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Abstract 
In order to generate high quality explanations 
in technical or mathematical domains, the pre­
sentation must be adapted to the knowledge 
of the intended audience. Current proof pre­
sentation systems only communicate proofs on 
a fixed degree of abstraction independently of 
the addressee's knowledge. 
In this paper we propose an architecture for 
an interactive proof explanation system, called 
Prex. Based on the theory of human cognition 
ACT-R., its dialog planner exploits a cognitive 
model, in which both the user's knowledge and 
his cognitive processes are modeled. By this 
means, his cognitive states are traced during 
the explanation. The explicit representation of 
the user's cognitive states in ACT-R allows the 
dialog planner to choose a degree of abstrac­
tion tailored to the user for each proof step to 
be explained. Moreover, the system can revise 
its assumptions about the user's knowledge and 
react to his interact ions. 

1 Introduct ion 
A person who explains to another person a technical de­
vice or a logical line of reasoning adapts his explanations 
to the addressee's knowledge. A computer program de-
signed to take over the explaining part, should also adopt 
this principle. 

Assorted systems take into account the intended audi­
ence's knowledge in the generation of explanations (see 
e.g. [Cawsey, 1990; Paris, 1991; Wahlster et a/., 1993]). 
Most of them adapt to the addressee by choosing be­
tween different discourse strategies. Since proofs are 
inherently rich in inferences, the explanation of proofs 
must also consider which inferences the audience can 
make [Horacek, 1997; Zukerman and McConachy, 1993]. 
However, because of the constraints of the human mem­
ory, inferences are not chainable without costs. Ex­
plicit representation of the addressee's cognitive states 
proves to be useful in choosing the information to con­
vey [Walker and Rainbow, 1994]. 

While a mathematician communicates a proof on a 
level of abstraction that is tailored to the audience, state-
of-the-art proof presentation systems such as PROVERB 

[Huang and Fiedler, 1997] verbalize proofs in a nearly 
textbook-like style on a fixed degree of abstraction given 
by the initial representation of the proof. Nevertheless, 
PROVERB is not restricted to presentation on a certain 
level of abstraction. Adaptation to the reader's knowl­
edge may still take place by providing the appropriate 
level of abstraction in the init ial representation of the 
proof. 

Drawing on results from cognitive science, we are cur­
rently developing an interactive proof explanation sys­
tem, called Prex (for proof explainer). In this paper, 
which extends the work reported in [Fiedler, 1998], we 
propose an architecture for its dialog planner based on 
the theory of human cognition ACT-R [Anderson and 
Lebiere, 1998]. The latter explicitly represents the ad­
dressee's knowledge in a declarative memory and his cog­
nitive skills in procedural production rules. This cogni­
tive model enables the dialog planner to trace the ad­
dressee's cognitive states during the explanation. Hence, 
for each proof step, it can choose as an appropriate ex­
planation its most abstract justification that is known 
by the addressee. Moreover, the system can revise its 
assumptions about the users knowledge and react to his 
interactions. 

The architecture of P.rex, which is sketched in Sec­
tion 3, is designed to allow for multimodal generation. 
The dialog planner is described in detail in Section 4. 
Since it is necessary to know some of the concepts in 
ACT-R to understand the macroplanning process, the 
cognitive architecture is first introduced in the next sec­
tion. 

2 ACT-R: A Cognitive Architecture 
In cognitive science several approaches are used to de­
scribe the functionality of the cognitive apparatus, e.g. 
production systems, mental models or distributed neural 
representations. Production systems that model human 
cognition are called cognitive architectures. In this sec­
tion we describe the cognitive architecture ACT-R [An­
derson and Lebiere, 1998], which is well suited for user 
adaptive explanation generation because of its conflict 
resolution mechanism. Further examples for cognitive 
architectures are SOAR [Newell, 1990] and EPIC [Meyer 
and Kieras, 1997]. 

