
Using a Cognitive Architecture to Plan Dialogs
for the Adaptive Explanation of Proofs

Armin Fiedler
FB Informatik, Universitat des Saarlandes

Postfach 15 11 50, D-66041 Saarbriicken, Germany
afiedlerQcs.uni-sb.de

Abstract
In order to generate high quality explanations
in technical or mathematical domains, the pre­
sentation must be adapted to the knowledge
of the intended audience. Current proof pre­
sentation systems only communicate proofs on
a fixed degree of abstraction independently of
the addressee's knowledge.
In this paper we propose an architecture for
an interactive proof explanation system, called
Prex. Based on the theory of human cognition
ACT-R., its dialog planner exploits a cognitive
model, in which both the user's knowledge and
his cognitive processes are modeled. By this
means, his cognitive states are traced during
the explanation. The explicit representation of
the user's cognitive states in ACT-R allows the
dialog planner to choose a degree of abstrac­
tion tailored to the user for each proof step to
be explained. Moreover, the system can revise
its assumptions about the user's knowledge and
react to his interact ions.

1 Introduct ion
A person who explains to another person a technical de­
vice or a logical line of reasoning adapts his explanations
to the addressee's knowledge. A computer program de-
signed to take over the explaining part, should also adopt
this principle.

Assorted systems take into account the intended audi­
ence's knowledge in the generation of explanations (see
e.g. [Cawsey, 1990; Paris, 1991; Wahlster et a/., 1993]).
Most of them adapt to the addressee by choosing be­
tween different discourse strategies. Since proofs are
inherently rich in inferences, the explanation of proofs
must also consider which inferences the audience can
make [Horacek, 1997; Zukerman and McConachy, 1993].
However, because of the constraints of the human mem­
ory, inferences are not chainable without costs. Ex­
plicit representation of the addressee's cognitive states
proves to be useful in choosing the information to con­
vey [Walker and Rainbow, 1994].

While a mathematician communicates a proof on a
level of abstraction that is tailored to the audience, state-
of-the-art proof presentation systems such as PROVERB

[Huang and Fiedler, 1997] verbalize proofs in a nearly
textbook-like style on a fixed degree of abstraction given
by the initial representation of the proof. Nevertheless,
PROVERB is not restricted to presentation on a certain
level of abstraction. Adaptation to the reader's knowl­
edge may still take place by providing the appropriate
level of abstraction in the init ial representation of the
proof.

Drawing on results from cognitive science, we are cur­
rently developing an interactive proof explanation sys­
tem, called Prex (for proof explainer). In this paper,
which extends the work reported in [Fiedler, 1998], we
propose an architecture for its dialog planner based on
the theory of human cognition ACT-R [Anderson and
Lebiere, 1998]. The latter explicitly represents the ad­
dressee's knowledge in a declarative memory and his cog­
nitive skills in procedural production rules. This cogni­
tive model enables the dialog planner to trace the ad­
dressee's cognitive states during the explanation. Hence,
for each proof step, it can choose as an appropriate ex­
planation its most abstract justification that is known
by the addressee. Moreover, the system can revise its
assumptions about the users knowledge and react to his
interactions.

The architecture of P.rex, which is sketched in Sec­
tion 3, is designed to allow for multimodal generation.
The dialog planner is described in detail in Section 4.
Since it is necessary to know some of the concepts in
ACT-R to understand the macroplanning process, the
cognitive architecture is first introduced in the next sec­
tion.

2 ACT-R: A Cognitive Architecture
In cognitive science several approaches are used to de­
scribe the functionality of the cognitive apparatus, e.g.
production systems, mental models or distributed neural
representations. Production systems that model human
cognition are called cognitive architectures. In this sec­
tion we describe the cognitive architecture ACT-R [An­
derson and Lebiere, 1998], which is well suited for user
adaptive explanation generation because of its conflict
resolution mechanism. Further examples for cognitive
architectures are SOAR [Newell, 1990] and EPIC [Meyer
and Kieras, 1997].

