Reasoning About Actions in Narrative Understanding

Srinivas Narayanan
CS Division, UC Berkeley and ICSI
snarayan@jcsdJrsi}.herkeley.edu

Abstract

Reasoning about actions has been a focus of in-
terest in Al from the beginning and continues
to receive attention. Rut the range of situations
considered has been rather narrow and falls
well short of what is needed for understand-
ing natural language. Language understanding
requires sophisticated reasoning about actions
and events and the world's languages employ a
variety of grammatical and lexical devices to
construe, direct attention and focus on, and
control inferences about actions and events. We
implemented a neurally inspired computational
model that is able to reason about, linguistic ac-
tion and event descriptions, such as those found
in news stories. The system uses an active.
event representation that also seems to provide
natural and cognitively motivated solutions to
classical problems in logical theories of reason-
ing about actions. For logical approaches to
reasoning about actions, we suggest, that look-
ing at story understanding sets up fairly strong
desiderata both in terms of the fine-grained
event and action distinctions and the kinds of
real-time inferences required.

1 Introduction

Formal approaches to model reasoning about changing
environments have a long tradition in Al. This research
area was initiated by McCarthy [McCarthy, 19(H)], who
claimed that reasoning about actions plays a fundamen-
tal role in common sense. Trying to build language
understanding programs not only underscores the im-
portance of reasoning about actions, but also suggests
that the the set of situations and the kinds of inferential
processes required are richer than has been traditionally
studied in formal approaches.

Language understanding requires sophisticated reason-
ing about actions and events. The world's languages
have a variety of grammatical and lexical devices to
construe, direct attention and focus, and control infer-

350 COGNITIVE MODELING

ences about, actions and events. Consider the meaning of
stumbling in the following newspaper headline "Indian
Government stumbling in implementing Liberalization
Plan'" Clearly, the speaker intends to specify that the
liberalization plan is experiencing some difficulty. More-
over, the grammatical form is + VP-ing suggests that
the difficulty facing the plan is ongoing and the final out-
come of the plan is indeterminate. Compare this to the
subtle meaning differences with grammatical and lexical
modifiers on the same root verb such as has stumbled
or starting to stumble. Most readers are likely to infer
after reading this sentence that the government's liber-
alization policy is likely to fail, but this is only a default
causal inference that is made in the absence of informa-
tion to the contrary. Finally, how does stumble, whose
basic meaning is related to spatial motion and obstacles
get interpreted in a narrative about international eco-
nomic policies?

We have implemented a computational model that is
able to reason about action and event descriptions from
discourse fragments such as the one above. The system
uses an active event representation that also seems to
provide natural and cognitive!}- motivated solutions to
classical problems in logical theories of reasoning about,
actions. We first present the main features of our rep-
resentation and show that if provides a computational
model for existing formalisms for reasoning about ac-
tions. We then suggest how looking at story understand-
ing sets up fairly strong desiderata for logical approaches
to reasoning about actions both in terms of the fine-
grained event and action distinctions and the kinds of
real-time inferences required.

2 The Action Model

Our action theory comprises of two central components;
1) an executing representation of actions (called x-
schemas) based on extensions to Petri Nets and 2) a Be-
lief Net model of state that captures and reasons about,
complex dependencies between state variables.

2.1 An Executing Semantics of Actions

We represent actions as a modified class of high-level
Petri Nets [Reisig, 1985] called x-schemas. The most
relevant features of Petri nets for our purposes are their
ability to model events and states in a distributed system
and the clean manner in which they capture sequential-
ity, concurrency and event-based asynchronous control.

Definition 1 The basic x-schema: An x-schema
consists of places(P) and Transitions (7) connected
by weighted directed arcs A(A € (P x TYU(T xT))
Each arc a;; € A has weight 'U’z‘_}‘(u.-’ij - ./\") In-
put Arcs *x7 (*7 € (P x T)) connect Input Piaces to
Transitions. Output Arcs 7* (T* &€ (7 x)) connect
Transitions to Output Places. Arcs are typed as enable
arcs ¢ , inhibitory arcs |, or resource arcs 7v .

X-schemas have a well specified real-time execution se-
mantics where the next state function is specified by
the firing rule. In order to simulate the dynamic be-
havior of a system, a Marking (distribution of tokens
in places (depicted as dark circles or numbers)) of the
x-schema is changed according to the following firing
rule.

