
Solving Strategies for
Pedro Meseguer

Inst. Invest. Intel.ligencia Artificial
CSIC

Campus UAB, 08193 Bellaterra
Spain

A b s t r a c t
Symmetry often appears in real-world con­
straint satisfaction problems, but strategies for
exploit ing it are only beginning to be devel­
oped. Here, a rationale for exploit ing symmetry
wi th in depth-first search is proposed, leading
to an heuristic for variable selection and a do­
main pruning procedure. These strategies are
then applied to a highly symmetric combinato­
r ial problem, namely the generation of balanced
incomplete block designs. Experimental results
show that these strategies achieve a reduction
of up to two orders of magnitude in computa­
t ional effort. Interestingly, two previously de­
veloped strategies are shown to be particular
instances of this approach.

1 I n t r o d u c t i o n
Symmetry is present in many natural and artif icial set­
tings. A symmetry is a transformation of an entity such
that the transformed entity is equivalent to and indis­
tinguishable f rom the original one. We can see symme­
tries in nature (a specular reflection of a daisy flower),
in human artifacts (a central rotat ion of 180 degrees
of a chessboard), and in mathematical theories (inertial
changes in classical mechanics). The existence of sym­
metries in these systems allows us to generalize the prop­
erties detected in one state to all its symmetric states.

Regarding constraint satisfaction problems (CSPs),
many real problems exhibit some k ind of symmetry, em­
bedded in the structure of variables, domains and con­
straints. Dur ing search, if two or more states of a prob­
lem are related by a symmetry, it means that all of them
represent the same state, so it is enough to visit only one
of them. This causes a drastic decrease in the size of the
search space, which has a very positive impact on the
efficiency of the constraint solver.

In this paper, we propose two strategies for symmetry
exploi tat ion, which can speed-up significantly the solv­
ing process of CSPs w i th many symmetries. We have

*This research is supported by the Spanish CICYT
proyect TIC96-0721-C02.

used these strategies to solve the problem of generating
balanced incomplete block designs (B IBD from now on),
a combinatorial problem of interest in statistics, coding
theory and computer science. W i t h them, we are able to
solve the B I B D generation problem wi th a simple algo­
r i thm (FC-CBJ) for a wide set of designs.

This paper is organized as follows. In Section 2, we
introduce some basic concepts. In Section 3, we explain
two strategies for symmetry exploitation during search.
In Section 4, we present the problem of B I B D generation.
In Section 5, we formulate the B I B D generation as a
CSP and give empirical results. In Section 6, we revise
previous approaches to this topic. Section 7 contains
conclusions and future work.

2 Basic De f in i t i ons

C o n s t r a i n t sa t i s f ac t i on . A finite CSP is defined by
a tr iple (X ' ,D ,C) , where ,V = is a set
of n variables, V = is a collec­
tion of current domains where is the finite set of
possible values for variable , and C is a set. of con­
straints among variables, A constraint C i on the or­
dered set of variables spec­
ifies the relation of the allowed combinations
of values for the variables in var An element of

is a tuple , where
represents the in i t ia l domain of . An element of

is called a valid tuple on var
A solution of the CSP is an assignment of values to vari­
ables which satisfies every constraint. A value a is good
for a variable if a solution includes the assignment

Typical ly, CSPs are solved by depth-first search
algorithms wi th backtracking. At a point in search, P
is the set of assigned or past variables, and F is the set
of unassigned or future variables. The variable to be
assigned next is called the current variable.

S y m m e t r i e s . A symmetry on a CSP is a collection of
bijective mappings

400 CONSTRAINT SATISFACTION

Solving Strategies for H igh l y Symmetr ic CSPs *

Pedro Meseguer Ca rme Torras
Inst. Invest. Intel.ligencia Artificial Inst. Robotica i Informatica Industrial

CSIC CSIC-UPC
Campus UAB, 08193 Bellaterra Gran Capita 2-4, 08034 Barcelona

Spain Spain

S y m m e t r i e s a n d d e p t h - f i r s t s e a r c h . A search state
s is characterized by an assignment of past variables,
plus the current domains of fu ture variables. I t defines a
subproblem of the or ig ina l p rob lem, where the domain of
each past var iable is reduced to i ts assigned value and the
re lat ion rel(ci) of each constra int c, is reduced to its val id
tuples w i t h respect to current domains. A symmet ry
holds at state s if it is a symmet ry of the subproblem
occurr ing at s. A symmet ry ho ld ing at s is said to be
local to s if it does not change neither past variables nor
their assigned values. A symmet ry local to the in i t ia l
state is a g lobal symmet ry of the prob lem.

