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Abstract 
Diagrammatic reasoning comprises phenomena 
that range from the so-called "free-rides" (e.g. 
almost immediate understanding of visually 
perceived relationships) to conventions about 
tokens. Such reasoning must involve cognitive 
processes that are highly perceptual in content. 
In the domain of mathematical proofs where di­
agrams have had a long history, we have an op­
portunity to investigate in detail and in a con­
trolled setting the various perceptual devices 
and cognitive processes that facilitate diagram-
matically based arguments. This paper contin-
ues recent work by examining two kinds of dia-

grammatic proofs, called Categories 1 and 3 by 
Jamnik, et. al. 97], the first being one in which 

generalization of a diagram instance is implied, 
and the second being one in which an infinite 
completion is represented by an ellipsis. We 
provide explanations of why these proofs work, 
a semantics for ellipses, and conjectures about 
the underlying cognitive processes that seem to 
resonate with such proofs. 

1 Introduction 
The use of diagrams as reasoning aids has a long his-
tory, but the serious investigation of what is involved in 
such reasoning is recent. Valuable insights into mixed-
mode or heterogeneous reasoning in which both text and 
diagrams play essential roles in the instruction of mathe­
matical logic were obtained from the Hyperproof system 
of Barwise and Etchemendy [Barwise and Etchemendy 
95]. Shin [Shin 94] undertook a detailed investigation of 
how far diagrams and diagrammatic constructions can 
be used in set theory as an alternative to traditional 
textual expositions. Sowa [Sowa 84] and the conceptual 
graph community advocate a diagrammatic approach to 
knowledge representation and computation. There are 
also the long-established ER diagrams in databases. For 
more diverse AI applications, the collection of papers 
[Glasgow, et. al. 95] is representative of the effort to un­
derstand what constitutes diagrammatic reasoning and 

the strengths and weaknesses of this mode. Of particu­
lar interest is the idea of "free rides" (see [Shimojima 96] 
and [Gurr 98] for details), e.g. the processing and un­
derstanding of diagrams that yield facts, relationships, 
etc. with apparently little effort on the part of humans. 
Not much of this is well-understood because of the com­
plexity of the tasks and the difficulty of designing ex­
periments to test theories. However, in the specialised 
domain of mathematical proofs there is the intriguing 
possibility that the tasks are simpler to understand and 
experiments may be subject to control protocols. This 
paper should be read from this perspective. We axe for­
tunate that Nelsen [Nelsen 93] has compiled a compre­
hensive collection of such proofs. Indeed, Jamnik, et. al. 
[Jamnik, et. al. 97] took a number of Nelsen's examples 
as challenges that required explanation. 

We believe that explanation of the efficacy of a dia­
grammatic proof of a mathematical theorem has at least 
two obligations. The first obligation is to give an account 
- using standard mathematics, meta-mathematics, logic 
or computation theory - of why that mode of reasoning 
is sound. The second obligation is to adduce - or, in the 
absence of an accepted theory, to conjecture - credible 
cognitive processes for the "free rides" involved. 

The main aim of this paper is to fulfill these obliga­
tions for the chosen examples, and in so doing, pave the 
way for discovering the principles behind the mechanical 
generation and/or verification of diagrammatic proofs. 
Such principles presume an understanding of the afore­
mentioned cognitive processes. 

2 Types of Diagrammatic Proofs 
Jamnik, et. al., [Jamnik, et. al. 97] have catego­
rized diagrammatic proofs of mathematical theorems ac­
cording to certain characteristics. They identified three 
categories. In Category 2 which they examined in re­
cent papers (see also [Jamnik, et. al. 98]), the proofs 
are schematic. While not requiring induction for the 
particular proof, one is required to generalize on the 
size of the diagram. Their central result was to show 
how a constructive w-rule could be invoked to do this. 
The paradigmatic example is the sum of odd numbers 
which Nelsen [op. cit.,p.71] attributes to Nichomachus of 
Gerasa. As we shall be concerned only with Categories 
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1 and 3 in this paper, we reproduce their descriptions 
from Jamnik, et. al. [Jamnik, et. al. 97]. 

Category 1 Proofs that are not schematic: there is no 
need for induction to prove the general case. Simple 
geometric manipulations of a diagram prove the in­
dividual case. At the end, generalisation is required 
to show that this proof wil l hold for all [parameters]. 
Example theorem: Pythagoras Theorem. 