ACT-R. has two types of knowledge bases, or memo­
ries, to store permanent knowledge in: declarative and 
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procedural representations of knowledge are explicitly 
separated into the declarative memory and the procedu­
ral production rule base, but are intimately connected. 

Procedural knowledge is represented in production 
rules (or simply: productions) whose conditions and ac­
tions are defined in terms of declarative structures. A 
production can only apply if its conditions are satis­
fied by the knowledge currently available in the declara­
tive memory. An item in the declarative memory is an­
notated with an activation that influences its retrieval. 
The application of a production modifies the declarative 
memory, or it results in an observable event. The set of 
applicable productions is called the conflict set. A con­
flict resolution heuristic derived from a rational analysis 
of human cognition determines which production in the 
conflict set will eventually be applied. 

In order to allow for a goal-oriented behavior of the 
system, ACT-R manages goals in a goal stack. The cur­
rent, goal is that on the top of the stack. Only produc­
tions that, match the current, goal are applicable. 

2.1 Declarative Knowledge 
Declarative knowledge is represented in terms of chunks 
in the declarative memory. Below is an example 
for a chunk encoding the fact that F C G, where 
subse t - fac t is a concept and F and G are contextual 
chunks associated to f actFsubsetG. 

fact FsubaetG 
isa subset-fact 
se t l F 
set2 G 

Chunks are annotated with continuous activations 
that influence their retrieval. The activation .Ai, of a 
chunk Ci, consists of its base-level activation B, and the 
weighted activations of contextual chunks. In Bi-, which 
is defined such that it decreases logarithmically when Ci 
is not used, ACT-R models the forgetting of declarative 
knowledge. Note that the definition of the activation es­
tablishes a spreading activation to adjacent chunks, but. 
not further; multi-link-spread is not supported. 

The constraint on the capacity of the human work­
ing memory is approached by defining a retrieval thresh­
old r, where only those chunks Ci, can be matched whose 
activation At is higher than T. Chunks with an activa-
tion less than r are considered as forgotten. 

New declarative knowledge is acquired when a new 
chunk is stored in the declarative memory, as is always 
the case when a goal is popped from the goal stack. The 
application of a production may also cause a new chunk 
to be stored if required by the production's action part. 

2.2 Procedural Knowledge 
The operational knowledge of ACT-R is formalized in 
terms of productions. Productions generally consist of a 
condition part and an action part, and can be applied 
if the condition part is fulfilled. In ACT-R both parts 
are defined in terms of chunk patterns. The condition 
is fulfilled if its first chunk pattern matches the current 
goal and the remaining chunk patterns match chunks in 
the declarative memory. An example for a product ion is 

IF the current goal is to show that x £ S2 and it is known 
that x E Si and S\ C S2 

THEN conclude that x 6 #2 by the definition of C 

Similar to the base-level activation of chunks, the 
strength of a production is defined such that it decreases 
logarithmically when the production is not used. The 
time spent to match a production with a chunk depends 
on the activation of the chunk.1 It is defined such that 
it, is negative exponential to the sum of the activation of 
the chunk and the strength of the production. Hence, 
the higher the activation of the chunk and the strength 
of the production, the faster the production matches the 
chunk. Since the activation must, be greater than the 
retrieval threshold r, r constrains the time maximally 
available to match a production with a chunk. 

The conflict resolution heuristic starts from assump­
tions on the probability P that the application of the 
current production leads to the goal and on the costs 
C of achieving that goal by this means. Moreover G is 
the time maximally available to fulfill the goal. The net-
utility E of the application of a production is defined as 

E = PG-G. (1) 

We do not go into detail on how P, G and C are calcu­
lated. For the purposes of this paper, it is sufficient to 
note that G only depends on the goal, but not on the 
product ion. 

To sum up, in ACT-R the choice of a production to 
apply is as follows: 

1. The conflict set is determined by testing the match 
of the productions with the current goal. 

2. The production p with the highest uti l i ty is chosen. 
3. The actual instantiation of p is determined via the 

activations of the corresponding chunks. If no in­
stantiation is possible (because of r ) , p is removed 
from the conflict set and the algorithm resumes in 
step 2. otherwise the instantiation of p is applied. 

