
The LPSAT Engine & its Appl icat ion to Resource Planning5

Steven A. Wolfman Daniel S. Weld
Department of Computer Science & Engineering

University of Washington, Box 352350
Seattle, WA 98195-2350 USA
{wolf, weld}@cs.washington.edu

Abstract
Compilation to boolean satisfiability has be­
come a powerful paradigm for solving AI prob­
lems. However, domains that require metric
reasoning cannot be compiled efficiently to SAT
even if they would otherwise benefit from com­
pilation. We address this problem by intro­
ducing the LCNF representation which combines
propositional logic wi th metric constraints. We
present LPSAT, an engine which solves LCNF
problems by interleaving calls to an incremental
simplex algorithm wi th systematic satisfaction
methods. We describe a compiler which con­
verts metric resource planning problems into
LCNF for processing by LPSAT. The experimen­
tal section of the paper explores several op­
timizations to LPSAT, including learning from
constraint failure and randomized cutoffs.

1 Introduct ion
Recent advances in satisfiability (SAT) solving technol­
ogy have rendered large, previously intractable prob­
lems quickly solvable [Crawford and Auton, 1993; Sel-
man et ai, 1996; Cook and Mitchel l , 1997; Bayardo
and Schrag, 1997; Li and Anbulagan, 1997; Gomes et
ai, 1998]. SAT solving has become so successful that
many other difficult tasks arc being compiled into propo­
sitional form to be solved as SAT problems. For ex­
ample, SAT-encoded solutions to graph coloring, plan­
ning, and circuit verification are among the fastest ap­
proaches to these problems [Ku i t z and Selman, 1996;
Selman et ai, 1997J.

But many real-world tasks have a metric aspect. For
instance, resource planning, temporal planning, schedul­
ing, and analog circuit verification problems all require

*We thank people who provided code, help, and discus­
sion. Greg Badros, Alan Born ing, Cor in Anderson, Mike
Ernst , Zack Ives, Subbarao Karnbhampat i , Henry Kautz ,
Jana Koehler, Tessa Lau, Denise Pinnel , Rachel Pott inger,
Bar t Selman, and the bl ind reviewers. This research was
funded in part by Office of Naval Research Grant N00014-
98-1-0147, by the ARCS foundat ion Barbara and Tom Ca­
ble fellowship, by Nat ional Science Foundat ion Grants I R I -
9303461 and IIS-9872128, and by a Nat ional Science Foun­
dat ion Graduate Fellowship.

Figure 1: Data flow in the demonstration resource plan­
ning system; space precludes discussion of the grey com­
ponents.

reasoning about real-valued quantities. Unfortunately,
metric constraints are difficult to express in SAT en­
codings1. Hence, a solver which could efficiently han­
dle both metric constraints and propositional formulae
would yield a powerful substrate for handling AI prob­
lems.

This paper introduces a new problem formulation,
LCNF, which combines the expressive power of proposi­
tional logic wi th that of linear equalities and inequalities.
We argue that LCNF provides an ideal target language
into which a compiler might translate tasks that combine
logical and metric reasoning. We also describe the LPSAT
LCNF solver, a systematic satisfiability solver integrated
wi th an incremental Simplex algori thm. As LPSAT ex­
plores the propositional search space it updates the set
of metric requirements managed by the linear program
solver; in turn, Simplex notifies the propositional solver
if these requirements become unsatisfiable.

We report on three optimizations to LPSAT: learn­
ing and backjumping, adapting LPSAT'S core heuristic to
trigger variables, and using random restarts. The most
effective of these is the combination of learning and back-
jumping; LPSAT learns new clauses by discovering expla­
nations for failure when a branch of its search terminates.
The resulting clauses guide backjumping and constrain
future t ru th assignments. In particular, we show that
analysis of the state of the linear program solver is cru­
cial in order to learn effectively from constraint conflicts.

To demonstrate the ut i l i ty of the LCNF approach, we
also present a ful ly implemented compiler for resource
planning problems. Figure 1 shows how the components
fit together. Their performance is impressive: LPSAT
solves large resource planning problems (encoded in a

E n c o d i n g each value as a separate boolean variable
is a simple but unwieldy solut ion; bitwise-encodings pro­
duce smaller formulae but ones which appear very hard to
solve [Ernst et ai, 1997].

310 CHALLENGE PAPERS

Figure 2: Port ion of a t iny LCNF logistics problem
(greatly simplified from compiler output) . A truck with
load and fuel l imits makes a delivery but is too small to
carry all load available (the AllLoaded constraint). Ital­
icized variables are boolean-valued; t ype face are real.

variant of the PDDL language [McDermott, 1998] based
on the metric constructs used by metric IPP [Koehler,
1998]), including a metric version of the A T T Logistics
domain [Kautz and Selman, 199G].