Category 3 Proofs that are inherently inductive: for 
each individual concrete case of the diagram they 
need an inductive step to prove the theorem. Every 
particular instance of a theorem, when represented 
as a diagram, requires the use of abstractions to 
represent infinity. Thus, the constructive w;-rule is 
not applicable here. Example: Geometric Sum. 

In this paper we initiate an examination of both these 
categories. 

3 Category 1 Proofs 
Category 1 proofs somehow require generalization from 
a specific collection of diagrams. The diagrammatic 
proof of Pythagoras Theorem, attributed by Nelsen [op. 
cit.,p.3] to the unknown author of the Chou Pei Suan 
Ching, is reproduced as the two diagrams A(a,b) and 
B(a,b) in Figure 1. The dimensions a and b are the 
lengths of the two sides of the four right-angled congru­
ent triangles with hypotenuse c, a dependent length. In 
A(a, b), the smaller square embedded in the larger one 
has side c, so its area is c2. It is also the residual re­
gion after the four surrounding triangles axe excluded. 
In B(a,b) we have a transformed version, via diagram­
matic operations T, of A(a, b) in which the triangles have 
been moved to the positions shown. The residual region 
outside the triangles, which must have the same area as 
the one before, are now the two small squares with areas 
a2 and b2. This proves the theorem for the specific case 
of these linear dimensions a, b and c. 

Figure 1: Diagrammatic proofs of Pythagoras: original 
and its perturbed version 

We propose two solutions to the problem of general­
ization using this example as a paradigm. The first relies 
on a notion of continuity, while the second is the analog 
of a powerful meta-theorem in logic. Both of these have 

f>recursors in the recent discussion by Hayes and Laforte 
Hayes and Laforte 98]. 

The continuity argument has two parts. The first is 
illustrated in Figure 1 via two additional diagrams A(a+ 

. What is argued here is that the 
second two diagrams are perturbed versions, via a map 

, of the first two, but the same transformation T 
relation holds. In fact, this can be made precise by saying 
that the diagrams commute as indicated. This argument 
shows that the relative ratio a:b is not material, but does 
not meet the criticism that an absolute magnitude for, 
say a, is used in the diagram. To meet this we need the 
second part, which is a scaling argument. That is, to the 
A(a,b) and B(a,b) diagrams and the operations T, we 
have a scaled counterpart with 
the same operations. 

The second solution, analogous to logic, is the dia­
grammatic version of the theorem called "generalization 
on constants", also known as the Theorem on Constants 
(TOC for short). One statement of it (see, e.g. [Shoen-
field 67]) is as follows. Suppose T is a set of formulas 
and a(x) is a formula with free variable x, and the con­
stant d does not appear in any formula in T. Further, 
suppose , where the notation signifies 
the substitution of d for x in . Then we may infer 
,, and hence 

The discussion below is an outline of how the TOC is 
applied. The details require attention to the admissible 
operations on, and inferences from, diagrams; these we 
postpone to a later paper, but see [Hayes and Laforte 
98] for some current insights. 

The relevance of the TOC as a response to specificity 
of the diagrammatic proof of the Pythagoras Theorem 
lies in the implicit hypotheses T of the proof. We enu­
merate some members of this T: first, there are the 
Euclidean geometric propositions used, e.g., properties 
of triangle congruence, the sum of angles of any trian­
gle being 180 degrees, properties of squares, invariance 
of shapes and areas under rotations and translations. 
There are also some algebraic identities involving addi­
tions and subtraction of areas, and formulas about the 
area of any square given the length of its side. None 
of these mention the constants a, b and c. The con­
struction of diagram A(a,6), and the subsequent opera­
tions (call them T) to transform it to diagram B(a,b), 
are the steps in the diagrammatic proof. The conclu­
sion of the proof is , in symbolic notation 

where none of a, 6 or c occur in T. Here 

is the diagrammatic analog of textual proof (i.e., ) 
in diagrams, principally diagrammatic operations sup­
plemented by reasoning about invariants like areas, etc., 
the details of which we wil l elucidate in a future paper. 
The TOC now authorizes generalization of the conclu­
sion to arbitrary values for these constants. 

These two responses to Category 1 diagram specificity 
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extend to many other proofs in which ostensibly par­
ticular dimensions are named, e.g., Nelsen's own dia­
grammatic proof [op. cit.,p.22] of Diophantus* "Sum of 
Squares Identity". 