ACT-R. has two types of knowledge bases, or memo­
ries, to store permanent knowledge in: declarative and

358 COGNITIVE MODELING

procedural representations of knowledge are explicitly
separated into the declarative memory and the procedu­
ral production rule base, but are intimately connected.

Procedural knowledge is represented in production
rules (or simply: productions) whose conditions and ac­
tions are defined in terms of declarative structures. A
production can only apply if its conditions are satis­
fied by the knowledge currently available in the declara­
tive memory. An item in the declarative memory is an­
notated with an activation that influences its retrieval.
The application of a production modifies the declarative
memory, or it results in an observable event. The set of
applicable productions is called the conflict set. A con­
flict resolution heuristic derived from a rational analysis
of human cognition determines which production in the
conflict set will eventually be applied.

In order to allow for a goal-oriented behavior of the
system, ACT-R manages goals in a goal stack. The cur­
rent, goal is that on the top of the stack. Only produc­
tions that, match the current, goal are applicable.

2.1 Declarative Knowledge
Declarative knowledge is represented in terms of chunks
in the declarative memory. Below is an example
for a chunk encoding the fact that F C G, where
subse t - fac t is a concept and F and G are contextual
chunks associated to f actFsubsetG.

fact FsubaetG
isa subset-fact
se t l F
set2 G

Chunks are annotated with continuous activations
that influence their retrieval. The activation .Ai, of a
chunk Ci, consists of its base-level activation B, and the
weighted activations of contextual chunks. In Bi-, which
is defined such that it decreases logarithmically when Ci
is not used, ACT-R models the forgetting of declarative
knowledge. Note that the definition of the activation es­
tablishes a spreading activation to adjacent chunks, but.
not further; multi-link-spread is not supported.

The constraint on the capacity of the human work­
ing memory is approached by defining a retrieval thresh­
old r, where only those chunks Ci, can be matched whose
activation At is higher than T. Chunks with an activa-
tion less than r are considered as forgotten.

New declarative knowledge is acquired when a new
chunk is stored in the declarative memory, as is always
the case when a goal is popped from the goal stack. The
application of a production may also cause a new chunk
to be stored if required by the production's action part.

2.2 Procedural Knowledge
The operational knowledge of ACT-R is formalized in
terms of productions. Productions generally consist of a
condition part and an action part, and can be applied
if the condition part is fulfilled. In ACT-R both parts
are defined in terms of chunk patterns. The condition
is fulfilled if its first chunk pattern matches the current
goal and the remaining chunk patterns match chunks in
the declarative memory. An example for a product ion is

IF the current goal is to show that x £ S2 and it is known
that x E Si and S\ C S2

THEN conclude that x 6 #2 by the definition of C

Similar to the base-level activation of chunks, the
strength of a production is defined such that it decreases
logarithmically when the production is not used. The
time spent to match a production with a chunk depends
on the activation of the chunk.1 It is defined such that
it, is negative exponential to the sum of the activation of
the chunk and the strength of the production. Hence,
the higher the activation of the chunk and the strength
of the production, the faster the production matches the
chunk. Since the activation must, be greater than the
retrieval threshold r, r constrains the time maximally
available to match a production with a chunk.

The conflict resolution heuristic starts from assump­
tions on the probability P that the application of the
current production leads to the goal and on the costs
C of achieving that goal by this means. Moreover G is
the time maximally available to fulfill the goal. The net-
utility E of the application of a production is defined as

E = PG-G. (1)

We do not go into detail on how P, G and C are calcu­
lated. For the purposes of this paper, it is sufficient to
note that G only depends on the goal, but not on the
product ion.

To sum up, in ACT-R the choice of a production to
apply is as follows:

1. The conflict set is determined by testing the match
of the productions with the current goal.

2. The production p with the highest uti l i ty is chosen.
3. The actual instantiation of p is determined via the

activations of the corresponding chunks. If no in­
stantiation is possible (because of r) , p is removed
from the conflict set and the algorithm resumes in
step 2. otherwise the instantiation of p is applied.

