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Abs t rac t 
A model for the formation of situation concepts 
is described. A characteristic of this form of 
concept formation is that it does not require in­
structive feedback. This renders it suitable for 
concept formation by autonomous agents. It 
is experimentally demonstrated that situation 
concepts constructed independently by several 
agents can convey useful information between 
agents through a learned system of communica­
t ion. A relation was found between the devel­
opment of the learned system of communication 
and the duration of the situations. 

1 I n t r o d u c t i o n 
The abil i ty to communicate with others is a manifesta­
t ion of our intelligence. An understanding of commu­
nication therefore contributes to the goals of artif icial 
intelligence. A requirement for higher forms of commu­
nication, such as human language, is the development of 
concepts that are to be communicated. In this paper, 
a model is proposed that describes the formation of a 
particular type of concepts. 

A situation concept is a part of the state of an environ­
ment that determines how the environment wi l l present 
itself to a certain agent in response to (possibly absent) 
actions of that agent. Therefore, a situation concept 
is an agent specific aspect of the complete state of the 
environment. In many environments, the state of an en­
vironment can not be completely determined from the 
current sensor inputs. Thus, knowledge about the in­
teraction history wi th the environment yields extra in­
formation about the current state. Situation concepts 
can be formed by agents by observing patterns in the 
sequence of inputs from the environment, actions of the 
agent, and subsequent evaluative feedback. They allow 
an agent to predict some aspect of the future, e.g. the 
evaluative feedback that wi l l follow a certain action, or 
the next input from the environment given the action. 

An important characteristic of situation concepts is 
that they can be developed by autonomous agents, since 
only evaluative feedback is assumed to be available from 
the environment. This distinguishes the method from 

tradit ional concept learning methods such as decision 
tree learning (see e.g. [Quinlan, 1990]), which require 
instructive feedback and thus are a form of supervised 
learning. l Al though unsupervised learning methods, 
such as clustering, can also be viewed as methods for 
concept formation, these are less suitable as a basis for 
an agent that has to adapt itself to an environment, since 
feedback on how well the agent is performing can by 
definition not be taken into account. 

It is assumed here that an autonomous agent should 
learn to produce successful behavior based on evalua­
tive feedback. This feedback may be provided directly 
by the environment, as is usually assumed in reinforce­
ment learning, or it may be determined by the agent 
itself based on its internal state and its interaction wi th 
the environment, which seems to correspond better to 
how humans and animals function. When such an agent 
adapts its behavior to an environment, its choice of ac­
tions wi l l come to depend on its interaction history w i th 
that environment. However, the number of possible in­
teraction histories may be large, even if histories of small 
length are considered, so that the exact same history is 
unlikely to recur frequently. In the interest of learning, 
it is therefore necessary to generalize. 

Some generalization methods for reinforcement learn­
ing can be used as a basis for situation concept forma­
t ion. A prerequisite is that the representation of the 
states of the environment is adapted to the learning 
problem, and provides a division of the interaction space 
into regions, such that an agent only needs to consider a 
region wi th in that space, and not the specific interaction 
history (a point wi th in that region), in order to decide 
which action to take. A good example of such an al­
gor i thm is the U-Tree method [McCal lum, 1996], which 
uses the Kolmogorov-Smirnov test to determine whether 
the distr ibut ion of long-term expected rewards wi th in a 
region of the state-action space, determined by features 
on the interaction history, varies or not. However, most 
generalization methods for reinforcement learning can 
not be used as a basis, either because the representa­
t ion of the interaction space is not adapted to the learn-

For an exposition of the difference between evaluative and 
instructive feedback, see e.g. [Sutton and Barto, 1998], 
pp. 31-33. 
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ing problem (e.g. plain discretization, CMAC [Albus, 
1981]), or because no crisp division of the state-action 
space is used (e.g. neural networks). 

In cognitive science l i terature, many models for con­
cepts are discussed, see e.g. [Lakoff, 1987; van Or-
man Quine, 1975; Putnam, 1988]. When viewed as a 
cognitive model for a specific type of concepts, situation 
concepts distinguish themselves from other models by 
the level of detail at which they are specified. Since this 
level allows direct implementation, their validity can be 
tested in computational experiments, as testified by this 
paper. It should be emphasized that situation concepts 
are an idealized model of a particular class of concepts, 
and are not claimed to be a general model for the for­
mation of concepts. Nonetheless, the possible forms of 
situation concepts are diverse, as may be judged from 
the examples in the paper. 

