
A Comparison of Structural CSP Decomposit ion Methods

Georg G o t t l o b N ico la Leone Francesco Scarcello
Inst, fur Informatioiissystemc Inst, fur Informationssysteme ISI-CNR
Technische Universitat Wien Technische Universitat Wien Via P. Bucci 41/C

A-1040 Vienna, Austria A-1040 Vienna, Austria 1-87030 Rende, Italy
gottlob@dbai.tuwien.ac.at leone@dbai.tuwien.ac.at scarcello@si.deis.unical.it

A b s t r a c t

We compare tractable classes of constraint sat­
isfaction problems (CSPs). We first give a
uniform presentation of the major structural
CSP decomposition methods. We then in­
troduce a new class of tractable CSPs based
on the concept of hypertree decomposition re­
cently developed in Database Theory. We in­
troduce a framework for comparing paramet­
ric decomposition-based methods according to
tractabi l i ty cri teria and compare the most rel­
evant methods. We show that the method of
hypertree decomposition dominates the others
in the case of general (nonbinary) CSPs.

1 Cons t ra in t Sat is fact ion Prob lems
An instance of a constraint satisfaction problem (CSP)
(also constraint network) is a tr iple / = (Var,U,C),
where Var is a finite set of variables, U is a finite do­
main of values, and is a finite set of
constraints. Each constraint is a pair , where

is a list of variables of length rni called the constraint
scope, and is an -ary relation over [/, called the
constraint relation. (The tuples of indicate the al­
lowed combinations of simultaneous values for the vari­
ables Si). A solution to a CSP instance is a substi tut ion
V : , such that for each
The problem of deciding whether a CSP instance has
any solution is called constraint satisfiability (CS). (This
definit ion is taken almost verbatim from [Jeavons et a/.,
1997].)

Many problems in Computer Science and Mathemat­
ics can be formulated as CSPs. For example, the famous
problem of graph three-colorability (3COL), is elegantly
formulated as a CSP. Constraint Satisfiability is an NP-
complete problem.

It is well-known [Bibel, 1988; Gyssens et al, 1994;
Dechter, 1992] that the CS problem is equivalent to vari­
ous database problems, e.g., to the problem of evaluating
Boolean conjunctive queries over a relational database
[Maier, 1986], or to the equivalent problem of evaluating
join dependencies on a given database.

This paper is organized as follows. In Section 2 we dis­
cuss tractabi l i ty of CSPs due to restricted structure. In
Section 3 we briefly review well-known CSP decomposi­
t ion methods. In Section 4 we describe the new method
of hypertree decompositions. In Section 5 we explain our
comparison criteria and in Section 6 we present the com­
parison results for general CSPs. The case of binary
CSPs is briefly discussed in Section 7.

2 Trac tab le classes of CSPs
Much effort ,has been spent by both the AI and the
database communities to indentify tractable classes of
CSPs. Both communities have obtained deep and use­
ful results in this direction. The various successful ap­
proaches to obtain tractable CSP classes can be divided
into two main groups [Pearson and Jeavons, 1997]:

1 . T r a c t a b i l i t y d u e t o r e s t r i c t e d s t r u c t u r e . This
includes all tractable classes of CSPs that are iden­
tif ied solely on the base of the structure of the con­
straint scopes {S\,... Sq), independently of the actual
constraint relations r1,..., rq.

2 . T r a c t a b i l i t y d u e to r e s t r i c t e d c o n s t r a i n t s . This
includes all classes that are tractable due to particular
properties of the constraint relations r1,..., rq.

The present paper deals w i th t ractabi l i ty due to re­
stricted structure. The structure of a CSP is best rep­
resented by its associated hypergraph and by the corre­
sponding primal graph, defined as follows.