ACT-R provides a learning mechanism, called produc­
tion compilation, which allows for the learning of new
productions. We are currently exploring this mechanism
for its uti l i ty for the explanation of proofs.

3 The Architecture of P. rex
P. rex is planned as a generic explanation system that can
be connected to different theorem provers. It, adopts the
following features of the interactive proof development
environment ΩMEGA [Benzmuller et at., 1997]:

• Mathematical theories are organized in a hierarchi­
cal knowledge base. Each theory in it may contain
axioms, definitions, theorems along with proofs, as
well as proof methods, and control rules how to ap­
ply proof methods.

• A proof of a theorem is represented in a hierarchi­
cal data structure. This representation makes ex­
plicit, the various levels of abstraction by providing
several justifications for a single proof node, where
each justification belongs to a different level of ab­
straction. The least abstract, level corresponds to a

1 In this context Ttime does not mean the CPU time needed
to calculate the matchT but the time a human would need for
the match according to the cognitive model.

FIEDLER 359

oroof in Gentzen's natural deduction (ND) calculus
Gentzen, 1935]. Candidates for higher levels are

proof plans, where justif ications are mainly given
by more abstract proof methods that belong to the
theorem's mathematical theory or to an ancestor
theory thereof.

An example for a proof is given below. Each line consists
of four elements (label, antecedent, succedent, and jus­
tif ication) and describes a node of the proof. The label
is used as a reference for the node. The antecedent is
a list of labels denoting the hypotheses under which the
formula in the node, the succedent, holds.2 This relation
between antecedent and succedent is denoted by K

We call the fact in the node. The proof of the
fact in the node is given by its justification. A justif ica­
tion consists of a rule and a list of labels, the premises of
the node. Jt denotes an unspecified just i f icat ion. HYP
and DefU stand for a hypothesis and the definition of U,
respectively. L3 has two justif ications on different levels
of abstraction: the least abstract justi f ication wi th the
ND-rule CASE (i.e. the rule for case analyses) and the
more abstract justi f ication wi th the rule U-Lemma that
stands for an already proven lemma about a property
of U. By agreement, if a node has more than one jus­
t i f ication, these are sorted from most, abstract to least
abstract.

The proof is as follows: From we can
conclude that by the U-Lemma. If we do not
know the U-Lemma, we can come to the conclusion by
considering the case analysis wi th the cases that
or a. V, respectively. In each ca.se, we can derive that

by the definition of U.
A formal language for specifying proofs is the interface

by which theorem provers can be connected to P. rex.
An overview of the architecture of is provided in
Figure 1.

The crucial component of the system is the dialog
planner. It is implemented in ACT-R, i.e. its operators
are defined in terms of productions and the discourse
history is represented in the declarative memory by stor­
ing conveyed information as chunks (details are given in
Section 4). Moreover, presumed declarative and proce­
dural knowledge of the user is encoded in the declarative
memory and the production rule base, respectively. This
establishes that the dialog planner is modeling the user.

In order to explain a particular proof, the dialog plan­
ner first assumes the user's supposed cognitive state by
updating its declarative and procedural memories. This
is done by looking up the user's presumed knowledge

As notation we use and T for antecedents and and
for succedents.

in the user model, which was recorded during a previ­
ous session. An individual model for each user persists
between the sessions.

The individual user models are stored in the database
of user models. Each user model contains assumptions
on the knowledge of the user that are relevant to proof
explanation. In particular, it makes assumptions on
which mathematical theories the user knows, which def­
init ions, proofs, proof methods and mathematical facts
he knows, and which productions he has already learned.

After updating the declarative and procedural memo­
ries, the dialog planner sets the global goal to show the
conclusion of the proof's theorem. ACT-R tries to ful­
fi l l this goal by successively applying productions that
decompose or fulf i l l goals. Thereby, the dialog planner
not only produces a mul t imodal dialog plan (see Sec­
tion 4.1), but also traces the user's cognitive states in
the course of the explanation. This allows the system
both to always choose an explanation adapted to the
user (see Section 4.2), and to react to the user's inter­
actions in a flexible way: The dialog planner analyzes
the interaction in terms of applications of productions.
Then it plans an appropriate response.