Situation concepts are especially suited to serve as 
a basis for communication. In the model of language 
evolution investigated here, concept formation interacts 
wi th a process l inking concepts to words or signals, see 
[Steels, 1997; Steels and Vogt, 1997]. In l i terature on the 
evolution of language, communication often corresponds 
directly to actions, which l imits communication to the 
instruction of other agents. Examples include [Werner 
and Dyer, 1991], where sounds tell agents in a. simula­
tion how to move to the emitter of the sound, [Yanco 
and Stein, 1993], where a leader robot instructs a fol­
lowing robot what way to move, and [Oliphant, 1997], 
where concepts are abstract and are modeled as having 
a one to one correspondance wi th situations. An excep­
tion is [MacLennan, 1991], where the term situation is 
also used to describe what the symbols that are com­
municated represent. The meaning of those situations 
is quite different from situation concepts though, since 
they are equal to the input of the agent, hence no con­
cept formation is involved. In [Bi l lard and Hayes, 1999], 
an interesting experiment is described where a robot de­
velops concepts as regularities in its own behavior. This 
is possible because actions are selected by a process in­
dependent of concept formation, which explains why the 
problem mentioned above wi th relation to unsupervised 
learning plays no role here. Since the meaning of con­
cepts in that work (objects in the environment of the 
robots) is fixed in advance for one of the robots (the 
teacher) though, it does not deal wi th the ini t ial cre­
ation of the concepts, w i th which we wi l l be concerned 
here. 

Situation concepts are constructed individually by 
each agent. Since the concepts are based on experi­
ence w i th the same environment, there should be strong 
similarities between the conceptual systems of different 
agents, given that they are of the same type or species. 
This provides a basis for the development of communica­
t ion. When agents l ink signals they receive and produce 
to their current situation, a system of communication 
may result where the individual situation concepts of 
agents are associated w i th shared signals. This princi­
ple is demonstrated in a simulated environment. The 

question that wi l l be investigated here is whether the 
communication that results f rom this process is useful. 

The structure of the paper is as follows. Section 2 for­
mally defines situation concepts in general and describes 
how agents form a specific type of situation concepts in 
the experiments of this paper. Section 3 describes how 
agents adapt associations between concepts and signals 
in order to develop a system of communication. Section 
4 explains how agents may utilize situation concepts once 
a system for communicating them has been learned. The 
setup of the experiments is described in section 5. In sec­
tion 6, the benefit of communicating situation concepts is 
measured. Finally, section 7 presents conclusions drawn 
from the experiments. 

2 Formation of Situation Concepts 
In the most general formulation, a situation concept is a 
subset of the possible histories of an agent's interaction 
wi th its environment wi th the property that knowing to 
which situation concept the actual history of interaction 
corresponds, allows the agent to predict, some aspect of 
the future. As an example, let's consider the advent of 
a thunder storm. Both seeing a flash of l ightning and 
hearing a roaring sound of thunder are indicators that 
in a few moments, it may start to rain. Thus, these 
observations may be grouped together to form a situa­
t ion which has the property that a shower is likely to 
arrive wi th in short, whereas this possible future event 
wil l be less likely in the case of a bright blue sky. In 
this example, the situation is based on observations in 
the recent past, and the prediction concerns future ob­
servations. Actions of the agent or evaluative feedback 
played no role. Another example is the schema mech­
anism described in [Drescher, 1991], where the context 
and an agent's action are used to predict the result of 
the action. In that framework, a context is specified as 
a set of conditions and can be viewed as an instantia­
t ion of situation concepts, since it defines a subset of the 
possible histories of interaction (viz. the current input) 
and has predictive value. 