2 The LCNF Formalism
The LCNF representation combines a propositional logic
formula wi th a set of metric constraints. The kev to the
encoding is the simple but expressive concept of t r ig­
gers — each propositional variable may "trigger" a con­
straint; this constraint is then enforced whenever the
trigger variable's t ru th assignment is t r u e .

Formally, an LCNF problem is a five-tuple
in which R is a set of real-valued

variables, V is a set of propositional variables, is a
set of linear equality and inequality constraints over
variables in R, is a propositional formula in CNF
over variables in V, and T is a function from V to

which establishes the constraint triggered by each
propositional variable. We require that contain a
special n u l l constraint which is vacuously true, and this
is used as the T-value for a variable in V to denote that
it triggers no constraint. Moreover, for each variable v
we define

Under this definit ion, an assignment to an LCNF prob­
lem is a mapping, ά, from the variables in R to real val­
ues and from the variables in V to t ru th values. Given
an LCNF problem and an assignment, the set of active
constraints is
We say that an assignment satisfies the LCNF problem
if and only if it makes at least one literal true in each
clause of and satisfies the set of active constraints.

Figure 2 shows a fragment of a sample LCNF problem:
a truck, which carries a maximum load of 30 and fuel
level of 15, can make a Delivery by executing the Move
action. We discuss later why it cannot have a GoodTrip.

3 The LPSAT Solver
Our first step in constructing the LPSAT engine was to
choose solvers to use as the foundation for its metric
and propositional solving portions. The choice was mo­
tivated by the following criteria:

1. It must be easy to modify the propositional solver
in order to support triggers and handle reports of
inconsistency from the constraint reasoner.

2. The metric solver must support incremental modi­
fications to the constraint set.

3. Because a Simplex solve is more expensive than
setting a single propositional variable's value, the
propositional solver should minimize modifications
to the constraint set.

These principles led us to implement the LPSAT en­
gine by modifying the RELSAT satisfiability engine [Ba-
yardo and Schrag, 1997] and combining it w i th the
CASSOWARY constraint solver [Borning et a/., 1997;
Badros and Borning, 1998] using the method described
in [Nelson and Oppen, 1979]. RELSAT makes an excellent
start for processing LCNF for three reasons. First, it per­
forms a systematic, depth-first search through the space
of partial t ru th assignments; this minimizes changes to
the set of active metric constraints. Second, the code
is exceptionally well-structured. Th i rd , RELSAT incor­
porates powerful learning and backjumping optimiza­
tions. C A S S O W A R Y is an appropriate Simplex solver for
handling LCNF because it was designed to support and
quickly respond to small changes in its constraint set.

In order to build LPSAT, we modified RELSAT to in­
clude trigger variables and constraints. This required
four changes. First, the solver must trigger constraints
as the t ru th assignment changes. Second, the solver must
now check for a solvable constraint set to ensure that a
t ru th assignment is satisfying. Th i rd , the solver must
report in its solution not only a t ru th assignment to the
boolean variables, but an assignment of real values to the
constraint variables2. Finally, since even a purely posi­
tive trigger variable may (if set to t r u e) trigger an incon­
sistent constraint, pure l i teral elimination cannot act on
positive trigger variables3. Figure 3 displays pseudocode
for the resulting algori thm.

4 Incorporating Learning and
Backjumping

LPSAT inherits methods for learning and backjumping
from RELSAT [Bayardo and Schrag, 1997]. LPSAT's
depth-first search of the propositional search space cre­
ates a partial assignment to the boolean variables. When
the search fails, it is because the partial assignment
is inconsistent wi th the LCNF problem. LPSAT iden­
tifies an inconsistent subset of the t ru th assignments

2While the assignment to the constraint variables is opti­
mal according to CASSOWARY'S objective function, it is not
guaranteed to be the globally optimal assignment to the real
variables by the same measure; a different assignment to the
propositional variables might provide a better solution. So,
the specific function used is not vital (we use CASSOWARY'S
default which minimizes the slack in inequalities).

3This restriction falls in line with the pure literal elim­
ination rule if we consider the triggers themselves to be
clauses. The trigger from Fig­
ure 2 would then become the clause MaxLoad V (load <
30), and MaxLoad could no longer be purely positive.