To any CSP instance / = (Var, U,C), we associate
a hypergraph — (V,H), where V = Var, and

, where var(S) denotes
the set of variables in the scope S of the constraint C.
Since in this paper we always deal w i th hypergraphs cor­
responding to CSPs instances, the vertices of any hyper­
graph 'H = (Vr, H) can be viewed as the variables of some
constraint satisfaction problem. Thus, we wi l l often use
the term variable as a synonym for vertex, when referring
to elements of V.

Let = (V,H) be the constraint hypergraph of a
CSP instance 1. The primal graph of / is a graph G =
(V,E), having the same set of variables (vertices) as
and an edge connecting any pair of variables

394 CONSTRAINT SATISFACTION

such that for some h H.
Note that if all constraints of a CSP are binary, then

its associated hypergraph is identical to its pr imal graph.
The most basic and most fundamental structural prop­

erty considered in the context of CSPs (and conjunctive
queries) is acyclicity. It was recognized independently in
AI and in database theory that acyclic CSPs are polyno­
m i a l ^ solvable. / is an acyclic CSP iff its primal graph
G is chordal (i.e., any cycle of length greater than 3 has
a chord) and the set of its maximal cliques coincide wi th
edges (HI) [Beeri et a/., 1983].

A join tree JT(H) for a hypergraph H is a tree whose
nodes are the edges of H such that whenever the same
vertex X _ V occurs in two edges A and of H, t h e n

and are connected in , , and X occurs in each
node on the unique path l inking and in

Acyclic hypergraphs can be characterized in terms of
jo in trees: A hypergraph H is acyclic iff it has a jo in
tree [Bernstein and Goodman, 1981; Beeri et a/., 1983;
Maier, 1986]. Acyclic CSP satisfiability is not
only tractable but also highly parallelizable. In fact,
this problem is complete for the low complexity class
L O G C F L [Gott lob et a/., 1998].

Many CSPs arising in practice are not acyclic but are
in some sense or another close to acyclic CSPs. In fact,
the hypergraphs associated wi th many natural ly arising
CSPs contain either few cycles or small cycles, or can
be transformed to acyclic CSPs by simple operations
(such as, e.g., lumping together small groups of vertices).
Consequently, CSP research in AI and in database the­
ory concentrated on identi fying, defining, and studying
suitable classes of nearly acyclic CSPs, or, equivalently,
methods for decomposing cyclic CSPs into acyclic CSPs.

3 Decompos i t i on M e t h o d s
In order to study and compare various decomposition
methods, we find it useful to introduce a general formal
framework for this notion.

For a hypergraph H = (V, H), let edges(H) = H.
Moreover, for any set of edges H' H, let var(H') =

and for the hypergraph 'H, let var(H) —
W.l.o.g., we assume that var(H) = V, i.e.,

every variable in V occurs in at least one edge of 7i, and
hence, any hypergraph can be simply represented by the
set of its edges. Moreover, we assume w.l.o.g. that all hy­
pergraphs under consideration are both connected, i.e.,
their pr imal graph consists of a single connected compo­
nent, and reduced, i.e., no hyperedge is contained in any
other hyperedge. A l l our definitions and results easily
extend to general hypergraphs.

Let US be the set of all (reduced and connected) hy­
pergraphs. A decomposition method (short: DM) D as­
sociates to any hypergraph a parameter D-
width(H), called the D-width of H.

The decomposition method D ensures that , for fixed
K, every CSP instance / whose hypergraph has D-
wid th < K: is polynornially solvable, i.e., it is solvable
in t ime, where denotes the size of /. For

any k > 0, the k-tractable class C(D,k) of D is defined
by C{D,k) = { H | D - w i d t h . . Thus, C{D,k)
collects the set of CSP instances which, for fixed k, are
polynornially solvable by using the strategy D. Typ­
ically, the polynomial above depends on the parameter
k. In particular, for each D there exists a function / such
that, for each A:, each instance can be trans­
formed in t ime into an equivalent acyclic
CSP instance (from where it follows that all problems in
C(D,k) are polynornially solvable).