To formally describe interaction histories, time wil l be 
discretized here, which is a simplification of situation 
concepts in general. At t ime T the complete interaction 
history Hmax is defined as the following set of symbols: 

where for are symbols rep­
resenting the input, action and reward, an evaluative 
feedback, at time t. Situation concepts are defined for a 
subset H of this complete history: 

A situation concept Sp is a membership function that 
accepts a value for each element of an interaction history 
H wi th in the corresponding domain ( I m for X t, An for 

and R for ) and yields a boolean value. If and only 
if this value is true at t ime T, the situation concept 
applies; equivalently, it may be said in this case that the 
agent is in situation 
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In the rest of the paper, the interaction history of sit­
uation concepts wi l l consist of the current input from 
the environment, so that . They are cho­
sen such as to allow to predict the subsequent reward 
given an action the agent may choose. In the experi­
ments, the formation of situation concepts is based on 
the Adaptive Subspace algorithm of [de Jong and Vogt, 
1998], which recursively splits a space into two halves 
in a selected dimension, based on some split criterion. 
The split criterion here is whether the distr ibut ion of 
rewards over the sensor space differs between the two 
halves, which yields an algorithm similar in function 
to the previously mentioned U-tree algorithm and the 
continuous state generalization algorithms in [Uther and 
Veloso, 1998]. Init ial ly, the complete sensor space is a 
single region. Regions have a one to one correspondance 
with situation concepts, and hence there is a single situ­
ation concept. When the distr ibut ion of rewards varies 
substantially wi th in a region of the sensor space, this 
region is split in half, thus replacing it wi th two half-
sized regions. This principle is applied recursively, and 
terminates when each situation corresponds to a region 
of the sensor space wi th in which rewards are distributed 
homogeneously. 

The result of concept formation is a tree which divides 
the sensor space into situations, represented by internal 
nodes, and for each situation contains a subtree repre­
senting possible actions in that situation, where each leaf 
stores an estimation of the reward following the selection 
of the corresponding action in that situation. An exam­
ple of sue!) a tree is shown in figure 1. The actions that 
are distinguished depend on the situation and are con­
structed based on the same principle as the situations. 

Action selection depends solely on the situation, not 
on the specific input determining the situation. The tree 
of situations and actions is traversed from left to right, 
following the conditions in the nodes that apply to the 
current input. This yields the current situation, rep­
resented as an internal node of the tree. The possible 
actions are now represented in the leaves of this node's 
subtree. Greedy action selection would select an action 
determined by the leaf wi th the highest estimation of the 
subsequent reward. For learning though, exploration is 
necessary. In the experiments here, the choice of explo­
rative actions is based on the estimation error when the 
action was last selected and the time since it was last 
selected, and hence combines error based and recency 
based properties. For an overview of other exploration 
policies, see [Thrun, 1992 . 

3 Development of Communication 
Situation concepts organize the possible inputs an agent 
may receive into groups such that experience gained w i th 
a certain input influences the reward estimation of sim­
ilar inputs. Apart from speeding up learning, this form 
of generalization provides a basis for the development of 
communication. Although the specific concepts agents 
create may differ, they result from a search for patterns 

Sensor space distinctions • Action space distinctions 

Figure 1: Example of a tree that defines situation con­
cepts. Nodes to the left of the dotted line divide up the 
sensor space by constraining the range of a sensor ( f and 
- represent the outcome of the inequality), nodes to the 
right divide up the action space. The dotted rectangle 
contains four situation concepts. 

in interactions w i th the same environment. If a rela­
tion between the individual concepts of the agents and 
a shared set of signals can be found, this would allow 
the agents to 'speak a common language'. To this end, 
agents maintain a set of signals for each situation. An 
association between a signal and a situation has a use 
score and a success score. When an agent is in situation 
5, it selects a signal associated wi th S and emits i t . Af­
ter every agent has produced the signal corresponding 
to its situation, every agent receives the collection of sig­
nals produced. Upon receiving these signals, each agent 
increases its use scores for the associations between these 
signals and the current si tuation. Since the conceptual 
systems of agents may differ, the signals associated wi th 
a certain state of the environment may differ from agent 
to agent. 

4 Benefitt ing f rom Communication 
The abil i ty to communicate enables a capacity of gain­
ing knowledge or information that cannot be attained 
through use of the ordinary perceptual devices. This 
advantage explains why so many animals, including hu­
mans, have retained the faculty to develop communica­
t ion in the course of evolution once it evolved. An in­
spiring example is the alarm call system of vervet mon­
keys. Ingenious experiments involving playing back the 
calls produced by these monkeys show that these animals 
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have a warning system wi th specific calls for different 
kinds of predators [Seyfarth et a/., 1980]. This example 
demonstrates the principle of how situation concepts can 
be useful when communicated. When a monkey did not 
detect the threat of an approaching predator, successful 
interpretation of the alarm calls produced by other com­
munity members may induce awareness of its perilous 
situation. Put in abstract terms, the signals an agent 
receives from the other agents allow it to deduce that 
its situation is different from what it had observed using 
ordinary perception. 