ACT-R provides a learning mechanism, called produc­
tion compilation, which allows for the learning of new 
productions. We are currently exploring this mechanism 
for its uti l i ty for the explanation of proofs. 

3 The Architecture of P. rex 
P. rex is planned as a generic explanation system that can 
be connected to different theorem provers. It, adopts the 
following features of the interactive proof development 
environment ΩMEGA [Benzmuller et at., 1997]: 

• Mathematical theories are organized in a hierarchi­
cal knowledge base. Each theory in it may contain 
axioms, definitions, theorems along with proofs, as 
well as proof methods, and control rules how to ap­
ply proof methods. 

• A proof of a theorem is represented in a hierarchi­
cal data structure. This representation makes ex­
plicit, the various levels of abstraction by providing 
several justifications for a single proof node, where 
each justification belongs to a different level of ab­
straction. The least abstract, level corresponds to a 

1 In this context Ttime does not mean the CPU time needed 
to calculate the matchT but the time a human would need for 
the match according to the cognitive model. 
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oroof in Gentzen's natural deduction (ND) calculus 
Gentzen, 1935]. Candidates for higher levels are 

proof plans, where justif ications are mainly given 
by more abstract proof methods that belong to the 
theorem's mathematical theory or to an ancestor 
theory thereof. 

An example for a proof is given below. Each line consists 
of four elements (label, antecedent, succedent, and jus­
tif ication) and describes a node of the proof. The label 
is used as a reference for the node. The antecedent is 
a list of labels denoting the hypotheses under which the 
formula in the node, the succedent, holds.2 This relation 
between antecedent and succedent is denoted by K 

We call the fact in the node. The proof of the 
fact in the node is given by its justification. A justif ica­
tion consists of a rule and a list of labels, the premises of 
the node. Jt denotes an unspecified just i f icat ion. HYP 
and DefU stand for a hypothesis and the definition of U, 
respectively. L3 has two justif ications on different levels 
of abstraction: the least abstract justi f ication wi th the 
ND-rule CASE (i.e. the rule for case analyses) and the 
more abstract justi f ication wi th the rule U-Lemma that 
stands for an already proven lemma about a property 
of U. By agreement, if a node has more than one jus­
t i f ication, these are sorted from most, abstract to least 
abstract. 

The proof is as follows: From we can 
conclude that by the U-Lemma. If we do not 
know the U-Lemma, we can come to the conclusion by 
considering the case analysis wi th the cases that 
or a. V, respectively. In each ca.se, we can derive that 

by the definition of U. 
A formal language for specifying proofs is the interface 

by which theorem provers can be connected to P. rex. 
An overview of the architecture of is provided in 
Figure 1. 

The crucial component of the system is the dialog 
planner. It is implemented in ACT-R, i.e. its operators 
are defined in terms of productions and the discourse 
history is represented in the declarative memory by stor­
ing conveyed information as chunks (details are given in 
Section 4). Moreover, presumed declarative and proce­
dural knowledge of the user is encoded in the declarative 
memory and the production rule base, respectively. This 
establishes that the dialog planner is modeling the user. 

In order to explain a particular proof, the dialog plan­
ner first assumes the user's supposed cognitive state by 
updating its declarative and procedural memories. This 
is done by looking up the user's presumed knowledge 

As notation we use and T for antecedents and and 
for succedents. 

in the user model, which was recorded during a previ­
ous session. An individual model for each user persists 
between the sessions. 

The individual user models are stored in the database 
of user models. Each user model contains assumptions 
on the knowledge of the user that are relevant to proof 
explanation. In particular, it makes assumptions on 
which mathematical theories the user knows, which def­
init ions, proofs, proof methods and mathematical facts 
he knows, and which productions he has already learned. 