Every DM D is complete w.r.t. W, i.e., US =
I. Note that , by our definitions, it holds

that JD-widthCW) = min
A l l major tractable classes based on restricted struc­

ture fit into this framework. In particular, we shall com­
pare the following decomposition methods:

• B i c o n n e c t e d C o m p o n e n t s (short: BICOMP)
[Freuder, 1985]. Any graph G = (V,E) can be decom­
posed into a pair (T, X), where T is a tree, and the la­
beling function X associates to each vertex of T a bi­
connected component of G (a component which remains
connected after any one-vertex removal). The bicon­
nected width of a hypergraph H, denoted by BIC0MP-
w id th (H) , is the maximum number of vertices over the
biconnected components of the primal graph of H..

• Cyc l e C u t s e t (short: CUTSET) [Dechter, 1992]. A
cycle cutset of a hypergraph H is a set S var(H)
such that the subhypergraph of H induced by var(H) -~
S is acyclic. The CUTSET width of H is the minimum
cardinality over al l its possible cycle cutsets.

• T ree C l u s t e r i n g (short: TCLUSTER) [Dechter and
Pearl, 1989]. The tree clustering method is based on
a tr iangulation algori thm which transforms the primal
graph G = (Vr, E) of any CSP instance I into a chordal
graph . The maximal cliques of are then used to
build the constraint scopes of an acyclic CSP /' equiv­
alent to /. The tree-clustering width (short: TCLUSTER
width) of is 1 if is an acyclic hypergraph; oth­
erwise it is equal to the maximum cardinality over the
cliques of the chordal graph

• T r e e w i d t h (TREEWIDTH) [Robertson and Seymour,
1986]. We omit a formal definition of graph treewidth
here. The TREEWIDTH of a hypergraph H is the treewidth
of its pr imal graph plus one. As pointed out below,
TREEWIDTH and TCLUSTER are two equivalent methods.

• H i n g e D e c o m p o s i t i o n s (short: HINGE) [Gyssens
et a/., 1994; Gyssens and Paredaens, 1984], Let H be a
hypergraph, and let V var('H) be a set of variables and
X,Y ' var(H). X is [Vr]-adjacent to Y if there exists
an edge h _ edges(H) such that {X,Y} {h - V). A
[V]-path from X to Y is a sequence X = . , . . . , =
Y of variables such that: Xi is [V]-adjacent to . , for
each i [0...l-1]. A set W var(H) of variables is
[V']-connected if W there is a [V]-path from
X to Y. A [V]-component is a maximal [V]-connected
non-empty set of variables W (var(H) — V). For any

GOTTLOB, LEONE, A N D SCARCELLO 395

[V1-component C, let edges(C) = edges

Let H HS and let H be either edges(H) or a proper
subset of edges(H) containing at least two edges. Let
C\, .., be the connected -components of H.
Then, H is a hinge if, for i = l , . . . , m , there exists an
edge H such that var(edges \
A hinge is minimal if it does not contain any other hinge.
(Our definition of hinge is equivalent to the original one
in [Gyssens et a/., 1994; Gyssens and Paredaens, 1984].)

A hinge-decomposition of H is a tree T such that all the
following conditions hold: (1) the vertices of T are min i ­
mal hinges of H; (2) each edge in edges(H) is contained
in at least one vertex of T; (3) two adjacent vertices
A and D of T share precisely one edge L edges(H)\
moreover, L consists exactly of the variables shared by
A and . (4) the variables
of H shared by two vertices of T are entirely contained
wi th in each vertex on their connecting path in T.