T h e no t ion of local symmet ry is impo r tan t because of
the use of symmetr ies du r ing search. If a state reports
fa i lure, a l l the states symmet r i c to i t can be removed.

1 Through an abuse of notation, we denote a symmetry
by its variable mapping

Since constraint satisfaction a lgor i thms are based on
depth-f i rst search w i t h backtracking, they may only re­
move states tha t are in the subtree below the current
node, but never above i t . Therefore, we are only inter­
ested in symmetr ies connecting states below the current
node, tha t is, leaving the set of past variables unchanged.
These symmetries are local to the current node. In the
rest of the paper, we w i l l consider local symmetr ies only.

3 Solving Strategies
In the fol lowing subsections, we describe two pract ical
strategies for highly symmetr ica l CSPs, which can be
embedded in any constraint satisfaction a lgo r i thm. B o t h
are based on the detection of local symmetr ies at each
search state. Au tomat i c discovery of symmetr ies is a
too complex task to be carried out at run t ime. Instead,
we take a simpler approach. From an in i t i a l analysis of
the considered problem, we ident i fy a set of symmetr ies
which may appear along the search. When a new state is
generated, we check which of these previously ident i f ied
symmetries are local to this state.

3 . 1 B r e a k i n g S y m m e t r i e s W h i l e S e a r c h i n g
Let s be a search state where the symmet ry 0 local to *s
involves a future variable x t in the fo l lowing f o rm ,

If X{ is assigned in the next step, symmet ry no longer
holds in the current subproblem after assignment. To
see this, it is enough to realize that is now a past var i ­
able (which cannot be changed) and . w i l l change i t . In
this case, we say tha t the assignment of z, breaks symme­
t ry . If at state s several symmetr ies . . . are local
to s, al l involv ing variable X i, assigning X i w i l l break all
these symmetries: no state in the current subproblem
wi l l be "repeated" by the action of these symmetr ies.
Th is posit ive effect is only due to the assignment of x i ,
taken as the current variable. Th is is the rat ionale for
our variable selection heuristic.

S y m m e t r y - b r e a k i n g h e u r i s t i c : Select for assign­
ment the variable involved in the greatest number
of symmetries local to the current state.

Th is greedy heuristic tries to break as many symme­
tries as possible in the next assignment. When it is ap­
plied consistently throughout the search tree, its posit ive
effects accumulate. If is the variable selected at the
first tree level, no mat ter which value is assigned to i t ,
all symmetries invo lv ing are broken below level 1. If

is the variable selected at the second tree level, no
mat ter which value is assigned to i t , al l symmetr ies in-
volv ing and are broken below level 2, and so on . "
Th is heuristic tries to maximize the to ta l number of bro­
ken symmetr ies at each level of the search tree. It causes
the fo l lowing benefits.

2 It could be argued that the assignment of may restore
a symmetry broken by the assignment of , if exchanges
both variables and their values. But now is no longer a
local symmetry, given that it acts on past variables.

MESEGUER AND TORRAS 401

Figure 2: Search tree to solve the equation xy — z = 4 with
different variable orderings. Symmetric states are connected
by shadowed lines.

1. Lookahead of better quality. A lookahead algo­
r i t hm prunes future domains taking into account
past assignments. When symmetries on future vari­
ables are present, some of the lookahead effort is
unproductive. If there is a symmetry such that

, after lookahead on
obviously redundant

because it w i l l produce results equivalent (through
0) to lookahead on If no symmetries are
present, no lookahead effort w i l l be unproductive.
Therefore, the more symmetries are broken, the less
unproductive effort lookahead performs. When the
number of symmetries is high, savings in unproduc­
tive lookahead effort could be substantial.

