initial box (. would have 
been extended to [4,16]). In general, the result of successive 
extensions by i-consistency of several variables depends on 
the processing order of the variables. 
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Figure 3: Maximal i-consistent extension of Dx 

"only" , "every", "some" and "none". If . is labeled 
"only" then solution tuples only take their values for x 
in . I f is "every" then every value of x in gives 
a tuple solution. If is "some" then there exists at 
least one solution tuple such that x takes its value in 

. If is "none" then there is no solution tuple such 
that the value of x is in . 

Labell ing every variable w i th "every" is what we call 
i-consistency. However, Ward et al.'s inference rules 
that allow computing labelled interval propagation do 
not consider the case where two variables are labelled 
"every". Moreover, these inference rules assume strong 
monotony and continuity properties of the constraint 
system. 

Now, we formally define what we mean by right i-
consistent extension. 

3 .3 R i g h t i - c o n s i s t e n t E x t e n s i o n o f 
D e f i n i t i o n 9 ( R i g h t i cons is ten t ex tens ion of ) 

• P' is i-consistent 

3.4 E x t r e m a f u n c t i o n s 
Let c be an inequality, denotes the equation corre­
sponding to c. More precisely, if c is defined by an expres-
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The algorithm in Figure 4 directly follows from prop­
erty 2. Note that this algorithm is much simpler than 
the framework introduced by Sam-Haroud and Faltings 
[9] to compute a local consistency. Both algorithms se­
lect relevant extrema from all extrema including intersec­
tions between several curves and intersections between 
curves and interval extremities. However, in our case, 
the relevant extrema is simply the left most one since 
we start from an init ial i-consistent box (so we know 
which portion of the space is a solution) and we extend 
only one variable domain to the right. This algorithm 
only searches for the left, most extrema, thus, it is linear 
if the extrema functions can be computed in constant 
time. The next section shows that the left most extrema 
can be computed very efficiently. 

Figure 4: function i - ex tens ion 

3.6 Computing extrema functions 
Optimal extrema functions for variable x of constraint c 
can trivially be computed if c is either a monotonic on 
x, or if Dx can be decomposed in subdomains where c 
is monotonic on x. Such constraints are usually called 
primitive constraints[3]. The set of primitive constraints 
is infinite and includes the following constraints: {x = 

For a non-primitive constraint c, we wil l approximate 
the e-consistent box for cequ in the space delimited by 
domains The methods introduced to com­
pute Box-consistency provide an efficient way to com­
pute such a safe approximation of . The 
key observation is that extrema functions are univariate 
functions which can be tackled by the Newton method 
implemented in the Box-consistency. 

So, consider the i-consistent extension of 
for CSP P = (A\V,C) and an inequality c C, 
To compute a safe approximation of the extrema 
functions for x of constraint c, we could just com­
pute a Box-consistent interval for x wi th regard 
to Box-consistency would yield an interval 

As a matter of fact, a complete computation of Box-
consistency is not required. The LNAR procedure [ l l ] 
used in Box-consistency finds the left most zero of the 
interval extension of the univariate function on x derived 
from by replacing all variables but x by their do­
mains. Of course, when the function i - ex tens ion (see. 
fig. 4) uses approximations of extrema functions, the 
i-extension of the domain of x may not be maximal. 

4 A ballistic example 
In this section, we give a small ballistic application which 
illustrates the capabilities of our system. The problem 
consists of finding the maximum mechanical tolerances 
when an object is launched in a uniform gravitational 
field with an init ial speed which has an incidence 

with the ground (see fig. 5). 

Example 3 The constraint x3 = 
right extrema function for x is : 

y is primitive: the 

Figure 5: Possible trajectories of the projectile 

The strong requirement is that the object must fall 
inside a predefined interval. 

4.1 Modeling of the problem 
The initial speed and incidence of the bullet can be 
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4.2 Comput ing i-consistency extension of 

The target is defined by the interval [220, 250]. Now, as­
sume that the bullet falls on the target when [32,35] 
and V [49.2,50.1]. So the ini t ia l i consistent box is 
defined by : 

(O 
To extend to the right by iconsistency, we have 

to check whether the box at the right of the i consistent 
box is i -consistent. Thus, we have to find the left most 
bound of 
To find these bounds, we have used Numerica [10] to 
compute Box consistent intervals for The 
left most bound of these intervals respectively are 58.4 
and 38.4. So, can be extended by iconsistency to 
interval [32,38.4] (see Fig. 6). 

Figure 6: The ballistic constraints and boxes 

Now, consider the three dimensional version of this 
problem where the target is defined by a rectangular 

—> 

x and the projection of Y on the plane defined by y = 0. 
We know that the box defined by — 
[49.2,50.1] and DB = [0,0] is i consistent. 
To extend ft by i consistency, we have computed with 
Numerica the Box-consistent intervals for the equations 
derived from the following inequalities : 

The left most bound of these intervals is 1.4; thus, 
can be extended by i-consistency to the interval [0,1.4]. 

5 Conc lus ion 
Tins paper has introduced an effective framework for 
extending the domain of one variable in an already con­
sistent CSP. Extending the domain of one variable is 
a crit ical issue in applications where the tolerance of a. 
component determines its cost. 

Contrary to Ward et al [13] we do not impose any re­
strictions on the form of the constraints. The approach 
suggested by Sam-Haroud and Faltings [9] is more gen­
eral since they do not know an ini t ia l solution but its 
computation cost is very high. The key point of our 
framework is the definition of univariate extrema func­
tions which can be computed efficiently. 
An interesting way to explore concerns maximizing the 
size (or volume) of iconsistent boxes. 
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