Definition 2 Execution Semantics of the basic
x-scheina A transition T is said to be enabled if no
inhibitory arc |1 € T of 7 lias a marked source place

and all sources of enable arcs ¢ € & of 7 are marked
and all input arcs p ¢ R have at, least w, tokens at
their source place, where w,. is the weight of the arc
from P to ‘T The firing of an enabled transition
T , removes wpf tokens from the source of each non-
inhibitory, non-enabled input arc V and places wrp
tokens in each output place of T .

X-schemas cleanly capture sequentially, concurrency
and event-based asynchronous control; with our exten-
sions they also model hierarchy, stochasticity and />a-
ranietenzation (run-time bindings). Besides typed arcs
(Definition 1), the following two extensions to the basic
Petri net are designed to allow us to model hierarchical
action sets with variables and parameters:

First., tokens carry information (i.e. they are individ-
uated and typed) and transitions are augmented with
predicates which select tokens from input places based
on the token type, as well as relate the. type of the tokens
produced by the tiring to the types of tokens removed
from the input.

Second, transitions are typed. Figure 1 shows the four
types of x-schema transitions, namely stochastic, dura-
tive, instantaneous and hierarchical transitions. An in-
stantaneous transifion(shown as dark rectangles) fins as
soon as it is enabled. A timed transition (shown as rect-
angles) fires after a fixed delay or at an exponentially
distributed rate. Hierarchical transitions (depicted as
hexagons), activate a subnet., wait for its return, or time-
out.

Tronaition (_g'_rw_lph_lc_)

Stochastic

Puratice

_Firing Function

 PeFire) .

HTET TG B I I

iy =

i Actiucite submet
| Huwrearetiee el Wal jor retern
! L

'

L.- -

4
O g S, gL Y

OR ttimwond

Figure 1: Basic types of transitions.

Theorem 1 [Narayanan, 1997] An j-schema is for-
mally equivalent to bounded High Level Generalized
Stochastic Petri Net (HLGSPN). The reachability graph
of a marked x-schema is isomorphic to a semi-markwv
process.

2.2 A Belief Net Model of States

Our representation of states must, be capable of model-
ing causal knowledge and be able to support both belief
updates and revisions in computing the global impact
of new observations and evidence both from direct ob-
servations and from action effects. Our implementation
of the agent's state uses Belief Networks [Jensen, 1996J.

Belief networks consist of a net of variables and a set,
of directed links. Each variable lias a finite set of mu-
tually exclusive states. The variables together form a
DAG (Directed Acyclic Oraph). To each variable A
with parents B\ ... B, there' is attached a conditional
probability table P(A|By....H,)."

For a Belief Net B3, , the following theorem allows us
to calculate the joint probability P(V) from the condi-
tional probabilities in the network.

Theorem 2 . The Chain Rule [Jensen, 1996] Let B,
be a BN over I/ = (A;...A,) . Then the joint proba-

bility distribution P(U) is the product of all conditional
probabilities specified in T3,

() = TT PGttt 0

where pa(A;) s the parent set of A,

2.3 Temporal Projection

We now turn to one of the central issues in reasoning
about action, i.e. the temporal projection problem. The

" Note that the GFT entries could instead use the rank-
ing function method of K -calculus [Golds/midt, 1992], where
probabilities are mapped onto a quantized logarithmic scale
which forms the basis of a ranking function.

NARAYANAN 351

problem consists of computing a final state s,41 that
results from executing the action set & = {a),...an] in
a given initial state so * The solution to this problem in
our action model follows.

Algorithm 1 Temporal Projection

1. Set initial Marking Mg . Vp € s : Mo(p) = 1,Vp ¢
so 1 Mo(p) =0

2. Fire enabled transitions 7., € T" of M with initial
marking Mo * The next state function described
earlier takes the system to a new marking M =
The state corresponding to this marking Sint = Vp :

Mint(p) =1 pE S:lntsvp . A’Il(p) = { P Q Sint

3. Run the belief propagate procedure to return the
most consistent aposteriori assignment (MAP) of
values to the state variables. The new state ¢
corresponds to the marking Af, where Vp € 5 :
Mi(p)=1.Vp s Mi(p)=0.