2. Better value selection. Let us suppose a problem
wi th solut ion. At state s, there is a symmetry

two variables. Because of the symmetry, there is
another solution w i th = b and — a.
Therefore, if Xj is selected as current variable, both
values a, b are good to bring search to a solution. In
a more general sett ing, this argument supports the
fact that a variable involved in many symmetries
wi l l have many good values in its domain.

Some of these facts are i l lustrated in the fol lowing ex­
ample. Let us consider the equation, xy — z = 4, where
all variables take values in { 1 , 2 , 3 } . There is a symme­
try, 0(x) = y, and two solutions (x = 2, y = 3, z — 2)
and (x = 3, y = 2, z = 2). Figure 2 displays two search
trees for this equation, one fol lowing the variable order­
ing z, x, y and the other x, y, z. In the first tree, symme­
t ry is not broken after assigning z, so symmetric states
appear inside subtrees at the first level. In the second
tree, symmetry is broken after assigning x, and sym-
metric states only appear between subtrees at the first
level but not inside them. In addi t ion, has two
good values (2 and 3), but

3.2 Value Removal After Failure

Let s be a search state, where is selected as the current
variable and value a is tr ied wi thout success. At this
point, a backtracking-based algor i thm wi l l t ry another
value for . I f is a symmetry local to s, we can remove

(the value symmetric to a) f rom , because
it cannot belong to any solution including the current
assignment of past variables. If all values of x, are tr ied
wi thout success and the algori thm backtracks, all values
removed in this way should be restored. If x i, is involved
in several symmetries, this argument holds for each of
them separately.

This method of value removal after failure provides
further support to the symmetry-breaking heuristic of
Section 3.1. The more local symmetries a variable is
involved in , the more opportunit ies it offers for symmet­
ric value removal in other domains if a failure occurs.
This extra pruning is more effective if it is done at early
levels of the search tree, since each pruned value repre­
sents removing a subtree on the level corresponding to
the variable symmetric to the current one.

An example of this value removal arises in the pigeon-
hole problem: locating n pigeons in n - 1 holes such
that each pigeon is in a different hole. This problem is
formulated as a CSP by associating a variable x, to each
pigeon, all sharing the domain { l , . . . , n — 1}, under the
constraints Among others,
this problem has a collection of symmetries in domains,

(I is the identity mapping). If search is performed
by forward checking and variables and values are as-
signed lexicographically, the first dead-end occurs when

goes back to There, it finds that the only remain­
ing value, n — 1, is symmetric to n — 2 which failed,
so n — 1 can be pruned and no more values remain in

. Backtracking goes back to where, by the
same argument, the two remaining values are pruned.
This process goes on up to reach , where all its re­
maining values are pruned and search terminates wi th
failure. Only the leftmost branch of the search tree is
generated, and the rest of the tree is pruned.

4 BIBDs
Block designs are combinatorial objects satisfying a set
of integer constraints [Hal l , 1986; Colbourn and Dini tz,
1996). Introduced in the thirt ies by statisticians working
on experiment planning, nowadays they are used in many
other fields, such as coding theory, network reliabil ity,
and cryptography. The most widely used designs are
the Balanced Incomplete Block Designs (BIBDs).

Formally, a -B IBD is a family of 6 sets
(called blocks) of size k, whose elements are f rom a set
of cardinality such that every element belongs
exactly to r blocks and every pair of elements occurs

402 CONSTRAINT SATISFACTION

Figure 3: An instance of (7,7,3,3,1)-BIBD.

exactly in blocks. t ; ,b,r, k, and are called the pa­
rameters of the design. Computat ional ly, designs can be
represented by a v x 6 binary matr ix , wi th exactly r ones
per row, k ones per column, and the scalar product of
every pair of rows is equal to An example of B IBD
appears in Figure 3.