The size (i.e., the cardinali ty) of the largest vertex of
T is called the degree of cyclicity of H. This is precisely
what we call here the HINGE width of H. It was shown in
[Gyssens and Paredaens, 1984] that for any CSP instance
/, the HINGE wid th of H1 is the cardinali ty of the largest
minimal hinge of

• H i n g e D e c o m p o s i t i o n + T ree C l u s t e r i n g (short:
[Gyssens et a/., 1994]. It has been

shown [Gyssens et a/., 1994] that the minimal hinges
of a hypergraph can be further decomposed by means
of the tr iangulat ion technique of the above-described
tree-clustering method. This leads to the
method. Let T = (N, E) be a hinge tree of a hypergraph
H. For any hinge H N\ let w(H) be the min imum
between the cardinali ty of H and the TCLUSTER width of
the hypergraph (var(H), H). T h e w i d t h o f
T i s . Define t h e w i d t h o f
H as the min imum HINGETCLUSTER w id th over all its hinge
decompositions.

For each of the above decomposition methods D it was
shown that for any fixed k, given a CSP instance /, de­
ciding whether a hypergraph has D-width
is feasible in polynomial t ime and that solving CSPs
whose associated hypergraph is of width A: can be
done in polynomial t ime. In part icular, D consists of
two phases. Given a CSP instance /, the (A:-bounded)
D-width w of along w i th a corresponding decompo­
sition is first computed. Explo i t ing this decomposition,
I is then solved in t ime (for most meth­
ods this phase consists of the solution of an acyclic CSP
instance equivalent to I).

The cost of the first phase is independent on the con­
straint relations of /; in fact, it is , where

> i - i f t

is the size of the hypergraph , and are two
constants relative to the method D for
the methods above). Observe also that computing the
D-width w of a hypergraph in general (i.e., wi thout the
bound w k:) is NP-hard for most methods; while it is
polynomial for HINGE, and it is even linear for BICOMP.

Further interesting methods that do not explicit ly gen­
eralize acyclic hypergraphs are based on a notion of width
as used in [Freuder, 1982; 1985]. If C is a tota l order­
ing of the vertices of a graph G = (V, E), then the C-
wid th of G is defined by wc(G) = maxvev |{ {v,w} €
E s.t. w C v}\. The wid th of G is the min imum of all
C-widths over all possible tota l orderings C of V. For
each fixed constant A:, it can be determined in polyno­
mial t ime whether a graph is of w id th k. [Freuder, 1982]
observed that many natural ly arising CSPs are of very
low wid th . Note that bounded wid th in this sense is a
structural property. The fol lowing theorem shows that
bounded wid th alone does not entail tractabi l i ty.

T h e o r e m 3.1 Constraint solvability remains NP-
complete even if restricted to CSPs whose primal graph
has width bounded by 4.

P r o o f . 3COL remains NP-complete even for graphs of
degree 4 (cf. [Garey and Johnson, 1979]). Such graphs,
however, have w id th < 4. The theorem follows by the
well-known natural encoding of 3COL as a CSP. |

Freuder showed that a CSP of width A: whose rela­
tions enjoy the property of k' -consistency, where K;' > A:,
can be solved in a backtrack-free manner, and thus in
polynomial t ime [Freuder, 1982; 1985].

[Dechter and Pearl, 1988] consequently introduce the
notion of induced width w* which is - roughly the
smallest w id th k of any graph G' obtained by tr iangu­
lation methods from the pr imal graph G of a CSP such
that G' ensures k 4- 1-consistency. Graphs having in­
duced wid th < A: can be also characterized as partial
k-trees [Freuder, 1990] or, equivalently, as graphs having
tree width < k [Arnborg et a/., 1991]. It follows that ,
for fixed AT, checking whether w* < k is feasible in linear
t ime [Bodlaender, 1997]. If w* is bounded by a constant,
a CSP is solvable in polynomial t ime. The approach to
CSPs based on w* is referred to as the w*-Tractability
method [Dechter, 1992]. Note that this method is im­
pl ici t ly based on hypergraph acyclicity, given that the
used tr iangulat ion methods enforce chordality of the re­
sult ing graph G' and thus acyclicity of the correspond­
ing hypergraph. It was noted [Dechter and Pearl, 1989;
Dechter, 1992] that , for any given CSP instance /,
TCLUSTER-width(W/) = w*(Hj) + 1.