It should be understood that the ult imate meaning of 
a situation concept is determined by its predictive value, 
and not by the pattern in interaction history that has 
been observed to be correlated wi th this aspect of the 
future. In terms of the alarm calls example, the situ­
ation corresponds to the presence of a predator, rather 
than to the observation of the predator by a monkey, 
even though situation concepts are by necessity init ial ly 
constructed as correlations between interaction histories 
and consequences. Therefore, when a significant aspect 
of an agent's environment cannot be perceived directly 
through perception, communication may be the only way 
to determine the actual situation. 

The benefit of communication may surface when sen­
sor information is incomplete. The resulting uncertainty 
may be partial ly resolved by means of communication. 
Once a coherent mapping between situations and sig­
nals exists, the likelihood of being in a certain situation 
given the signals an agent receives can be determined 
using Hayes' formula: 

where is a signal that was perceived, and u is a situ­
ation. If the probabil i ty of a certain situation given the 
signals is high enough, the agent may decide that it is in 
that situation, and not in the situation indicated by its 
sensors (or, in general, its interaction history). 

The use of Hayes' formula assumes that a coherent 
mapping between sit nations and signals is already avail­
able. However, since this is init ial ly not the case, agents 
need to adapt their private associations between situa­
tions and signals. Depending on the process of adapta­
t ion, a coherent mapping may or may not emerge. Two 
sources of information are available as input to this adap­
tation process. Firstly, an agent may use its sensors 
to determine its situation and update the use scores of 
the associations between that situation and the signals 
it receives from the other agents. Secondly, the situa­
tion may be determined from the signals emitted by the 
other agents. To calculate the probabil i ty of being in a 
situation given the signals using Bayes' formula, a l in­
ear combination of the use and success scores is filled in 
for in the above formula; the remaining two 
values are obtained from counts of the occurence of sit­
uations and signals. This second source of information 
indicates more directly whether the link between a sig­
nal and a situation can increase the performance of the 
agent. Concretely, the estimated value of the action and 

the actual reward following the action are compared to 
decide whether the determination of the situation was 
correct or not. If the magnitude of the difference is small, 
the success scores of the associations between the signals 
and the situation should be increased. Conversely, if the 
absolute difference exceeds a threshold, they should be 
decreased. Sending signals is not followed by evaluation, 
and hence does not influence scores. 

Figure 2 shows an outline of the algorithm specifying 
when the situation is determined based on signals, and 
how association use and success are updated. 

Figure 2: An outline of the algorithm. The main choice 
is whether the agent uses signals or sensors to determine 
its situation. This choice determines whether to adapt 
the use or the success of the association between the 
situation and the signals received from other agents. 

5 Experimental Setup 
In the experiments, five agents can move horizontally 
and vertically on a gr id, see figure 8. Input consists of 
the agent's own horizontal and vertical coordinates, and 
an input indicating the type of a predator that is present 
or the absence of predators. Actions consist, of moving 
one step) left or right or staying, and selecting a vertical 
position. 

A predator of random type is created in 10% of the 
timesteps at a random horizontal position, provided no 
predator is present yet. Three different types of preda­
tors exist. The vertical position of an agent determines 
whether it is safe from the predator or not, and since 
the number of vertical positions is three, each position 
corresponds to a single type of predator. The horizontal 
position of an agent determines whether it can see the 
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Figure 3: Visualization of the experimental environ­
ment. Horizontal positions determine the visibi l i ty of 
the predator, vertical positions function as abstractions 
of hideaways (only the middle row is safe here). 

Figure 4: Histograms of the fraction of successful deter­
minations of the situation based on communication when 
a predator first arrives and is invisible to the agent. Each 
line is the average of five repetitions of the same exper­
iment. The interval during which a predator is present 
was varied between t = l and t=50 . The graph shows 
that when the interval is long enough, agents benefit 
from communication and determine the right situation 
in substantially more than the fraction of 1/3 (dotted line) 
that would be expected without communication. 

predator. The scope of the agents' perception amounts 
to 90% of the field; hence, for each agent, 10% of the 
predators are expected to be invisible. When a predator 
is invisible to an agent at creation time it wi l l remain 
so unti l it is removed again, i.e. unt i l the end of the 
situation. 