4. While 1| < ¢ € n, do: Fire enabled transitions

T..., with marking M;. set M, = »a;{JM,;.
Run Step 3 to get Siy) . Return 5,4, as the
answer,

Steps 1, and 2 are essentially constant time, since our
notion of state as a graph marking is inherently dis-
tributed over the network, so the working memory of an
x-schema-based inference system is distributed over the
entire set of x-schemas and state features. The result is
a massively parallel solution to the projection problem.
Step 3 requires belief propagation which is well known to
be intractable for complex domain topologies. So in our
model, executing actions is fast.,, parallel and reflexive,
while propagating indirect effects with complex domain
dependencies to achieve global consistency is hard. In
addition, the central features of our action representa-
tion, namely that they are executing provides an elegant
solution to the Frame Problem. Specifically, the action-
based executing action semantics allows frame axioms to
be implicitly encoded in the structure of the net and the
local transition firing rules.

3 Modeling Action Theories

Although the mechanisms outlined above were developed
for language understanding, they seem to be useful for
some of the problems discussed in the recent literature.
We assume the reader is familiar with reasoning with the
syntax of action models similar to [Gelfond & Lifschitz,
1993]. To keep the exposition simple, we will consider
only propositional fluents and deterministic actions. As
in ARV [Giunchiglia & Lifschitz, 1995], we model both
"inertial" (always C (where C is a formula)) and "de-
pendent" (A dependsJOIl B) fluents. The following
rules present the basic encoding of action theories (as-
suming the syntax of the ARV theory) in our model.

352 COGNITIVE MODELING

1. Static Fluent names are places. Actions names are
Transition labels. Preconditions are pre-sets (*T),
direct effects are post-sets (T*) of transitions. |If
the truth-value of a fluent f € F is true , in State
S; , then the marking M,-(/) = 1 ?

2. Domain Constraints with inertial fluents are mod-
elled as instantaneous transitions. Statements in
ARV , of the form always A D B, add an instan-
taneous transition with pre-set ¥743 = A , post-set
Tapx = A, B . Dependent fluents are modeled as
arcs in the Agent state belief net. More precisely,
the statement f; depends on f; if fx, results in
an arc from the variables representing f;, fi to f;
The CPT entries for f; are given by the appro-
priate constraints (including prior knowledge).

3. Initially C, is modeled by assigning an initial
marking where Vf € F(C : My(f)=1. Vf;, f7 €
F, if fi dependsjon fj, add an instantaneous
transition 7Tr7 with preset *7r7y = f; and post
set Trox= fi, [;

We now look at two standard examples from the liter-
ature that illustrate some issues with reasoning about
actions. One is the standard "potato in the tailpipe"
problem, and the other is the "jumping into lakes"
problem[Giunchiglia & Lifschitz, 1995].

Tailpipe The state flu-
ents here are potato (potato in the tailpipe),
clog (tailpipe is clogged). The actions are PutP),
Remove P) (put/remove potato in/from tailpipe), Start
(start the engine). The domain is characterized as Put p)

Example 1 Potato in

causes potato, Remove4) causes -“potato Start
causes running , clog dependsjon potato, always
potato D clog . m

Example 2 Wetness Here the idea is that Jump-
ing into a lake (JurnpTn) has the direct effect of being
InLake , and the indirect of making you Wet . Jump-
ing out gets you out of the lake, but you are still wet if
you were in the lake. The domain is described in ARV
as always Inlake O Wet , Jump In causes InLake |,
JumpOut causes -InLake , Initially -*nLake. . |

The reader can easily verify that the construction rules
above result in the models shown in Figure 3 and Fig-
ure 2 for Example 2 and Example 1 respectively.

Proposition 1 The procedure above results in a
causal model for a domain description D (in the Syn-
tax of ARV) in that it satisfies all the causal laws in D .
Furthermore, a value proposition of the form C after
A is entailed by D iff Ve € (/,c € S; where S; is the
state that results after running the projection algorithm
on the action set A .

%1n general, the representation allows states with types
and integer measure fluents, in which case the multi-set rep-
resenting the place would be marked by the appropriate num-
ber and type of tokens.