4 H y p e r t r e e Decompos i t i ons of CSPs
A new class of tractable conjunctive queries, which gen­
eralizes the class of acyclic queries, has been recently
identified [Gottlob et a/., 1999]. Deciding whether a
given query belongs to this class is polynomial time fea­
sible and even highly parallelizable. In this section, we
first generalize this notion to the wider framework of hy­
pergraphs, and then show how to employ this notion in
order to define a new decomposition method we will refer
to as HYPERTREE.

A hypertree for a hypergraph H is a triple (T, x ,A) ,
where T = (N , E) is a rooted tree, and X and A are
labeling functions which associate to each vertex p E N

396 CONSTRAINT SATISFACTION

Figure 1: A 2-width hypertree decomposition of H1

E x a m p l e 4.2 Consider the following constraint, scopes:

Let H1 be their corresponding hypergraph. is clearly
cyclic, and thus (as only acyclic hyper-
graphs have hypertree width 1). Figure 1 shows a (com­
plete) hypertree decomposition of having width 2,
hence

It is easy to see that the acyclic CSPs are precisely the
CSPs of hypertree wid th one.

We say that a CSP instance / has A;-bounded
hypertree-width if , where is the hyper-
graph associated to /. From the results in [Gottlob et

a/., 1999], it follows that A;-bounded hypertree-width is
efficiently decidable, and that a hypertree decomposition
of width k can be efficiently computed (if any).

We next show that any CSP instance / is effi­
ciently solvable, given a k-bounded complete hypertree-
decomposition HD of H1. To this end, we define an
acyclic CSP instance which is equivalent to / and whose
size is polynomially bounded by the size of /.

For each vertex p of the decomposition HD, we define
a new constraint scope whose associated constraint rela­
t ion is the projection on X(p) of the jo in of the relations
in X(p). This way, we obtain a join-tree of an acyclic
hypergraph corresponds to a new CSP instance
/' over a set of constraint relations of size i , where
n is the input size (i.e., n = \1\) and k is the width
of the hypertree decomposition HD. By construction,
/' is an acyclic CSP, and we can easily show that it is
equivalent to the input CSP instance L Thus, all the
efficient techniques available for acyclic CSP instances
can be employed for the evaluation of / ' , and hence of 7.

T h e o r e m 4.3 Given a CSP I and a k-width hypertree
decomposition of , I is solvable in =
0(nk logn) time, where n is the size of I.

5 Comparison Cr i ter ia
For comparing decomposition methods we introduce the

is sufficient to exhibit a class of hypergraphs contained
i n some but i n n o | for " . In tu­
itively, means that at least on some class of
CSP instances, outperforms D2.

i f a n d . I n this case w e
say that D2 strongly generalizes

Mathematically, is a preorder, i.e., it is reflexive,
transitive but not antisymmetric. We say that
equivalent to , denoted , , if both _
and "~ "'" hold.

The decomposition methods D\ and D2 are strongly
incomparable if both and . Note that
if and are strongly incomparable, then they are
also incomparable w.r.t. the relations and

6 Comparison Results
Figure 2 shows a representation of the hierarchy of DMs
determined by the relation. Each element of the hi­
erarchy represents a D M , apart from that containing
Tree Clustering, w*, and Treewidth which are grouped
together because they are -equivalent as easily follows
from the observations in Section 3.

T h e o r e m 6.1 For each pair and D2 of decompo­
sitions methods represented in Figure 2, the following
holds:

GOTTLOB. LEONE, AND SCARCELLO 397

• There is a directed path from
i.e., iff D2 strongly generalizes D1.

• D1 and D2 are not linked by any directed path iff
they are strongly incomparable.

Hence, Fig. 2 gives a complete picture of the relation-
ships holding among the different methods.

Figure 2: Constraint Tractabi l i ty Hierarchy

Below we sketch a proof of Theorem 6.1. For space
reasons, we report only succinct versions of selected
proofs. Detailed proofs of all results are available in the
ful l version of this paper [Gott lob et a/., 1999b].