After updating the declarative and procedural memo­
ries, the dialog planner sets the global goal to show the 
conclusion of the proof's theorem. ACT-R tries to ful­
fi l l this goal by successively applying productions that 
decompose or fulf i l l goals. Thereby, the dialog planner 
not only produces a mul t imodal dialog plan (see Sec­
tion 4.1), but also traces the user's cognitive states in 
the course of the explanation. This allows the system 
both to always choose an explanation adapted to the 
user (see Section 4.2), and to react to the user's inter­
actions in a flexible way: The dialog planner analyzes 
the interaction in terms of applications of productions. 
Then it plans an appropriate response. 

The dialog plan produced by the dialog planner is 
passed on to the presentation component. Currently, 
we use PROVERBS microplanner [Huang and Fiedler, 
1997] to plan the scope and internal structure of the sen­
tences, which are then realized by the syntactic generator 
TAG-GEN [Kilger and Finkler, 1995]. 

An analyzer receives the user's interactions and 
passes them on to the dialog planner. In the current 
experimental stage, we use a simplistic analyzer that un­
derstands a small set of predefined interactions. 

4 The D ia log P lanner 
In the community of N L G , there is a broad consensus 
that the generation of natural language should be done 
in three major steps [Reiter, 1994]. First a macroplan-
ner (text planner) determines what to say, i.e. content 
and order of the informat ion to be conveyed. Then a mi-
croplanner (sentence planner) determines how to say i t , 
i.e. it plans the scope and the internal structure of the 
sentences. Finally, a realizer (surface generator) pro­
duces the surface text. In this classification, the dialog 
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planner is a rnacroplanner for managing dialogs. 
As Wahlster et al. argued, such a three-staged ar­

chitecture is also appropriate for mul t imodal generation 
[Wahlster et ai, 1993]. By defining the operators and the 
dialog plan such that they are independent of the com­
munication mode, our dialog planner plans text, graphics 
and speech. 

Since the dialog planner in P. rex is based on ACT-R, 
the plan operators are defined as productions. A goal 
is the task to show the fact in a node n of the proof. 
A production fulfi l ls the goal directly by communicating 
the derivation of the fact irl n from already known facts 
or splits the goal into new subgoals such as to show the 
facts in the premises of n. The derivation of a fact is 
conveyed by so-called mathematics communicating acts 
(MCAs) and accompanied by storing the fact as a chunk 
in the declarative memory. Hence the discourse history is 
represented in the declarative memory. ACT-R's conflict 
resolution mechanism and the activation of the chunks 
ensure an explanation tailored to the user. The produced 
dialog plan is represented in terms of MCAs. 

4.1 Mathematics Communicat ing Acts 
Mathematics communicating acts (MCAs) are the pr im­
itive actions planned by the dialog planner. They are 
derived from PROVERBS proof communicative acts 
[Huang, 1994]. MCAs are viewed as speech acts that are 
independent of the modal i ty to be chosen. Each MCA at 
least can be realized as a port ion of text. Moreover some 
MCAs manifest themselves in the graphical arrangement 
of the text. 

In P. rex we distinguish between two types of MCAs: 

• MCAs of the first type, called derivational MCAs, 
convey a step of the derivation. An example for a 
derivational MCA wi th a possible verbalization is: 

"Since a is an element of V and U is a 
subset of V', a is an element of V by the 
definit ion of subset." 

• MCAs of the second type, called structural MCAs, 
communicate information about the structure of a 
proof. For example, case analyses are introduced 
by: 

(Case-Analysis 

"To prove , let us consider the two cases 
by assuming and 

4.2 Plan Operators 
Operational knowledge concerning the presentation is 
encoded as productions in ACT-R that are independent 
from the modal i ty to be chosen. The proof explaining 
productions are derived from PROVERB'S macroplan-
ning operators [Huang, 1994]. Each of those corresponds 
to one or several productions in P. rex. 