6 Measuring the Benefit of 
Communication 

The previous section demonstrated how communication 
may be of benefit to an agent. Our current purpose 
wi l l be to investigate whether this benefit does indeed 
arise. If such a benefit can be measured convincingly, 
this would indicate that an effective system of commu­
nication has emerged. 

If the predator is invisible to an agent, there is a chance 
of 1 in 3 that the agent can randomly select the right 
vertical position. But if the agent has the right vertical 
position in significantly more than a th i rd of all cases 
where a predator is present and invisible to the agent, 

this is an indication that the agent benefits from the sig­
nals it receives from other agents. However, this way of 
measurement has a possible problem. If a predator ar­
rives and is invisible to an agent, the agent wi l l receive 
a low success. Since the processes of learning and adap­
tat ion are active continuously, the agent's estimation of 
the position's attractiveness wi l l slowly but surely de­
crease. When the value of the action corresponding to 
the position has decreased below another action's value, 
and the agent wi l l start to choose that other action, and 
move to another position. The speed of this process may 
be increased by the exploration mechanism, which wi l l 
at times select the action of moving to another position 
upon which the value of that action increases, since its 
reward is higher than the original estimation. Because 
the number of positions is l imi ted, the agent wi l l even­
tually hi t the position where it 's safe from the predator. 

The problem can be circumvented in the following way. 
At the first timestep after the creation of a predator, 
the only information available to an agent for which the 
predator is invisible consists of the signals that are pro­
duced by other agents that can sec the predator. Thus, if 
the agent moves to the correct position at this timestep 
more often than in a th i rd of the cases, it must have 
extracted information f rom communication. Since the 
event that a predator is created and is invisible to an 
agent that uses the signals to determine its situation at 
that same moment is rather infrequent, the number of 
measurements is scarce. Therefore, this information is 
measured over a period of 50.000 timesteps. 

There are numerous factors that influence the course 
of the experiment, including the increase and decrease of 
association strengths, removal of infrequent signals, and 
selection of the signal an agent produces. However, a 
single factor has been found to be very strongly related 
to the development of successful communication. This 
factor is the durat ion of a si tuat ion, and the relationship 
can, besides the feasibility of learned communication of 
situation concepts, be seen as a general result of this 
research. 

Experiments have been performed where the duration 
t of the intervals dur ing which a predator is present var­
ied from a single timestep up to 50 timesteps. To visu­
alise the information, a histogram has been made where 
the fraction of correct situation determinations is cal­
culated over bins of 5.000 timesteps. In order to get 
a more reliable estimate, the experiment has been re­
peated a number of times for each parameter setting. 
Because of the durat ion of the experiments, the number 
of runs per parameter setting was l imited to 5. In the 
graph in figure 4, each line represents the average of five 
runs wi th different random seeds for a chosen duration 
of situations. 

The graph shows how the benefit of communication 
depends on the durat ion of the interval. When predators 
stay for only a single timestep, the fraction of successful 
determinations of the situation based on signals in case 
of an invisible predator stays well under one th i rd , which 
means that the agent is doing worse than when it would 
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randomly choose its position. However, as the duration 
of the intervals increases, so do performance and speed 
of convergence. For intervals of 3 or more timesteps, 
the fraction of successful guesses is already higher than 
a th i rd , and for intervals of 10 or more steps the agents 
reach perfection in determining which predator is present 
based on communication. 

7 Conclusions 
A model for the formation of a part icular type of con­
cepts, called situation concepts, has been described. Sit­
uation concepts capture information about how the envi­
ronment of an agent wi l l respond to its actions. They can 
be constructed by analysing patterns in the history of in­
teraction between the agent and its environment. Apart 
from providing a part icularly detailed model of concept 
formation, situation concepts are especially suited to 
serve as a basis for communication. Since agents interact 
wi th the same environment, successful communication of 
the situation allows agents to be better informed about 
their environment than their sensors alone would permit, 
which improves the abil i ty to select appropriate actions. 

Both the formation of situation concepts and the 
subsequent development of learned communication have 
been demonstrated in a simulation experiment. More­
over, the possible benefit of communication as an extra 
information source has been observed in the experiment 
by monitoring the actions of agents at moments when 
the sensors provided incomplete information. Finally, a 
strong relationship was found between the durat ion of 
situations and the development of successful communi­
cation. 
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