For any n > 1 and m > 0, let Circle(n,m) be the hy-
pergraph having n edges { h 1 , . . . , hn} defined as follows:

For m = 1, Circlc{n, 1) is a graph consisting of a simple
cycle w i th n edges (like a circle). Note that , for any
n > 1 and m > 0, Circle(n,m) has hypertree width
2; a 2-width hypertree decomposition of Circle(n, ra) is
shown in Figure 3. Thus,
C(HYPERTREE, 2)

L e m m a 6.3 TCLUSTER HYPERTREE.

P r o o f . (TCLUSTER HYPERTREE.) Let H = (V, H) be a
hypergraph, and be the result of the application
of the tree-clustering method on H, where T = (N,E)
is a tree, and : is a labeling function which
assigns to each vertex of T a set of variables of H. For
any m the set of variables) corresponds to a
maximal clique identified by the tree-clustering method.

From , we define a complete hypertree decom­
position HD = (T , x , A) having the same tree T as the
output of the tree clustering method. The labelings X
and are defined according to the following procedure.

We have that HD is a complete hypertree decompo-
sition of H, and its HYPERTREE width is smaller than or
equal to the TCLUSTER-width of H.
(HYPERTREE TCLUSTER.) Let
1}. For any ra, > 1, the pr imal graph G of Circle(3,m) is
a clique of 3ra variables. Thus, G does not need any t r i -
angulation, because it is a chordal graph. The TCLUSTER-
width of Circle(3,m) is clearly 3ra; while its hypertree
w id th is 2. Hence, for any (TCLUSTER,k),
whereas __ I

L e m m a 6.4 HINGE and TCLUSTER are strongly incom­
parable.

cause all these graphs can be tr iangulated in a way that
their maximal cliques have cardinal i ty 3 at most. |

398 CONSTRAINT SATISFACTION

Interest ingly, even the combinat ion of TCLUSTER
w i t h HINGE is s t rongly generalized by the hypertree-
decomposi t ion me thod .

L e m m a 6.5

P r o o f . The proof of _ HYPERTREE is very
s imi lar to t ha t of Lemma 6.3, except tha t the la-
belings must be in i t ia l ized in a suitable way (instead

7 B inary CSPs
On b inary constra int networks, where the constraints
relat ions have ar i t y two, the differences among the de­
composi t ion strategies h ighl ighted in Section 6 become
less evident. Indeed, bound ing the arit ies of the con­
s t ra in t relat ions, the k- t ractable classes of some decom­
posi t ion strategies collapse. In par t icu lar , as shown in
the fu l l version of th is paper [Got t lob et ai, 1999b], on
b inary constraints networks,
and ho ld . The relat ion­
ships among the other decomposi t ion methods remain
the same as for the general case (F ig . 2).

To evident iate the differences of the above decomposi­
t ion strategies on the domain of b inary CSPs, we can
compare their respective w id ths . For each discussed
decomposi t ion method D, any CSP instance / is solv­
able in t ime , once the D-width w of

along w i t h a corresponding decomposit ion have been
computed, as noted in Section 3. Thus, the D-width is
a measure of the efficiency of a decomposit ion method:
the smaller the , the more efficient the
appl icat ion of strategy D to / .

T h e o r e m 7.1

Acknowledgments
Research supported by FWF (Austrian Science Funds)
under the pro ject Z29- INF and by the CNR (Italian Na­
tional Research Council), under grant n.203.15.07.

References
[Arnborg et ai, 1991] S. Arnborg, J. Lagergren, and D.

Seese. Problems easy for tree-decomposable graphs. J. of
Algorithms, 12:308 340, 1991.

[Beeri et ai, 1983] C. Beeri, R. Fagin, D. Maier, and M. Yan-
nakakis. On the desirability of acyclic database schemes.
Journal of the ACM, 30(3):479 513, July, 1983.