REMOVE_P

Inl.ake

Agent State

Figure 3: Jumping Into Lakes

3.1 Ramifications, Inertial and Dependent
Fluents

Indirect effects are quite naturally handled by our sys-
tem. Indirect effects that are "“inertial fluents" get
set by instantaneous transitions. In Figure 3, the di-
rect effect, of Jumpln sets the fluent InLake, which in-
stantaneously sets the value of the fluent Wet. Note
that the fluent Wet persists unless some other action is
taken (like drying) to change the value of this fluent.
In contrast, note that in Figure 2, the truth value of
the 'dependent fluent" clog is determined by the fluent
potato. While the value proposition =potato A —clog
after put-pat ; remove-pot , is not entailed by the de-
scription depicted in Figure 2 (from the uniform prior
for P(clog|-potato)); if the domain theory contains the
explicit knowledge initially —clog A-potato , the propo-
sition is entailed by the model.®

4 Understanding Language About
Actions and Events

The frequency with which languages refer to events, the
universality of such expressions, and the subtlety in the
kinds of distinctions made have made the temporal char-
acter of events in language (called linguistic aspect) an
object of study since Aristotle. Somewhat more recently,
the complex and context-sensitive determination of as-
pectual status, or the internal temporal shape of an event
has been the focus of much work [MS, 1988].

Many languages have a variety of grammatical aspectual
modifiers such as the English progressive construction

*More generally, logical entailment can he viewed as the
downward closure of the final marking.

Figure 4: The CONTROLLER x-schema. Actions have
rich internal structure that can be referred to by lan-
guage and used for simulative inferences in language un-
derstanding.

(be + V-ing) which enable a speaker to focus on the
ongoing nature of an underlying process while allowing
for inferences that the process has started and that it
has not yet completed. Similarly, one use of the perfect
construction (has V-ed) allows a speaker to specify that-
some consequences of the described situation hold. For
instance, the phrase / have lost mv kevs entails that the
keys are still missing (unlike the phrase / lost my keys).
Languages also have a variety of other means to express
aspect including aspectual verbs like start, end, cease,
continue, and stop and related grammatical forms.

To model the kinds of subtle semantic distinctions
made by languages, actions and events can no more
be atomic transitions. In fact, we have found that
cross-linguistically language makes reference to a specific
structure of actions and events, which captures regular-
ities that are relevant in the evolution of processes (en-
abling, inception, in-process, completion, suspension, re-
sumption, etc.) We call this structure the CONTROLLER
(Figure 4). The controller abstraction seems to capture
the basic temporal structure of people's conceptualiza-
tion of events. The semantics of aspect arises from the
dynamic binding between verb-specific x-schemas and a
controller that captures regularities in the evolution of
complex events, shown in Figure 1.

In our language understanding system, the causal do-
main structure is encoded as connected x-schemas. Our
domain model is a dynamic system based on inter-x-
sclierna activation, inhibition and interruption. In the
simulation framework, whenever an executing x-schema
makes a CONTROLLER transition, it potentially modi-
fies state, leading to asynchronous and parallel trigger-
ing or inhibition of other x-schemas. The notion of state
as a graph marking is inherently distributed over the
network, so the working memory of an x-schema-based
inference system is distributed over the entire set of x-
schemas and state fluents. Of course, this is intended to
model the massively parallel computation of the brain.

Figure 5 depicts a simplified x-schema model of walk-
ing and reacting to obstacles (the domain of stumbling).

NARAYANAN 353

WALK e

ready start ongolng fAinish _ done
O,_ .O.:.;.::x&.O.O n «u done

j FALL
'Wo

Herate

@0

STABILIZE

OQOO

-ady start ongoing finish dome

=i

use(encrgy)

Figure 5: Event Structure is a x-schema simulation en-
vironment used for inference.

For instance, during a walk (specified by a token in the
ongoing phase of the WALK x-schema) encountering an
unanticipated bump, you become unstable. * This may
lead to a FALL unless you are able to simultaneously
expend energy and STABILIZE, in which case you may
resume the interrupted walk. If you are unable to STA-
BILIZE, and thus FALL, you will be down and hurt.

Now consider that this complex situation described
above can be coded in a single lexical item stumblel
First, notice that stumble can only occur during a STEP,
and that it is a specific kind of interrupt to the step (i.e.
the presence of a bump or stumbling block). But this by
itself does not capture the intended meaning of stumble,
since the inference (that the agent may fall) is routinely
intended by the speaker. Furthermore, note that the fact
that stumble is not a planned motion but an interrupt is
important to infer that it is unintentional.