The dialog plan produced by the dialog planner is
passed on to the presentation component. Currently,
we use PROVERBS microplanner [Huang and Fiedler,
1997] to plan the scope and internal structure of the sen­
tences, which are then realized by the syntactic generator
TAG-GEN [Kilger and Finkler, 1995].

An analyzer receives the user's interactions and
passes them on to the dialog planner. In the current
experimental stage, we use a simplistic analyzer that un­
derstands a small set of predefined interactions.

4 The D ia log P lanner
In the community of N L G , there is a broad consensus
that the generation of natural language should be done
in three major steps [Reiter, 1994]. First a macroplan-
ner (text planner) determines what to say, i.e. content
and order of the informat ion to be conveyed. Then a mi-
croplanner (sentence planner) determines how to say i t ,
i.e. it plans the scope and the internal structure of the
sentences. Finally, a realizer (surface generator) pro­
duces the surface text. In this classification, the dialog

360 COGNITIVE MODELING

http://ca.se

planner is a rnacroplanner for managing dialogs.
As Wahlster et al. argued, such a three-staged ar­

chitecture is also appropriate for mul t imodal generation
[Wahlster et ai, 1993]. By defining the operators and the
dialog plan such that they are independent of the com­
munication mode, our dialog planner plans text, graphics
and speech.

Since the dialog planner in P. rex is based on ACT-R,
the plan operators are defined as productions. A goal
is the task to show the fact in a node n of the proof.
A production fulfi l ls the goal directly by communicating
the derivation of the fact irl n from already known facts
or splits the goal into new subgoals such as to show the
facts in the premises of n. The derivation of a fact is
conveyed by so-called mathematics communicating acts
(MCAs) and accompanied by storing the fact as a chunk
in the declarative memory. Hence the discourse history is
represented in the declarative memory. ACT-R's conflict
resolution mechanism and the activation of the chunks
ensure an explanation tailored to the user. The produced
dialog plan is represented in terms of MCAs.

4.1 Mathematics Communicat ing Acts
Mathematics communicating acts (MCAs) are the pr im­
itive actions planned by the dialog planner. They are
derived from PROVERBS proof communicative acts
[Huang, 1994]. MCAs are viewed as speech acts that are
independent of the modal i ty to be chosen. Each MCA at
least can be realized as a port ion of text. Moreover some
MCAs manifest themselves in the graphical arrangement
of the text.

In P. rex we distinguish between two types of MCAs:

• MCAs of the first type, called derivational MCAs,
convey a step of the derivation. An example for a
derivational MCA wi th a possible verbalization is:

"Since a is an element of V and U is a
subset of V', a is an element of V by the
definit ion of subset."

• MCAs of the second type, called structural MCAs,
communicate information about the structure of a
proof. For example, case analyses are introduced
by:

(Case-Analysis

"To prove , let us consider the two cases
by assuming and

4.2 Plan Operators
Operational knowledge concerning the presentation is
encoded as productions in ACT-R that are independent
from the modal i ty to be chosen. The proof explaining
productions are derived from PROVERB'S macroplan-
ning operators [Huang, 1994]. Each of those corresponds
to one or several productions in P. rex.

Each production either fulfi l ls the current goal directly
or splits it into subgoals. Let us assume that the follow­
ing nodes are in the current proof:

An example for a production is:
(P I) IF The current goal is to show

and R is the most abstract known rule justifying
the current goal
and are known

THEN produce MCA (Der ive :Reasons
I :Conclus ion :Method

and pop the current goal (thereby storing
in the declarative memory)

By producing the MCA the current goal is fulfil led and
can be popped from the goal stack. An example for
a production decomposing the current goal into several
subgoals is:
(P2) IF The current goal is to show

and R is the most abstract known rule justifying
the current goal
and ' is unknown for 1

THEN for each push the goal to show

Note that the conditions of (P I) and (P2) only differ
in the knowledge of the premises for rule R. (P2)
introduces the subgoals to prove the unknown premises
in . As soon as those are derived, (PI) can apply and
derive the conclusion.

