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A b s t r a c t 
Symmetry often appears in real-world con­
straint satisfaction problems, but strategies for 
exploit ing it are only beginning to be devel­
oped. Here, a rationale for exploit ing symmetry 
wi th in depth-first search is proposed, leading 
to an heuristic for variable selection and a do­
main pruning procedure. These strategies are 
then applied to a highly symmetric combinato­
r ial problem, namely the generation of balanced 
incomplete block designs. Experimental results 
show that these strategies achieve a reduction 
of up to two orders of magnitude in computa­
t ional effort. Interestingly, two previously de­
veloped strategies are shown to be particular 
instances of this approach. 

1 I n t r o d u c t i o n 
Symmetry is present in many natural and artif icial set­
tings. A symmetry is a transformation of an entity such 
that the transformed entity is equivalent to and indis­
tinguishable f rom the original one. We can see symme­
tries in nature (a specular reflection of a daisy flower), 
in human artifacts (a central rotat ion of 180 degrees 
of a chessboard), and in mathematical theories (inertial 
changes in classical mechanics). The existence of sym­
metries in these systems allows us to generalize the prop­
erties detected in one state to all its symmetric states. 

Regarding constraint satisfaction problems (CSPs), 
many real problems exhibit some k ind of symmetry, em­
bedded in the structure of variables, domains and con­
straints. Dur ing search, if two or more states of a prob­
lem are related by a symmetry, it means that all of them 
represent the same state, so it is enough to visit only one 
of them. This causes a drastic decrease in the size of the 
search space, which has a very positive impact on the 
efficiency of the constraint solver. 

In this paper, we propose two strategies for symmetry 
exploi tat ion, which can speed-up significantly the solv­
ing process of CSPs w i th many symmetries. We have 
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used these strategies to solve the problem of generating 
balanced incomplete block designs (B IBD from now on), 
a combinatorial problem of interest in statistics, coding 
theory and computer science. W i t h them, we are able to 
solve the B I B D generation problem wi th a simple algo­
r i thm (FC-CBJ) for a wide set of designs. 

This paper is organized as follows. In Section 2, we 
introduce some basic concepts. In Section 3, we explain 
two strategies for symmetry exploitation during search. 
In Section 4, we present the problem of B I B D generation. 
In Section 5, we formulate the B I B D generation as a 
CSP and give empirical results. In Section 6, we revise 
previous approaches to this topic. Section 7 contains 
conclusions and future work. 

2 Basic De f in i t i ons 

C o n s t r a i n t sa t i s f ac t i on . A finite CSP is defined by 
a tr iple (X ' ,D ,C) , where ,V = is a set 
of n variables, V = is a collec­
tion of current domains where is the finite set of 
possible values for variable , and C is a set. of con­
straints among variables, A constraint C i on the or­
dered set of variables spec­
ifies the relation of the allowed combinations 
of values for the variables in var An element of 

is a tuple , where 
represents the in i t ia l domain of . An element of 

is called a valid tuple on var 
A solution of the CSP is an assignment of values to vari­
ables which satisfies every constraint. A value a is good 
for a variable if a solution includes the assignment 

Typical ly, CSPs are solved by depth-first search 
algorithms wi th backtracking. At a point in search, P 
is the set of assigned or past variables, and F is the set 
of unassigned or future variables. The variable to be 
assigned next is called the current variable. 

S y m m e t r i e s . A symmetry on a CSP is a collection of 
bijective mappings 
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S y m m e t r i e s a n d d e p t h - f i r s t s e a r c h . A search state 
s is characterized by an assignment of past variables, 
plus the current domains of fu ture variables. I t defines a 
subproblem of the or ig ina l p rob lem, where the domain of 
each past var iable is reduced to i ts assigned value and the 
re lat ion rel(ci) of each constra int c, is reduced to its val id 
tuples w i t h respect to current domains. A symmet ry 
holds at state s if it is a symmet ry of the subproblem 
occurr ing at s. A symmet ry ho ld ing at s is said to be 
local to s if it does not change neither past variables nor 
their assigned values. A symmet ry local to the in i t ia l 
state is a g lobal symmet ry of the prob lem. 

T h e no t ion of local symmet ry is impo r tan t because of 
the use of symmetr ies du r ing search. If a state reports 
fa i lure, a l l the states symmet r i c to i t can be removed. 