There are three well-known necessary conditions for
the existence of a B I B D :

However, these are not sufficient conditions. The sit­
uation is summarized in [Mathon and Rosa, 1990], that
lists all parameter sets obeying these conditions, wi th

(cases wi th are t r iv­
ia l , while cases w i th k > v/2 are represented by their
corresponding complementaries, which are also block de­
signs). For some parameter sets satisfying the above con­
dit ions, it has been established that the corresponding
design does not exist; for others, the currently known
bound on the number of non-xsomorphic solutions is
provided; and finally, some listed cases remain unset­
t led. The smallest such case is that wi th parameters
(22,33,12,8,4), to whose solution many efforts have been
devoted [Wallis, 1996, Chapter l l] .

Some (infinite) families of block designs (designs
whose parameters satisfy particular properties) can be
constructed analytically, by direct or recursive meth­
ods [Hall , 1986, Chapter 15], and the state of the art
in computat ional methods for design generation is de­
scribed in [Colbourn and Dini tz , 1996; Wallis, 1996].
The aforementioned unsettled case, wi th vb = 726 bi­
nary entries, shows that exhaustive search is st i l l in­
tractable for designs of this size. In the general case, the
algorithmic generation of block designs is an NP prob­
lem [Corneil and Mathon, 1978].

Computat ional methods for B I B D generation, either
based on systematic or randomized search procedures,
suffer f rom combinatorial explosion which is partial ly
due to the large number of isomorphic configurations
present in the search space. The use of group actions
goes precisely in the direction of reducing this isomor­
phism. Al though up to our knowledge, B I B D generation
has not been tackled f rom the CSP viewpoint, it appears
to be a wonderful instance of highly symmetric CSP, thus
offering the possibil ity to assess the benefits of different
search strategies on such problems.

5 Exper imenta l Results
The problem of generating a - B I B D can be
formulated as a CSP as follows. Two rows i and j of the
B I B D should have exactly ones in the same columns.
We represent this by variables , where

contains the column of the pth one common to rows
i and j. There are v(v — l) / 2 row pairs, so there are

variables, all sharing the domain { 1 , . . ., b}.
From these variables, the B IBD tableT," " binary
matr ix, is computed as follows,

Constraints are expressed in the following terms,

where . This
problem presents many local symmetries. We consider
the following ones relating future variables,

1. Variable mapping exchanges Xijp and X I J P , domain
mappings are the identity; this symmetry occurs
among variables of the same row pair.

2. Variable mapping is the identity, one domain map­
ping exchanges values and ; this symmetry oc­
curs when

3. Variable mapping exchanges do­
main mappings are the identity; this symmetry oc-

4. Variable mapping exchanges * , the
domain mappings corresponding to these variables
exchange values and ; this symmetry occurs
when,

5. Variable mapping exchanges the
domain mappings corresponding to these variables
exchange values and this symmetry occurs
when,

These symmetries have a clear graphical interpretation.
Symmetry (1) is inherent to the formulat ion. Symme­
try (2) relates values of the same variable corresponding
to equal columns. Symmetry (3) relates variables corre­
sponding to equal rows. Symmetry (4) relates variables
sharing row i, and rows and that are equal but for
two columns and These columns are also equal
but for rows and ' . Exchanging rows and , and

MESEGUER AND TORRAS 403

Table 1: Performance results of the proposed algorithms.

columns and , mat r ix T remains invariant. Symme­
t ry (5) follows the same idea although it is more complex.
It occurs when exchanging rows and , rows (and
j-2, and columns and , mat r ix T remains invariant.
It is worth not ing that these symmetries keep invariant
mat r ix T because they are local to the current state, that
is, they do not change past variables.

Symmetries are detected dynamical ly at each visited
node. The specific implementation of the symmetry-
breaking heuristic performs a weighted sum of the num­
ber of symmetries involving each future variable, where
symmetries (4) and (5) are considered of less importance
than the others.