4 Category 3 Proofs 
The main feature of Category 3 proofs is an ellipsis, the 
classical "• • •" notation used in suggesting the infinite 
completion of, say, a series such as • • •. This 
ellipsis is used in Category 3 diagrams to similarly sug­
gest that the reasoning applied so far to a finite diagram 
can be successfully completed to infinity by some implicit 
induction. The most well-known example of this is the 
diagrammatic proof of the sum of the geometric series 

• •, attributed by Nelsen [op. cit.,p.ll8] 
to Page. It is reproduced here as diagram A in Figure 2. 

We will now provide justifications for the diagram­
matic steps in the proof, and a semantics for the ellipsis 
in the diagram. The key idea is to view the completed 
square as the limit of a sequence of constructions, each of 
which is a "monotonic" and "Markovian" addition to its 
predecessor. It is monotonic because each construction 
stage adds new information that is distinctly represented 
without retracting old information. It is Markovian be­
cause only the most recent piece of information (con­
struction) is used to construct the next one. The usual 
diagram with its ellipsis notation is reproduced as dia­
gram A in the figure. The diagram B corresponds to the 
sum . The next diagram C corresponds 

to the sum where 
S2 abbreviates the second grouping of summands. Each 
group is colored differently for ease of viewing. Pro­
ceeding likewise, the diagram D corresponds to the sum 

4.1 Mean ing o f t he El l ipsis 
This subsection assumes some mathematical background 
that can be found in standard texts such as [Simmons 
84]. Let us denote by . the area corresponding to the 
summand , i.e., each is an L-shaped region typi­
cally indicated by the differently colored pieces in Fig­
ure 2. The regions can be placed in the first quadrant 
of co-ordinate axes so that the initial A\ diagram (B in 
Figure 2) has the origin at its left bottom corner, and 
the X- and Y-edges have length 1. The second region 
will have its left bottom corner at the point (1/2,1/2), 
and edge lengths 1/2. With this convention, each L-
piece in the later pictures can be described as an affine 
transformation of the preceding L-piece. 

Identifying the L-piece with the co-ordinates of its 
points, this transformation T can be specified as follows, 
where is the (co-ordinates of the point at the) left 
bottom corner of 

The diagram D in Figure 2 can then be denoted as 
a union which by the definition of the 
affine transformation can equivalently be written as (IU 

, where I is the identity operator. Using this 
notation as a basis we can express the progression from 
one diagram to the next as a larger transformation F as 
follows: 

• 

This is the formal expression of the geometric intuition 
that the next diagram in the sequence is obtained by 
gluing a smaller (scaled and translated) L-shape onto it 
at the appropriate corner, making explicit its Markovian 
character. 

There is an obvious way to describe the difference be­
tween, say, diagrams B and C, which is just the addi­
tional L-piece added to B to yield C. This way to 
view the difference between two diagrams by observing 
the difference in regions they occupy is a special case of 
the measure of the symmetric difference between two 
sets . It is well-known 
that this is a metric. Thus, the collection of diagrams is 
a metric space under the d metric. It is therefore possible 
to consider sequences of such diagrams and ask if such 
sequences converge under this metric. We have observed 
in examples of proofs involving ellipses, the collection of 
diagrams has been broad enough to guarantee that con­
vergent sequences have a limit that is also a diagram in 
the collection. Formally this says that the diagram space 
is a complete metric space. 

A map on a metric space U with metric d 
is a contraction if for all 
for some k < 1. The Banach Fixed Point (BFP) theorem 
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says that a contraction G in a complete metric space has 
a unique fixed point, i.e. there is one, and only one, 
such that . Moreover, this fixed point can be 
constructively obtained from an arbitrary init ial point Y 
by repeated application of G starting from Y, i.e., = 

This theorem cannot be directly applied 
to explicate the efficacy of the diagrammatic proof, but 
a weaker form of it is relevant. The weaker statement 
(WFP) stil l relies on G being a contraction on a sub-
space • • •, consisting of the terms in the sequence 
generated by G starting from a given initial point 
Such a sequence wil l stil l converge to a fixed point, a re­
sult that follows directly from the standard proof of the 
BFP theorem. 

Observat ion 1 The transformation F defined above on 
the space of T-generated L-shapes is a contraction map. 
Hence it has a unique fixed point, which is the square A 
in Figure 2. 

Figure 3: Summing overlays is perceptually difficult. 