1 Through an abuse of notation, we denote a symmetry 
by its variable mapping 

Since constraint satisfaction a lgor i thms are based on 
depth-f i rst search w i t h backtracking, they may only re­
move states tha t are in the subtree below the current 
node, but never above i t . Therefore, we are only inter­
ested in symmetr ies connecting states below the current 
node, tha t is, leaving the set of past variables unchanged. 
These symmetries are local to the current node. In the 
rest of the paper, we w i l l consider local symmetr ies only. 

3 Solving Strategies 
In the fol lowing subsections, we describe two pract ical 
strategies for highly symmetr ica l CSPs, which can be 
embedded in any constraint satisfaction a lgo r i thm. B o t h 
are based on the detection of local symmetr ies at each 
search state. Au tomat i c discovery of symmetr ies is a 
too complex task to be carried out at run t ime. Instead, 
we take a simpler approach. From an in i t i a l analysis of 
the considered problem, we ident i fy a set of symmetr ies 
which may appear along the search. When a new state is 
generated, we check which of these previously ident i f ied 
symmetries are local to this state. 

3 . 1 B r e a k i n g S y m m e t r i e s W h i l e S e a r c h i n g 
Let s be a search state where the symmet ry 0 local to *s 
involves a future variable x t in the fo l lowing f o rm , 

If X{ is assigned in the next step, symmet ry no longer 
holds in the current subproblem after assignment. To 
see this, it is enough to realize that is now a past var i ­
able (which cannot be changed) and . w i l l change i t . In 
this case, we say tha t the assignment of z, breaks symme­
t ry . If at state s several symmetr ies . . . are local 
to s, al l involv ing variable X i, assigning X i w i l l break all 
these symmetries: no state in the current subproblem 
wi l l be "repeated" by the action of these symmetr ies. 
Th is posit ive effect is only due to the assignment of x i , 
taken as the current variable. Th is is the rat ionale for 
our variable selection heuristic. 

S y m m e t r y - b r e a k i n g h e u r i s t i c : Select for assign­
ment the variable involved in the greatest number 
of symmetries local to the current state. 

Th is greedy heuristic tries to break as many symme­
tries as possible in the next assignment. When it is ap­
plied consistently throughout the search tree, its posit ive 
effects accumulate. If is the variable selected at the 
first tree level, no mat ter which value is assigned to i t , 
all symmetries invo lv ing are broken below level 1. If 

is the variable selected at the second tree level, no 
mat ter which value is assigned to i t , al l symmetr ies in-
volv ing and are broken below level 2, and so on . " 
Th is heuristic tries to maximize the to ta l number of bro­
ken symmetr ies at each level of the search tree. It causes 
the fo l lowing benefits. 

2 It could be argued that the assignment of may restore 
a symmetry broken by the assignment of , if exchanges 
both variables and their values. But now is no longer a 
local symmetry, given that it acts on past variables. 
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Figure 2: Search tree to solve the equation xy — z = 4 with 
different variable orderings. Symmetric states are connected 
by shadowed lines. 

1. Lookahead of better quality. A lookahead algo­
r i t hm prunes future domains taking into account 
past assignments. When symmetries on future vari­
ables are present, some of the lookahead effort is 
unproductive. If there is a symmetry such that 

, after lookahead on 
obviously redundant 

because it w i l l produce results equivalent (through 
0) to lookahead on If no symmetries are 
present, no lookahead effort w i l l be unproductive. 
Therefore, the more symmetries are broken, the less 
unproductive effort lookahead performs. When the 
number of symmetries is high, savings in unproduc­
tive lookahead effort could be substantial. 

2. Better value selection. Let us suppose a problem 
wi th solut ion. At state s, there is a symmetry 

two variables. Because of the symmetry, there is 
another solution w i th = b and — a. 
Therefore, if Xj is selected as current variable, both 
values a, b are good to bring search to a solution. In 
a more general sett ing, this argument supports the 
fact that a variable involved in many symmetries 
wi l l have many good values in its domain. 