B I B D generation is a non-binary CSP. We use a for­
ward checking algor i thm wi th conflict-directed back-
jump ing (Fc-CBJ {Prosser, 1993]) adapted to deal wi th
non-binary constraints, w i th Brelaz heuristic [Brelaz,
1979] for variable selection and random value selection,
as reference algor i thm. This algor i thm is modified to in­
clude the symmetry-breaking heuristic for variable selec­
t ion, w i th Brelaz as tie-breaker, producing Fc-CBJ-SB.
Adding to this a lgor i thm the strategy of value removal
after failure, we obtain Fc-CBJ-SB-VR. We compare the
performance of these algorithms generating all BIBDs

w i th vb < 1400 and k = 3, all having solution. Since
the performance of the proposed algorithms depends on
random choices, we have repeated the generation of each
B I B D 50 times, each wi th a different random seed. Ex­
ecution of a single instance was aborted if the algor i thm
visited more than 50,000 nodes.

Empir ical results appear in Table 1, where for each al­
gor i thm and B I B D , we give the number of solved prob­
lems wi th in the node l im i t and the average CPU time
in seconds for the 50 instances. Comparing Fc-CBJ
and Fc-CBJ-SB-VR, we see that Fc-CBJ solves 899 in­
stances while F C - C B J - S B - V R solves 2382 out of the 2400
instances executed. Fc-CBJ does not solve any instance
for 8 specific BIBDs, while Fc-CBJ-SB-VR provides so­
lut ion for all BIBDs tested. Regarding CPU t ime, Fc -
C B J - S B - V R dominates F C - C B J in 44 out of the 48 BIBDs
considered, and this dominance is of one or two orders of
magnitude in 39 cases. These results show clearly that
the proposed strategies improve greatly the efficiency of
the Fc-CBJ algori thm for B I B D generation.

F C - C B J - S B results show that this algor i thm almost
achieves F C - C B J - S B - V R performance. F C - C B J - S B solves
2362 instances, 20 less than F C - C B J - S B - V R , requiring
slightly more t ime on the average. So, for B I B D gen­
eration, the symmetry-breaking heuristic is the main re­
sponsible for the savings in search effort, while value re­
moval plays a very secondary role.

We also reimplemented Fc-CBJ adding constraints
, to break type (1) symmetries. The

resulting algor i thm, which included the extra pruning
capacities caused by these new constraints, runned sig­
nificantly slower than the original Fc-CBJ in all BIBDs
with .

6 Related Work
Previous work on symmetries and CSPs can be classified
in two general approaches. An approach, where our work
fits in , consists in modifying the constraint solver to take
advantadge of symmetries. A modified backtracking al­
gor i thm appears in [Brown et a/., 1988], testing each
node to see whether it is the appropriate representative
of those states symmetric to i t . Considering specific sym­
metries, [Freuder, 1991] discusses the pruning of neigh­
borhood interchangeable values of a variable. Another
strategy [Roy and Pachet, 1998] considers value pruning
between permutable variables. Interestingly, these two
strategies are particular cases of the more general strat­
egy presented in Section 3.2. It is easy to show that,

404 CONSTRAINT SATISFACTION

independently, our strategy of value removal after failure
can be seen as a particular case of the symmetry exclu­
sion method introduced by [Backofen and W i l l , 1998] for
concurrent constraint programming, and applied to the
CSP context by [Gent and Smi th, 1999].

Another approach consists in modifying the symmetric
problem to obtain a new problem without symmetries,
but keeping the non-symmetric solutions of the original
one. To do this, new constraints are added to the origi­
nal problem in order to break the symmetries. Detecting
symmetries and comput ing the new constraints is per­
formed by hand in [Puget, 1993]. Alternatively, existing
symmetries and the corresponding symmetry-breaking
predicates (in the context of propositional logic) are com­
puted automatical ly in [Crawford et al., 1996],

7 Conclus ions
In this paper we have analysed how to take symmetry
into account to reduce search effort. We have presented
two strategies to exploit symmetries inside a depth-first
search scheme. These strategies have been tested on
a highly symmetric combinatorial problem, namely the
generation of BIBDs, an NP problem which has triggered
a considerable amount of research on analytic and com­
putat ional procedures. Its wide variabil ity in size and
diff iculty makes it a very appropriate benchmark for al­
gori thms aimed at exploit ing symmetries in CSPs.