The fact that the general form of the BFP is not 
helpful in explicating the visual persuasiveness of this 
diagrammatic proof suggests some cognitive hypotheses 
that cry out for testing. To explain the hypotheses, let 
us examine the transformation F more closely. Suppose 
the initial diagram is not a unit edge L-shape but a unit 
square instead. The underlying transformation T as de­
fined before wil l now work on this square to produce a 
scaled version of i t , then translate this version so that 
its top right corner coincides with that of the original 
square. Figure 3 shows the first three members of this 
sequence. Now, if this is intended to represent the sum 
of the geometric series • • •, we have to re-
define the transformation F to be not the union of the 
diagram sequence as before, but the sum of the overlaid 
areas, so that multiple overlays are counted area-wise 
as many times as they occur. Wi th this re-definition 
the WFP theorem wil l stil l hold, so convergence is guar­
anteed. But unlike Figure 2, the corresponding visual 
task is no longer easy. Indeed, the area addition at each 
stage in Figure 3 is not monotonically distinct in terms 
of representation, as each new piece intersects prior pe-
ices. The crucial difference from Figure 2 appears to be 

this - the set unions for the L-shaped sequences in Fig­
ure 2 are disjoint unions, that moreover are contiguous, 
so that sums of areas are easy to see. We therefore con­
jecture that disjoint unions, especially contiguous ones, 
are free ride features. 

There is an important point we note about the choice 
of the initial shape fed into the constructor T. In Figure 
2 we chose an L-shape. We could have conceivably cho­
sen, say, the left tall rectangle in diagram B. If we did 
that, then the second stage will be the addition of the 
right square in diagram B. This leads to a more com­
plex constructor T which has to be decomposed into two 
stages - it is no longer Markovian in the strict sense, but 
is nevertheless still finite memory. In essence, the choice 
boils down to how long a preceding sequece is needed to 
define the next piece(s) of the sequence. 

So that we can use "• • •" as a meta-notation in our 
description of ellipses, it is convenient to adopt the al­
ternative notation &c to denote the ending ellipses sig­
nifying continuation to the l imit in both diagrams and 
sequential expressions. Wi th these remarks, we propose 
that the the semantics of ellipses be as follows. 

De f in i t i on 1 We interpret the meaning of the ellipsis 
&c in the diagram kc to be a constructor func­
tion application written in "suffix form" with argument 
the diagram and whose value is the diagram 

. More generally, &c denotes a function 
&c defined as follows: the diagram &c has 
the intended meaning &c which evaluates 
to the diagram F ' 

This has the effect of making &c denote a "lazy ex­
pander" of the finite diagram so far constructed. A more 
formal approach to the semantics of &c appeals to the 
notion of recursive domains [Stoy 77] in which the diar 
grams are the solutions (up to isomorphism) of the do­
main equation 

and the "completed" (infinite) diagram, i.e., the square 
in this case, is the least upper bound of these solutions. 
Here the function end extracts the last component of the 
instance of is the ordered union operation. 

4.2 Const ruc t ion Invar iants 
Another example of a Category 3 proof, attributed 
by Nelsen [op. cit.,p,121] to Ajose, is shown in Fig­
ure 4. The diagram A in it is the proof of the sum 

Diagrams B, C and D 
show the analogs of the construction leading to diagram 
A as was explained for the proof in Figure 2, with the 
L-shapes as before. As the semantics for the ellipsis &c 
is similar to that above, we wil l omit i t . However, in this 
proof a new feature is present that requires justification. 
As can be seen from the diagrams B,C and D, we have 
at each stage to "see" that the colored area is 1/3 of 
the total area (L-shapes) constructed so far, and that 
eventually the total area is 1. That the eventual area is 
1 is reached exactly as in the proof in Figure 2. How 
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do we account for the other piece of inference - that the 
colored area is always 1/3 of the total? We propose that 
the underlying idea is a construction invariant This is 
closely related to the idea of a loop invariant in the se­
mantics of programming languages. There, a first-order 
formula is a loop invariant in loop L if its t ruth at the 
point of entry into the loop guarantees its t ruth at the 
end of i t , denoted Likewise, in the present 
construction, let [ ~ stand for the statement: "col­
ored area = 1/3 total area". Then we have the visual 
proof rule: 

, where F is the one-step constructor 
above. 

The visual proof rule is a formal statement of the con­
jecture that such uniform invariants across uniform con­
structions are inductive "free rides". In other words, 
such proof rules capture the essence of cognitive induc­
tion in diagram completions or fixed points. 