Some of these facts are i l lustrated in the fol lowing ex­
ample. Let us consider the equation, xy — z = 4, where 
all variables take values in { 1 , 2 , 3 } . There is a symme­
try, 0(x) = y, and two solutions (x = 2, y = 3, z — 2) 
and (x = 3, y = 2, z = 2). Figure 2 displays two search 
trees for this equation, one fol lowing the variable order­
ing z, x, y and the other x, y, z. In the first tree, symme­
t ry is not broken after assigning z, so symmetric states 
appear inside subtrees at the first level. In the second 
tree, symmetry is broken after assigning x, and sym-
metric states only appear between subtrees at the first 
level but not inside them. In addi t ion, has two 
good values (2 and 3), but 

3.2 Value Removal After Failure 

Let s be a search state, where is selected as the current 
variable and value a is tr ied wi thout success. At this 
point, a backtracking-based algor i thm wi l l t ry another 
value for . I f is a symmetry local to s, we can remove 

(the value symmetric to a) f rom , because 
it cannot belong to any solution including the current 
assignment of past variables. If all values of x, are tr ied 
wi thout success and the algori thm backtracks, all values 
removed in this way should be restored. If x i, is involved 
in several symmetries, this argument holds for each of 
them separately. 

This method of value removal after failure provides 
further support to the symmetry-breaking heuristic of 
Section 3.1. The more local symmetries a variable is 
involved in , the more opportunit ies it offers for symmet­
ric value removal in other domains if a failure occurs. 
This extra pruning is more effective if it is done at early 
levels of the search tree, since each pruned value repre­
sents removing a subtree on the level corresponding to 
the variable symmetric to the current one. 

An example of this value removal arises in the pigeon-
hole problem: locating n pigeons in n - 1 holes such 
that each pigeon is in a different hole. This problem is 
formulated as a CSP by associating a variable x, to each 
pigeon, all sharing the domain { l , . . . , n — 1}, under the 
constraints Among others, 
this problem has a collection of symmetries in domains, 

(I is the identity mapping). If search is performed 
by forward checking and variables and values are as-
signed lexicographically, the first dead-end occurs when 

goes back to There, it finds that the only remain­
ing value, n — 1, is symmetric to n — 2 which failed, 
so n — 1 can be pruned and no more values remain in 

. Backtracking goes back to where, by the 
same argument, the two remaining values are pruned. 
This process goes on up to reach , where all its re­
maining values are pruned and search terminates wi th 
failure. Only the leftmost branch of the search tree is 
generated, and the rest of the tree is pruned. 

4 BIBDs 
Block designs are combinatorial objects satisfying a set 
of integer constraints [Hal l , 1986; Colbourn and Dini tz, 
1996). Introduced in the thirt ies by statisticians working 
on experiment planning, nowadays they are used in many 
other fields, such as coding theory, network reliabil ity, 
and cryptography. The most widely used designs are 
the Balanced Incomplete Block Designs (BIBDs). 

Formally, a -B IBD is a family of 6 sets 
(called blocks) of size k, whose elements are f rom a set 
of cardinality such that every element belongs 
exactly to r blocks and every pair of elements occurs 
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Figure 3: An instance of (7,7,3,3,1)-BIBD. 

exactly in blocks. t ; ,b,r, k, and are called the pa­
rameters of the design. Computat ional ly, designs can be 
represented by a v x 6 binary matr ix , wi th exactly r ones 
per row, k ones per column, and the scalar product of 
every pair of rows is equal to An example of B IBD 
appears in Figure 3. 

There are three well-known necessary conditions for 
the existence of a B I B D : 

However, these are not sufficient conditions. The sit­
uation is summarized in [Mathon and Rosa, 1990], that 
lists all parameter sets obeying these conditions, wi th 

(cases wi th are t r iv­
ia l , while cases w i th k > v/2 are represented by their 
corresponding complementaries, which are also block de­
signs). For some parameter sets satisfying the above con­
dit ions, it has been established that the corresponding 
design does not exist; for others, the currently known 
bound on the number of non-xsomorphic solutions is 
provided; and finally, some listed cases remain unset­
t led. The smallest such case is that wi th parameters 
(22,33,12,8,4), to whose solution many efforts have been 
devoted [Wallis, 1996, Chapter l l ] . 

Some (infinite) families of block designs (designs 
whose parameters satisfy particular properties) can be 
constructed analytically, by direct or recursive meth­
ods [Hall , 1986, Chapter 15], and the state of the art 
in computat ional methods for design generation is de­
scribed in [Colbourn and Dini tz , 1996; Wallis, 1996]. 
The aforementioned unsettled case, wi th vb = 726 bi­
nary entries, shows that exhaustive search is st i l l in­
tractable for designs of this size. In the general case, the 
algorithmic generation of block designs is an NP prob­
lem [Corneil and Mathon, 1978]. 