We believe that systematic procedures are more likely
to shed l ight on the solution of diff icult instances of the
problem, whereas randomized algorithms may be quicker
at finding solutions in easier cases. The present work has
not been aimed at solving a particular such instance, but
instead at proposing and evaluating tools to deal wi th
symmetries. In this respect, the proposed strategies have
been shown to be effective in reducing search effort..

It is worth mentioning that there is always a trade-off
between the effort spent in looking for and exploiting
symmetries, and the savings attained. Thus, instead of
considering all possible symmetries, it is advisable to es­
tablish a hierarchy of them and try to detect the simplest
first, as we have done.

Concerning future work, we plan to compare our
strategies w i th the alternative approach of reformulating
the original problem by adding new constraints to break
problem symmetries. We also want to assess to what
extent our approach depends on the type and number
of symmetries occurring in a particular problem. We
would like to identify criteria for value selection which
complement our symmetry-breaking heuristic for vari­
able selection. Moreover, the experimentation should be
extended to other B I B D families, and the benefits ob­
tained validated by applying these strategies to other
domains.

Acknowledgements
We thank Javier Larrosa and the anonymous reviewers
for their constructive criticisms.

References
[Backofen and W i l l , 1998] R. Backofen, and S. W i l l . Ex­

cluding symmetries in concurrent constraint program­
ming. In Workshop on Modeling and Computing with
Concurrent Constraint Programming, 1998.

[Brelaz, 1979] D. Brelaz. New methods to color the ver­
tices of a graph. Journal of ACM, 22(4), 251-256,
1979.

[Brown et al., 1988] C.A. Brown, L. Finkelstein, and
P.W. Purdom. Backtrack searching in the presence
of symmetry. In Proc. 6th int. conf. on applied alge­
bra, algebraic algorithms and error correcting codes,
99 110, 1988.

[Colbourn and Dinitz, 1996] C.H. Colbourn and J.H.
Dinitz (Eds.). The CRC Handbook of Combinatorial
Designs, CRC Press, 1996.

[Corneil and Mathon, 1978] D.G. Corneil and R.A.
Mathon. Algorithmic techniques for the generation
and analysis of strongly regular graphs and other com­
binatorial configurations. Ann. of Discrete Math., 2,
1-32, 1978.

[Crawford et al, 1996] J. Crawford, M. Ginsberg,
E. Luks, and A. Roy. Symmetry-Breaking Predicates
for Search Problems. In Proc. of KR-96, USA, 1996.

[Freuder, 199l] E.G. Freuder. El iminat ing interchange­
able values in constraint satisfaction problems. In
Proc. of AAAI'91, pages 227-233, 1991.

[Gent and Smith, 1999] i.P. Gent and B. Smith. Sym­
metry breaking during search in constraint program­
ming. Research report 99.02, School of Computer
Studies, University of Leeds.

[Hall, 1986] M. Hal l . Combinatorial Tht wry, Ed. John
Wiley & Sons, Second Edit ion, 1986.

[Mathon and Rosa, 1990] R. Mathon and A. Rosa. Ta­
bles of parameters of B IBD with 41 including
existence, enumeration and resolvability results: an
update. Ars Combinatoria, 30, 1990.

[Prosser, 1993] P. Prosser. Hybrid algorithmic* for the
constraint satisfaction problem. Computational Intel-
ligence, 9(3), 268-299, 1993.

[Puget, 1993] J.F. Puget. On the satisfiability of sym­
metrical constrained satisfaction problems. In Proc.
oj' ISMIS'93, pages 350 361, Norway, 1993.

[Roy and Pachet, 1998] P. Roy and F. Pachet, Using
symmetry of global constraints to speed up the reso­
lution of constraint satisfaction problems. In Proc. of
ECAT88 workshop on Non-binary constraints, pages
27-33, Brighton, UK, 1998.

[Wallis, 1996] W.D . Wallis. Computational and Con­
structive Design Theory, Kluwer Academic Publish­
ers, Dordrecht, The Netherlands, 1996.

MESEGUER AND T0RRAS 405