It should be clear that to model linguistic distinctions
in event structure, we need much finer-grained distinc-
tions than those that been proposed in the literature for
reasoning about, actions. This is also consistent with the
key observation in [MS, 1988] that aspectual phenom-
ena depend on a notion of event structure that captures
contingency relationships among events. Our frame-
work of an active action semantics embodies a precise
model of such inter-event contingency.

While our solutions to the problems of aspect are out-
side the scope of this paper, the following inter-schema
activation, inhibition, and modification relationships are
intended to give the reader an idea of the fine-grained
nature of contingency relationships involved.

Definition 3 Activation: Activation relationships
between schemas correspond to the case where execut-
ing one schema causes the enabling, start or continued
execution of another schema. We are able to distinguish
concurrent from sequential activation.

*In fact, the simulation is of finer granularity in that it
is during an ongoing STEP (subschema of WALK), that the
interruption occurs. This is not shown to simplify exposition.

354 COGNITIVE MODELING

X activates Y (Act (X,Y): X, Y € 8§5) if some sub-
sel. p of places marked in the result state P(X,) of
X (p € P(X,)) enable the start transition of Y
(p C «7(Y,)). X enables Y if (p=* T(Y,) ie.
*T'(Y,) C P(X,)).

seq_enables(X, Y): done(X) A(p € P(X;)) A{p C
¥T(V:F))

conc_enables(.X,Y) : ongoing(X)A
«*T(Y 1))

inh _periodic(.V) : seq_enables(X, X)

mut enables(X, Y) : seq_enables(X, Y) A
seq_cnables(Y X)

(p € P(X,))A(p C

Definition 4 Inhibition: Inhibitory links prevent
execution of the inhibited x-schema by activating an
inhibitory arc. Again, our model is able to distinguish
between concurrent and sequential inhibition as well as
be able to model mutual inhibition and aperiodicity.

N inhibits Y (/nh (X,Y): X, Y € 8§§) 1if some

subset p of places marked in the done state of

N P(X,) (p € P(X;)) are mhibitor arcs for the

start transition of Y (p C +T(Y,)). X disables
if (p+T(Y,) ile. ¥Inh(Y)C P(X,;)).

scq_disables(X, Y): done(X) A(p € P(N:) A(p C
«I'(Y,7))
conc_disables(.Y, Y)
N)
inh_aperiodic(V) :
mut_disables(.\',) :
seq_disables(Y.X)

congoing(X)A(p € P(Np))A(p C
seq_disables(.\, .X)

seq_disables(X[Y) A

Definitions 5 Modification: Modifying relationships
between x-schemas occur when the execution of the mod-
ifying x-schema results in setting the Agent State in such
a way the the currently active modified x-schema under-
goes a controller state transition.

interrupts(x, Y): ongoing(Y) Alp € P(N))A(p 2
+1 (}mh))

prevents(N Y) o enabled(Y) A —start(Y) A (p €
PIXO) A (p e +T(Y]))

terminates(XN, YY) : ongotng(Y)YA (p € P(X,) YA (p 2

*T(Yf’h))

resumnes(N,Y) © suspended(Y)A (p € P(X:) A(p D
I (}nat))

stops(X.,Y) : (suspended(Y) V ongoing(Y)) A (p €

[')(.‘\',-)) A (?’ 2 *t[()rtu*())

Example 3 Examples of contingency relations in
the Walking Domain

TRIP seq.enables FALL A STABILIZE.
-in_control(loc) enables FALL

-stable, enables STABILIZE
GRASPING(x) conc_enables HOLDING(x).
Energy(x) isa.resource for WALK

p@ § & o

TARGET DOMAIN BELIEF NET (T - 1) }

WO LELURL] [LLH ".6“ LUl AL LY
'
'
¢

——--n.._._'_'_“'--—..__
—f

cséacsc)cse‘;é

Metaphoric Projection ¢

LTy |
N
rmx:qu

Y] ar "“" “'“*"

Conlaxt.sonsitive Activalion i
SOURCE DOMAIN F.8TRUCT

0O 000000000 O 0O Q0 OQ

R AL ol L ke A AL

Triggering ;

Intorence

. .:::.:.I"> @

N-BCHEMA REPREKNENTATION A.Nl) INFEKENCE

Figure 6: Abstract Domains are mappings from concrete
actions

WALK 18 mut-exclusive to RUN
STABILIZE seq_disables FALL.
In_control(loc) cisables FaLt
GETUP resumes WATLK.