Computat ional methods for B I B D generation, either 
based on systematic or randomized search procedures, 
suffer f rom combinatorial explosion which is partial ly 
due to the large number of isomorphic configurations 
present in the search space. The use of group actions 
goes precisely in the direction of reducing this isomor­
phism. Al though up to our knowledge, B I B D generation 
has not been tackled f rom the CSP viewpoint, it appears 
to be a wonderful instance of highly symmetric CSP, thus 
offering the possibil ity to assess the benefits of different 
search strategies on such problems. 

5 Exper imenta l Results 
The problem of generating a - B I B D can be 
formulated as a CSP as follows. Two rows i and j of the 
B I B D should have exactly ones in the same columns. 
We represent this by variables , where 

contains the column of the pth one common to rows 
i and j. There are v(v — l ) / 2 row pairs, so there are 

variables, all sharing the domain { 1 , . . ., b}. 
From these variables, the B IBD tableT," " binary 
matr ix, is computed as follows, 

Constraints are expressed in the following terms, 

where . This 
problem presents many local symmetries. We consider 
the following ones relating future variables, 

1. Variable mapping exchanges Xijp and X I J P , domain 
mappings are the identity; this symmetry occurs 
among variables of the same row pair. 

2. Variable mapping is the identity, one domain map­
ping exchanges values and ; this symmetry oc­
curs when 

3. Variable mapping exchanges do­
main mappings are the identity; this symmetry oc-

4. Variable mapping exchanges * , the 
domain mappings corresponding to these variables 
exchange values and ; this symmetry occurs 
when, 

5. Variable mapping exchanges the 
domain mappings corresponding to these variables 
exchange values and this symmetry occurs 
when, 

These symmetries have a clear graphical interpretation. 
Symmetry (1) is inherent to the formulat ion. Symme­
try (2) relates values of the same variable corresponding 
to equal columns. Symmetry (3) relates variables corre­
sponding to equal rows. Symmetry (4) relates variables 
sharing row i, and rows and that are equal but for 
two columns and These columns are also equal 
but for rows and ' . Exchanging rows and , and 
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Table 1: Performance results of the proposed algorithms. 

columns and , mat r ix T remains invariant. Symme­
t ry (5) follows the same idea although it is more complex. 
It occurs when exchanging rows and , rows ( and 
j-2, and columns and , mat r ix T remains invariant. 
It is worth not ing that these symmetries keep invariant 
mat r ix T because they are local to the current state, that 
is, they do not change past variables. 

Symmetries are detected dynamical ly at each visited 
node. The specific implementation of the symmetry-
breaking heuristic performs a weighted sum of the num­
ber of symmetries involving each future variable, where 
symmetries (4) and (5) are considered of less importance 
than the others. 

B I B D generation is a non-binary CSP. We use a for­
ward checking algor i thm wi th conflict-directed back-
jump ing (Fc-CBJ {Prosser, 1993]) adapted to deal wi th 
non-binary constraints, w i th Brelaz heuristic [Brelaz, 
1979] for variable selection and random value selection, 
as reference algor i thm. This algor i thm is modified to in­
clude the symmetry-breaking heuristic for variable selec­
t ion, w i th Brelaz as tie-breaker, producing Fc-CBJ-SB. 
Adding to this a lgor i thm the strategy of value removal 
after failure, we obtain Fc-CBJ-SB-VR. We compare the 
performance of these algorithms generating all BIBDs 

w i th vb < 1400 and k = 3, all having solution. Since 
the performance of the proposed algorithms depends on 
random choices, we have repeated the generation of each 
B I B D 50 times, each wi th a different random seed. Ex­
ecution of a single instance was aborted if the algor i thm 
visited more than 50,000 nodes. 