Now assume that the following nodes are in the current
proof:

A specific production managing such a case analysis
is the following:
(P3) IF The current goal is to show

and CASE is the most abstract known rule jus­
tifying the current goal
and
and

THEN

This production introduces new subgoals and motivates
them by producing the MCA.

Since more specific rules treat common communicative
standards used in mathematical presentations, they are
assigned lower costs, i.e. (ef. equation 1).

Moreover, it is supposed that each user knows all nat­
ural deduction (ND) rules. This is reasonable, since
ND-rules are the least abstract possible logical rules in
proofs. Hence, for each production p that is defined such
that its goal is justi f ied by an ND-rule in the proof, the
probabil i ty that the application of p leads to the goal
to explain that proof step equals one. Therefore, since
CASE is such an ND-rule,

FIEDLER 361

Before examin ing more closely an example explana­
t ion of a proof, we look at. a product ion reacting to a
user in teract ion. Consider the case that the user in­
forms the system that he d id not understand a step of
the der ivat ion. The analyzer receives the user's message
and pushes the goal to backtrack to the node n whose ex­
p lanat ion was not understood. Th is goal can be ful f i l led
by the fo l lowing product ion :

(P4) IF The current goal is to backtrack to node n
THEN push the subgoals to re-explain the fact in n and

to revise the assumption, that the justification J
used in its last explanation was known.

A further product ion (P5), which is om i t t ed here due
to space restr ict ions, performs the revision by decreasing
the base-level act ivat ion o f . / .

In order to elucidate how a proof is explained by-
let us consider the fo l lowing s i tua t ion :

• the current goal is to show the fact in L3,
• the rules H Y P , CASK, -Lemma are

known,

• the fact in is known, the facts in H1, L1, H2,
and L2 are unknown.

The only applicable product ion is (P I) . Since U-
Lemma is more abstract than C A S E and both are
known, it is chosen to instant ia te (P I) . Hence, the dialog
planner produces the M C A

(D e r i v e :Reasons
: C o n c l u s i o n
:Method U-Lemma)

that can be verbalized a*s "Since
U U V by the U-Lemma."

Suppose now tha t the user in ter rupts the explanat ion
th rowing in that he d id not understand this step. The
analyzer translates the user's interact ion into the new
goal to backtrack to L3, which is pushed on the goal
stack. Th is goal is processed by (P4) pushing the sub-
goals to re-explain the fact in L3 and to revise the as­
sumpt ion , that U-Lemma is known. The lat ter is fu l ­
f i l led by (P.r)) by decreasing the base-level act ivat ion of
U-Lemma below the retrieval threshold. Th is leaves the
goal to (re-)cxplain the fact in on the top of the goal
stack.

Now, since CASE is the most abstract known rule jus­
t i f y i ng the current goal, both decomposing product ions
(P2) and (P3) are appl icable. Recall that the confl ict
resolut ion mechanism chooses the product ion w i t h the
highest u t i l i t y E (cf. equation 1). Since and

for a l l product ions />, . Since the
appl icat ion of (P2) or (P3) would serve the same goal,

Therefore, the d ia log planner chooses (P3) for the expla­
na t ion , thus produc ing the M C A

(C a s e - A n a l y s i s :Goa l
:Cases

tha t can be realized as "To prove let us
consider the cases tha t a n d , " and then
explains bo th cases. The whole d ia log takes place as
fol lows:

Th is example shows how a produc t ion and an ins tant i ­
at ion are chosen by . Wh i l e the example elucidates
the case tha t a more detai led explanat ion is desired, the
system can s imi lar ly choose a more abstract explanat ion
if needed. Hence, model ing the addressee's knowledge in
A C T - R allows P. rex to explain the proof adapted to the
user's knowledge by swi tch ing between the its levels of
abstract ion as needed.