Each production either fulfi l ls the current goal directly 
or splits it into subgoals. Let us assume that the follow­
ing nodes are in the current proof: 

An example for a production is: 
( P I ) IF The current goal is to show 

and R is the most abstract known rule justifying 
the current goal 
and are known 

THEN produce MCA (Der ive :Reasons 
I :Conclus ion :Method 

and pop the current goal (thereby storing 
in the declarative memory) 

By producing the MCA the current goal is fulfil led and 
can be popped from the goal stack. An example for 
a production decomposing the current goal into several 
subgoals is: 
(P2) IF The current goal is to show 

and R is the most abstract known rule justifying 
the current goal 
and ' is unknown for 1 

THEN for each push the goal to show 

Note that the conditions of (P I ) and (P2) only differ 
in the knowledge of the premises for rule R. (P2) 
introduces the subgoals to prove the unknown premises 
in . As soon as those are derived, (PI ) can apply and 
derive the conclusion. 

Now assume that the following nodes are in the current 
proof: 

A specific production managing such a case analysis 
is the following: 
(P3) IF The current goal is to show 

and CASE is the most abstract known rule jus­
tifying the current goal 
and 
and 

THEN 

This production introduces new subgoals and motivates 
them by producing the MCA. 

Since more specific rules treat common communicative 
standards used in mathematical presentations, they are 
assigned lower costs, i.e. (ef. equation 1). 

Moreover, it is supposed that each user knows all nat­
ural deduction (ND) rules. This is reasonable, since 
ND-rules are the least abstract possible logical rules in 
proofs. Hence, for each production p that is defined such 
that its goal is justi f ied by an ND-rule in the proof, the 
probabil i ty that the application of p leads to the goal 
to explain that proof step equals one. Therefore, since 
CASE is such an ND-rule, 
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Before examin ing more closely an example explana­
t ion of a proof, we look at. a product ion reacting to a 
user in teract ion. Consider the case that the user in­
forms the system that he d id not understand a step of 
the der ivat ion. The analyzer receives the user's message 
and pushes the goal to backtrack to the node n whose ex­
p lanat ion was not understood. Th is goal can be ful f i l led 
by the fo l lowing product ion : 

(P4) IF The current goal is to backtrack to node n 
THEN push the subgoals to re-explain the fact in n and 

to revise the assumption, that the justification J 
used in its last explanation was known. 

A further product ion (P5), which is om i t t ed here due 
to space restr ict ions, performs the revision by decreasing 
the base-level act ivat ion o f . / . 

In order to elucidate how a proof is explained by-
let us consider the fo l lowing s i tua t ion : 

• the current goal is to show the fact in L3, 
• the rules H Y P , CASK, -Lemma are 

known, 

• the fact in is known, the facts in H1, L1, H2, 
and L2 are unknown. 

The only applicable product ion is ( P I ) . Since U-
Lemma is more abstract than C A S E and both are 
known, it is chosen to instant ia te ( P I ) . Hence, the dialog 
planner produces the M C A 

( D e r i v e :Reasons 
: C o n c l u s i o n 
:Method U-Lemma) 

that can be verbalized a*s "Since 
U U V by the U-Lemma." 

Suppose now tha t the user in ter rupts the explanat ion 
th rowing in that he d id not understand this step. The 
analyzer translates the user's interact ion into the new 
goal to backtrack to L3, which is pushed on the goal 
stack. Th is goal is processed by (P4) pushing the sub-
goals to re-explain the fact in L3 and to revise the as­
sumpt ion , that U-Lemma is known. The lat ter is fu l ­
f i l led by (P.r)) by decreasing the base-level act ivat ion of 
U-Lemma below the retrieval threshold. Th is leaves the 
goal to (re-)cxplain the fact in on the top of the goal 
stack. 