Empir ical results appear in Table 1, where for each al­
gor i thm and B I B D , we give the number of solved prob­
lems wi th in the node l im i t and the average CPU time 
in seconds for the 50 instances. Comparing Fc-CBJ 
and Fc-CBJ-SB-VR, we see that Fc-CBJ solves 899 in­
stances while F C - C B J - S B - V R solves 2382 out of the 2400 
instances executed. Fc-CBJ does not solve any instance 
for 8 specific BIBDs, while Fc-CBJ-SB-VR provides so­
lut ion for all BIBDs tested. Regarding CPU t ime, Fc -
C B J - S B - V R dominates F C - C B J in 44 out of the 48 BIBDs 
considered, and this dominance is of one or two orders of 
magnitude in 39 cases. These results show clearly that 
the proposed strategies improve greatly the efficiency of 
the Fc-CBJ algori thm for B I B D generation. 

F C - C B J - S B results show that this algor i thm almost 
achieves F C - C B J - S B - V R performance. F C - C B J - S B solves 
2362 instances, 20 less than F C - C B J - S B - V R , requiring 
slightly more t ime on the average. So, for B I B D gen­
eration, the symmetry-breaking heuristic is the main re­
sponsible for the savings in search effort, while value re­
moval plays a very secondary role. 

We also reimplemented Fc-CBJ adding constraints 
, to break type (1) symmetries. The 

resulting algor i thm, which included the extra pruning 
capacities caused by these new constraints, runned sig­
nificantly slower than the original Fc-CBJ in all BIBDs 
with . 

6 Related Work 
Previous work on symmetries and CSPs can be classified 
in two general approaches. An approach, where our work 
fits in , consists in modifying the constraint solver to take 
advantadge of symmetries. A modified backtracking al­
gor i thm appears in [Brown et a/., 1988], testing each 
node to see whether it is the appropriate representative 
of those states symmetric to i t . Considering specific sym­
metries, [Freuder, 1991] discusses the pruning of neigh­
borhood interchangeable values of a variable. Another 
strategy [Roy and Pachet, 1998] considers value pruning 
between permutable variables. Interestingly, these two 
strategies are particular cases of the more general strat­
egy presented in Section 3.2. It is easy to show that, 
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independently, our strategy of value removal after failure 
can be seen as a particular case of the symmetry exclu­
sion method introduced by [Backofen and W i l l , 1998] for 
concurrent constraint programming, and applied to the 
CSP context by [Gent and Smi th, 1999]. 

Another approach consists in modifying the symmetric 
problem to obtain a new problem without symmetries, 
but keeping the non-symmetric solutions of the original 
one. To do this, new constraints are added to the origi­
nal problem in order to break the symmetries. Detecting 
symmetries and comput ing the new constraints is per­
formed by hand in [Puget, 1993]. Alternatively, existing 
symmetries and the corresponding symmetry-breaking 
predicates (in the context of propositional logic) are com­
puted automatical ly in [Crawford et al., 1996], 

7 Conclus ions 
In this paper we have analysed how to take symmetry 
into account to reduce search effort. We have presented 
two strategies to exploit symmetries inside a depth-first 
search scheme. These strategies have been tested on 
a highly symmetric combinatorial problem, namely the 
generation of BIBDs, an NP problem which has triggered 
a considerable amount of research on analytic and com­
putat ional procedures. Its wide variabil ity in size and 
diff iculty makes it a very appropriate benchmark for al­
gori thms aimed at exploit ing symmetries in CSPs. 

We believe that systematic procedures are more likely 
to shed l ight on the solution of diff icult instances of the 
problem, whereas randomized algorithms may be quicker 
at finding solutions in easier cases. The present work has 
not been aimed at solving a particular such instance, but 
instead at proposing and evaluating tools to deal wi th 
symmetries. In this respect, the proposed strategies have 
been shown to be effective in reducing search effort.. 

It is worth mentioning that there is always a trade-off 
between the effort spent in looking for and exploiting 
symmetries, and the savings attained. Thus, instead of 
considering all possible symmetries, it is advisable to es­
tablish a hierarchy of them and try to detect the simplest 
first, as we have done. 

Concerning future work, we plan to compare our 
strategies w i th the alternative approach of reformulating 
the original problem by adding new constraints to break 
problem symmetries. We also want to assess to what 
extent our approach depends on the type and number 
of symmetries occurring in a particular problem. We 
would like to identify criteria for value selection which 
complement our symmetry-breaking heuristic for vari­
able selection. Moreover, the experimentation should be 
extended to other B I B D families, and the benefits ob­
tained validated by applying these strategies to other 
domains. 
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