Hav ing in m i n d tha t the M C A s and the expla in ing
product ions are derived f rom PROVERBS macroplan-
ner, it is no surprise tha t P rex 's d ia log planner produces
text p lan equivalent to PROVERB. Bu t whi le the proof
must be provided to PROVERB on an appropr iate level
of abstract ion to satisfv the user, P. rex determines for
each proof step which level of abstract ion it considers as
the most appropr ia te for the respective audience. More­
over, P rex can react to interact ions by the user and re­
vise both i ts assumptions about the addressee and its
p lann ing decisions.

5 Conclusion and Future Work
In this paper, we proposed to combine the t rad i t iona l
design of a d ia log planner w i t h a cognit ive architecture
in order to str ive for an op t ima l user adapta t ion . In
the interact ive proof exp la in ing system Prer, the dia log
planner is based on the theory of cogni t ion A C T - R .

S ta r t ing f rom certain assumptions about the ad­
dressee's knowledge (e.g. which facts does he know,
which def in i t ions, lemmas, etc.) bu i l t up in the user
model du r ing previous sessions, the d ia log planner de­
cides on which level of abstract ion to begin the expla­
na t ion . Since A C T - R traces the user's cognit ive states
du r ing the exp lanat ion , the d ia log planner can choose an
appropr iate degree of abstract ion for each proof step to
be explained. Fur thermore, it can react to user interac­
t ions and revise the user mode l . The rat ionale behind
this architecture should prove- to be useful for explana­
t ion systems in general.

362 COGNITIVE MODELING

Moreover, since this architecture can pre­
dict what is salient for the user and what he
can infer, it could be used as a basis to decide
whether or not to include opt iona l in fo rmat ion
[Walker and Ra inbow, 1994].

P. rex is s t i l l in an exper imenta l stage. It goes already
beyond PROVERBS capabi l i t ies, since it can not only
produce tex tbook style proofs but also plan explanat ions
tai lored to the respective user and react to interact ions.
We p lan to extend the presentat ion component to mu l -
t imoda l i t y suppor t ing graphics, tex t , and speech. I t
should consist of the fo l lowing subcomponents:

A multimodal microplanner plans the scope of the sen­
tences and their in ternal s t ructure, as well as their graph­
ical arrangement. It also decides, whether a graphical
or a textua l real izat ion is preferred. Tex tua l parts are
passed on to a linguistic realizer tha t generates the sur­
face sentences. Then a layout component displays the
text and graphics, whi le a speech system outputs the
sentences in speech. Hence, the system should provide
the user w i t h text and graphics, as well as a spoken out­
pu t . The metaphor we have in m i n d is the teacher who
explains what he is w r i t i ng on the board.

Current ly , we are examin ing the knowledge compi la­
t ion mechanism of A C T - R tha t could enable the system
to model the user's acquisi t ion of prov ing skil ls. Th is
could pave the way towards a tu to r ia l system that not
only explains proofs, but also teaches concepts and prov­
ing methods and strategies.

Moreover, we are p lann ing experiments w i t h users of
different levels of expertise in mathemat ics to evaluate
the system.

Acknowledgements
Many thanks go to Jorg S iekmann, Frank Pfenning, Ken
Koedinger, and Chr is t ian Lebiere for their help in my re­
search. Frank Pfenning, Carsten Sehurmann and Chris
Scarpinat to read earlier draf ts of this paper. I also want
to thank the anonymous reviewers for their useful com-
ments.

References
[Anderson and Lebiere, 1998] J. R. Anderson and

C. Lebiere. The Atomic Components of Thought.
Lawrence E r l baum, 1998.

[Benzmuller et a/., 1997] C. Benzmul ler , L. Cheikhrou-
hou, D. Fehrer, A. Fiedler, X. Huang, M. Ker-
ber, M. Kohlhase, K. Kon rad , E. Melis, A. Mei­
er, W. Schaarsehmidt, J. S iekmann, and V. Sor-
ge. Ω M E G A : Towards a mathemat ica l assistant,. In
W. McCune, edi tor , Proceedings of the 14th Confer­
ence on Automated Deduction, number 1249 in L N A I ,
pages 252-255, Townsvi l le , Aus t ra l ia , 1997. Springer
Verlag.