Now, since CASE is the most abstract known rule jus­
t i f y i ng the current goal, both decomposing product ions 
(P2) and (P3) are appl icable. Recall that the confl ict 
resolut ion mechanism chooses the product ion w i t h the 
highest u t i l i t y E (cf. equation 1). Since and 

for a l l product ions />, . Since the 
appl icat ion of (P2) or (P3) would serve the same goal, 

Therefore, the d ia log planner chooses (P3) for the expla­
na t ion , thus produc ing the M C A 

( C a s e - A n a l y s i s :Goa l 
:Cases 

tha t can be realized as "To prove let us 
consider the cases tha t a n d , " and then 
explains bo th cases. The whole d ia log takes place as 
fol lows: 

Th is example shows how a produc t ion and an ins tant i ­
at ion are chosen by . Wh i l e the example elucidates 
the case tha t a more detai led explanat ion is desired, the 
system can s imi lar ly choose a more abstract explanat ion 
if needed. Hence, model ing the addressee's knowledge in 
A C T - R allows P. rex to explain the proof adapted to the 
user's knowledge by swi tch ing between the its levels of 
abstract ion as needed. 

Hav ing in m i n d tha t the M C A s and the expla in ing 
product ions are derived f rom PROVERBS macroplan-
ner, it is no surprise tha t P rex 's d ia log planner produces 
text p lan equivalent to PROVERB. Bu t whi le the proof 
must be provided to PROVERB on an appropr iate level 
of abstract ion to satisfv the user, P. rex determines for 
each proof step which level of abstract ion it considers as 
the most appropr ia te for the respective audience. More­
over, P rex can react to interact ions by the user and re­
vise both i ts assumptions about the addressee and its 
p lann ing decisions. 

5 Conclusion and Future Work 
In this paper, we proposed to combine the t rad i t iona l 
design of a d ia log planner w i t h a cognit ive architecture 
in order to str ive for an op t ima l user adapta t ion . In 
the interact ive proof exp la in ing system Prer, the dia log 
planner is based on the theory of cogni t ion A C T - R . 

S ta r t ing f rom certain assumptions about the ad­
dressee's knowledge (e.g. which facts does he know, 
which def in i t ions, lemmas, etc.) bu i l t up in the user 
model du r ing previous sessions, the d ia log planner de­
cides on which level of abstract ion to begin the expla­
na t ion . Since A C T - R traces the user's cognit ive states 
du r ing the exp lanat ion , the d ia log planner can choose an 
appropr iate degree of abstract ion for each proof step to 
be explained. Fur thermore, it can react to user interac­
t ions and revise the user mode l . The rat ionale behind 
this architecture should prove- to be useful for explana­
t ion systems in general. 
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Moreover, since this architecture can pre­
dict what is salient for the user and what he 
can infer, it could be used as a basis to decide 
whether or not to include opt iona l in fo rmat ion 
[Walker and Ra inbow, 1994]. 

P. rex is s t i l l in an exper imenta l stage. It goes already 
beyond PROVERBS capabi l i t ies, since it can not only 
produce tex tbook style proofs but also plan explanat ions 
tai lored to the respective user and react to interact ions. 
We p lan to extend the presentat ion component to mu l -
t imoda l i t y suppor t ing graphics, tex t , and speech. I t 
should consist of the fo l lowing subcomponents: 

A multimodal microplanner plans the scope of the sen­
tences and their in ternal s t ructure, as well as their graph­
ical arrangement. It also decides, whether a graphical 
or a textua l real izat ion is preferred. Tex tua l parts are 
passed on to a linguistic realizer tha t generates the sur­
face sentences. Then a layout component displays the 
text and graphics, whi le a speech system outputs the 
sentences in speech. Hence, the system should provide 
the user w i t h text and graphics, as well as a spoken out­
pu t . The metaphor we have in m i n d is the teacher who 
explains what he is w r i t i ng on the board. 

Current ly , we are examin ing the knowledge compi la­
t ion mechanism of A C T - R tha t could enable the system 
to model the user's acquisi t ion of prov ing skil ls. Th is 
could pave the way towards a tu to r ia l system that not 
only explains proofs, but also teaches concepts and prov­
ing methods and strategies. 

Moreover, we are p lann ing experiments w i t h users of 
different levels of expertise in mathemat ics to evaluate 
the system. 
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