[Bernstein and Goodman, 1981] R A . Bernstein, and N.
Goodman. The power of natural semijoins. SI AM Jour­
nal on Computing, 10(4):751 771, 1981.

[Bibel, 1988] W. Bibel. Constraint Satisfaction from a De­
ductive Viewpoint. AIJ, 35, 401-413, 1988.

[Bodlaender, 1997] H.L. Bodlaender. Treewidth: Algori th­
mic Techniques and Results. In Proc. of MFCS'97,
Bratislava. LNCS 1295, Springer, pp. 19-36, 1997.

[Dechter, 1992] R. Dechter. Constraint Networks. In Ency­
clopedia of AI, 2nd ed., Wiley and Sons, pp. 276-285,1992.

[Dechter and Pearl, 1988] R. Dechter and J. Pearl. Network
based heuristics for CSPs. AIJ, 34(1):1 38, 1988.

[Dechter and Pearl, 1989] R. Dechter and J. Pearl. Tree clus­
tering for constraint networks. AIJ, 38:353-366, 1989.

[Freuder, 1982] E.G. Freuder. A sufficient condition for
backtrack-free search. J ACM, 29(1):24~32, 1982.

[Freuder, 1985] E.G. Freuder. A sufficient condition for
backtrack-bounded search. J ACM, 32(4):755 761, 1985.

[Freuder, 1990] E.C. Freuder. Complexity of K-Tree Struc­
tured CSPs. Proc. of AAAI'90, 1990.

[Garey and Johnson, 1979] M R . Garey and D.S. Johnson.
Computers and Intractability. A Guide to the Theory of
NP-completeness. Freeman and Comp., NY, USA, 1979.

[Gottlob et ai, 1998] G. Gott lob, N. Leone, and F. Scarcello.
The Complexity of Acyclic Conjunctive Queries, in Proc.
of FOCS'98, pp.706 715, Palo Al to, CA, 1998.

[Gottlob et al, 1999] G. Gottlob, N. Leone, and F. Scar-
cello. "Hypertree Decompositions and Tractable Queries,"
in Proc of PODS'99, Philadelphia, May, 1999.

[Gottlob et a/., 1999b] G. Gott lob, N. Leone, and
F. Scarcello. ''A Comparison of Structural CSP
Decomposition Methods," Tech. Rep. D B A I -
TR-99/25, currently available on the web as:
www.dbai . tuwien.ac.at /s ta f f /got t lob/CSP-decomp.ps

[Gyssens et ai, 1994] M. Gyssens, P. Jeavons, and D. Co­
hen. Decomposing constraint satisfaction problems using
database techniques. AIJ, 66:57-89, 1994.

[Gyssens and Paredaens, 1984] M. Gyssens and J.
Paredaens. A Decomposition Methodology for Cyclic
Databases. In Advances in Database Theory, volume 2,
pp. 85-122. Plenum Press New York, NY, 1984.

[Jeavons et al, 1997] P. Jeavons, D. Cohen, and M. Gyssens.
Closure Properties of Constraints. J ACM, 44(4), 1997.

[Maier, 1986] D. Maier, The theory of relational databases.
Computer Science Press, Rockville, M D , 1986.

[Pearson and Jeavons, 1997] J. Pearson and P.G. Jeavons.
A Survey of Tractable Constraint Satisfaction Problems,
CSD-TR-97-15, Royal Holloway Univ. of London, 1997.

[Robertson and Seymour, 1986] N. Robertson and P.D. Sey­
mour. Graph Minors I I . Algorithmic aspects of tree width.
Journal of Algorithms, 7:309-322, 1986.

[Seidel, 1981] R. Seidel. A new method for solving constraint
satisfaction problems. In Proc. of IJCAI'81, 1981.

GOTTLOB. LEONE, AND SCARCELLO 399

http://www.dbai.tuwien.ac.at/staff/gottlob/CSP-decomp.ps