[Cawsey, 1990] A. Cawsey. Generat ing explanatory dis­
course. In R. Dale, C. Mel l ish, and M. Zock, edi­
tors, Current Research in Natural Language Genera­
tion, number 4 in Cogni t ive Science Series, pagers 75
101. Academic Press, San Diego, C A , 1990.

[Fiedler, 1998] A. Fiedler. Macrop lann ing w i t h a cog­
n i t ive architecture for the adapt ive explanat ion of
proofs. In Proceedings of the 9th International Work­
shop on Natural Language Generation, pages 88-97,
Niagara-on-the-Lake, Onta r io , Canada, 1998.

[Gentzen, 1935] G. Gentzen. Untersuchungen uber das
logische Schlieften I & I I . Mathematische Zeitschrift,
39:176-210, 572 595, 1935.

[Horacek, 1997] H. Horacek. A model for adapt ing ex­
planat ions to the user's l ikely inferences. User Model­
ing and User-Adapted Interaction, 7:1-55, 1997.

[Huang and Fiedler, 1997] X. Huang and A. Fiedler.
Proof verbal izat ion as an appl icat ion of N L G . In M. E.
Pollack, edi tor, Proceedings of the 15th International
Joint Conference on Artificial Intelligence (1JCAI),
pages 965-970, Nagoya, Japan, 1997. Morgan Kauf-
mann.

[Huang, 1994] X . H u a n g . Planning argumentat ive texts.
In Proceedmgs of the 15th International Conference
on Computational Linguistics, pages 329-333, Kyo to ,
Japan, 1994.

[I N L G , 1994] Proceedings of the 7th International Work­
shop on Natural Language Generation, Kenneb-
unkpor t , M E , USA, 1994.

[Ki lger and Fink ler , 1995] A. K i lger and W. Kinkier. In ­
cremental generation for real t ime appl icat ions. Re­
search Report RR-95-11 , D K K I , Saarbrucken, Ger­
many, 1995.

[Meyer and Kieras, 1997] D. E. Meyer and D. E. Kieras.
EP IC : A computa t iona l theory of executive cognit ive
processes and mul t ip le- task performance: Part 1. Psy­
chological Review, 104:3 65, 1997.

[Newell, 1990] A. Newel l . Unified Theories of Cognition.
Havard Universi ty Press, Cambr idge, M A , 1990.

[Paris, 1991] C. Paris. The role of the user's domain
knowledge in generat ion. Computational Intelligence,
7:71-93, 1991.

[Reiter, 1994] E. Reiter. Has a consensus NL genera­
t ion architecture appeared, and is it psyeholinguis-
t ieal ly plausible? In Proceedings of the 7th Inter­
national Workshop on Natural Language Generation
[1994], pages 163 170.

[Wahlster et al, 1993] W. Wahlster, E. Andre , W. Kin­
kier, H.-J. Prof i t l i ch , and T. Rist . Plan-based inte­
grat ion of natura l language and graphics generation.
Artificial Intelligence, 63:387 427, 1993.

[Walker and Ram bow, 1994] M. A. Walker and 0. H am-
bow. The role of cogni t ive model ing in achieving com­
municat ive intent ions. In Proceedings of the 7th Inter­
national Workshop on Natural Language Generation
[1994], pages 171 180.

[Zukerman and McConachy, 1993] I. Zukerman and
R. McConachy. Generat ing concise discourse that
addresses a user's inferences. In Ruzena Bajcsy,
edi tor , Proceedings of the 13th International Joint
Conference on Artificial Intelligence (IJCAI), pages
1202 1207, Chambery, Prance, 1993. Morgan Kauf­
mann .

FIEDLER 363