Standig enables WALK
REACH{X) terminates WALK(X).
.

4.1 Metaphoric Reasoning about Actions
and Events

We have seen how the structure of actions and events is
grounded in fine-grained, dynamic representations. An-
other ubiquitous phenomenon in language[Lakolf, 1991],
is the routine projection of such fine-grained seman-
tic distinctions across domains. Systematic metaphors
project features of these representations (source) onto
abstract, domains such as economics (target) enabling
linguistic devices to use embodied causal terms to de-
scribe features of abstract actions and processes.

Figure 6 shows an implemented system that uses pro-
jections of the action representation outlined earlier to
interpret such sentences. In our model indirect effects
of x-schema execution now not only propagate to depen-
dent source domain fluents but may also be mapped by
metaphor maps to other abstract domains (modeled as
a temporally extended Relief Net,).

Continuing with the stumble example, notice that in our
model effects of spatial inferences such as stumbling leads
to falling can felicitously be transferred to the abstract,
domain of economic policy through a conventionalized
metaphor that, falling * failure, enabling the inference
of plan failure. This inference context-sensitive and may
be overridden by prior knowledge (in the target domain
Relief Net) that the liberalization plan is succeeding.

5 Conclusion

This paper described a new framework for reasoning
about actions that is motivated from story understand-
ing. One central feature of this framework is an ex-
tremely fine-grained action model with a real-time ex-
ecution semantics that is able to capture a much richer
notion of contingency and causality than other models
we are aware of. Another key feature is our model of
state where complex dependencies between state vari-
ables are modeled as a Relief Network. We showed how
this framework is able to reason about actions, ramifi-
cations with inertial and dependent fluents, as well as
inter-domain mappings which are crucial in story un-
derstanding. We believe that looking further into issues
in narrative (such as into force-dynamics, rnodals, and
mental spaces) can yield valuable insights that can help
us build useful theories of reasoning about actions.

6 Acknowledgments

Thanks to .1. Feldrnan, G. Lakoff and the NTL group at
DC Berkeley and 1CSF

References

[Celfond k Lifschitz, 190:]] Celfond, M. & Lifschitz. V.
(1993). Representing Action and Change by Logic

Programs. Journal of Logic Programming, 17:301-322,
1993.

[Giunchiglia &. Lifschitz, 1995] Ciunchiglia F. & Lifs-
chitz, V. (1995). Dependent, Fluents Proc. Of IJCAI
1995: 1964-1969, Morgan Kaufman, Inc. 1995.

Goldszmidt, 1992] Goldszmidt, M. k Pearl, J. (1992).
Rank-based systems. Proc. Of the Third Conference
on Principles of KR and Reasoning, 1992: 661-672,
Morgan Kaufman, Inc. 1992.

[.Jensen, 1996] Jensen, F. (1906). An Introduction to
Bayesian Networks. Springer-Verlag ISBN 0- 387-
91502-8.

[Lakoff, 1994] Lakoff, G. (1994). What is Metaphor?.
Advances in Connectionist Theory. V3 Analogical
Connections, V3,1994.

[McCarthy, 1969] McCarthy, .1., k Hayes, P. (1969).
Some Philosophical Problems From the Standpoint of
Artificial intellgence. MachinedJnteHigence4 (1) 6 9)
463-502.

[Narayanan, 1997] Narayanan, S. (1997). Knowledge-
based Action Representations for Metaphor and As
pert (KARMA). Ph.D. Dissertation CS Division,
FECS Dept, UC Berkeley 1997.

[MS, 1988] Moens, M. & Steedman, M. (1988). Tempo-

ral Ontology and Temporal Reference. In Proc. ACL
88, V4, Number 2, June 1988, pp. 15-29.
[Reisig, 1985] Reisig, W. (1985). Petri Nets. Springer

Verlag.

NARAYANAN 355