B 

D 

Construction steps in the proof of the sum 

5 Schroder-Bernstein Theorem 
As yet another instance of a Category 3 type proof 
which illustrates the ellipsis and construction invariant 
features, we wil l now examine the diagrammatic aid to 
the proof of the Schroder-Bernstein theorem in set the­
ory [Kamke 50]. This theorem states that if there is an 
injection from set 5 into set U and also an injection X 
from set U into set 5, then the sets have the same car­
dinality, i.e., there is a bijection n between them. The 
usual proof uses a "back-and-forth" argument, but there 
is a less well-known proof that establishes a (apparently 
stronger, but actually equivalent) statement which im­
plies the theorem, and is arguably easier to expound. 
This statement is as follows: If there is an injection 
from set S into a proper subset A1 of itself, then there 
is a bijection between S and all subsets such that 

It is this latter statement whose proof is 
usually accompanied by a diagram, the appeal to which 
is inessential only to the most experienced and sophisti­

cated of set theorists. A l l others (the authors included) 
appear to find the diagram indispensable. The use of this 
diagram further exhibits some of the properties discussed 
in the preceding sections, and invites similar conjectures. 

Figure 5 illustrates the reasoning steps. It is adapted 
from [Kamke 50]. The successive arguments are repre­
sented by different views of the same set, each view being 
a strip partitioned as shown. For instance, the original 
set S is (represented by) the first strip, with the labelled 
partitions having the following roles: A1 

is as above, being the assumed injective image subset of 
5, i.e. ; and is what is "left 
over". Now, the next strip has partitions and 

with the following roles: . - - ~ , 
and . The subsequent layers are interpreted 
likewise. 

The diagram I shows a way to decompose the set 5. 
It yields the equation -

. The diagram II shows a way to decom­
pose the set . It yields the equation 

. Then 
by aligning these equations as indicated in Figure 5, we 
see that the disjoint components are in one-to-one cor­
respondence with each other (bearing in mind that by 
assumption , thereby establishing the bi­
jection between 5 and S\ as required. 

What devices have been used in this appeal to the 
diagrams? First, the layout of the successive strips em­
phasized the disjoint components, much as in the proofs 
of the sums of series above. Second, the decompositions 
used the elliptical &c as above. Thi rd, the apparently 
textual alignment of the two decompositions were used 
to argue for extension of pairwise correspondences be­
tween components to the entire set union. We submit 
that the th i rd device is at least as much diagrammatic 
as it is textual, depending as it were on appeal to a linear 
layout and the elliptical &c for its "free ride" cogency. 
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We note in particular the implicit appeal to an in­
variant and a visual proof rule. Let stand for 
the statement: , where means a termwise 
1-1 correspondence between the two sequences S1 and 

Then we have the visual proof rule: 
, where F is the one-

step constructor for extending the partitions to the next 
layer. 

6 Conjectures for "free r ides" 
In the preceding analyses we suggested a number of fea­
tures of diagrams in mathematical proofs that seem to 
resonate with cognitive ease of processing. It is conve­
nient to summarize them here as challenges for controlled 
experiments. If validated, they can form the basis for 
the automation and generation of diagrammatic proof 
systems, and of related HCI designs for diagrammatic 
reasoning. Invalidation of any of them wil l prompt al­
ternatives, and certainly prevent some blind alleys from 
being pursued. Some diagrammatic features that facili­
tate proofs are conjectured to be: 

• Continuous transformations of proof constructions. 

• Disjoint unions or decompositions. 

• Contiguous pieces in these unions. 

• Monotone sequences of areas with a "Markovian" 
uniform rule that generates the next element from 
the last one. 

• Limits are upper or lower bounds of such sequences. 

• Simply shaped upper or lower bounds. 

• Contractive mappings with simple (see below) met-
rics like symmetric difference. 

• Ellipses represent implicit uniform constructions 
with lazy evaluation semantics. 

. Simply perceived relations between areas. 

• Relations true in the l imit are exactly those invari­
ant wi th respect to one step uniform (Markovian) 
constructions. 

We end this concluding section by remarking on met­
rics for sets. It would not have escaped the attention of 
readers familiar with work in fractals [Peitgen, et. al. 92] 
that diagrams such as Figures 2 and 4 are reminiscent of 
such recursively generated images. In fractal topology, 
the convergence metric normally used is the Hausdorff 
metric. We believe that this is not a "free ride" metric, 
and hence is not simple, for reasons that we wil l explain 
elsewhere. 
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