WOLFMAN AND WELD 311

Figure 3: Core LPSAT algorithm (without learning or
backjumping). BAD? denotes a check for constraint in­
consistency; SOLVE returns constraint variable values.
T(u) returns the constraint triggered by u (possibly
n u l l) . E(u) denotes the result of setting literal u true
in E and simplifying.

Figure 4: Possible search tree for the constraints from
Figure 2. Each node is labeled wi th the variable set
at that node; branchpoints have true (T) and false (F)
branches. ± indicates an inconsistent constraint set.
The bold variables are members of the conflict set.

in the part ial assignment, a conflict set, and uses this
subset to learn in two ways. First, since making the
t ru th assignments represented in the conflict set leads
inevitably to failure, LPSAT can learn a clause disal­
lowing those particular assignments. For example, in
the problem from Figure 2 the constraints triggered by
setting MinFuel, MaxFuel, MaxLoad, and AllLoaded to
true are inconsistent, and MinFuel, MaxFuel, and Al-
lLoaded form a conflict set. So, LPSAT can learn the
clause . Second,
because continuing the search is futi le unt i l at least one
of the variables in the conflict set has its t ru th assign­
ment changed, LPSAT can backjump in its search to the
deepest branch points at which a conflict set variable re­
ceived its assignment, ignoring any deeper branch points.
Figure 4 shows a search tree in which MinFuel, MaxFuel,
MaxLoad, and AllLoaded have all been set to true. Using
the conflict set containing MinFuel, MaxFuel, and All-
Loaded, LPSAT can backjump past the branchpoint for
MaxLoad to the branchpoint for MinFuel, the deepest
member of the conflict set which is a branchpoint.

However, while LPSAT inherits methods to use con­
flict sets from RELSAT, LPSAT must produce those conflict
sets for both propositional and constraint failures while

Figure 5: Graphical depiction of the constraints from
Figure 2. The shaded area represents solutions to the
set of solid-line constraints. The dashed AllLoaded con­
straint causes an inconsistency.

RELSAT produces them only for propositional failures.
Thus, given a propositional failure LPSAT uses RELSAT's
conflict set discovery mechanism unchanged, learning a
set based on two of the clauses which led to the con­
tradict ion [Bayardo and Schrag, 1997]. For a constraint
conflict, however, LPSAT identifies an inconsistent sub­
set of the active constraints, and the propositional tr ig­
gers for these constraint compose the conflict set. We
examine two methods for identifying these inconsistent
subsets.

In our first method, called global conflict set discovery,
LPSAT includes the entire set of active constraints in the
conflict set. This mechanism is simple but often subop-
t imal since a smaller conflict set would provide greater
pruning action. Indeed, preliminary experiments showed
that - while global conflict set discovery did increase
solver speed over a solver w i th no learning or backjump­
ing facil ity - the conflict sets were on average twice as
large as those found for logical conflicts.

In our second method, called minimal conflict set dis­
covery, LPSAT identifies a (potential ly) much smaller
set of constraints which are responsible for the conflict.
Specifically, our technique identifies an inconsistent con­
flict set of which every proper subset is consistent.

Figure 5 illustrates the constraints from the example in
Figure 2. The constraints MaxLoad, MaxFuel, and Min­
Fuel and the impl ic i t constraints that f u e l and l oad be
non-negative are all consistent; however, w i th the intro­
duction of the dashed constraint marked AllLoaded the
constraint set becomes inconsistent. Informally, LPSAT
finds a minimal conflict set by identifying only those con­
straints which are, together, in greatest conflict w i th the
new constraint. We now discuss how LPSAT discovers
the conflicting constraints in this figure and which set it
discovers.

When LPSAT adds the AllLoaded constraint to
CASSOWARY'S constraint set, C A S S O W A R Y ini t ial ly adds
a "slack" version of the constraint which allows error and
is thus t r iv ia l ly consistent w i th the current constraint
set. This error is then minimized by the same routine
used to minimize the overall objective function [Badros
and Borning, 1998]. In Figure 5, we show the minimiza­
t ion as a move from the in i t ia l solution at the upper
left corner point to the solution at the upper right cor­
ner point of the shaded region. The error in the solu­
t ion is the horizontal distance from the solution point to
the new constraint AllLoaded. Since no further progress

312 CHALLENGE PAPERS

within the shaded region can be made toward AllLoaded,
the error has been minimized; however, since the error
is non-zero, the strict constraint is inconsistent.

At this point, LPS AT uses "marker variables" (which
CASSOWARY adds to each original constraint) to estab­
lish the conflict set. A marker variable is a variable that
was added by exactly one of the original constraints and
thus identifies the constraint in any derived equations.
LPSAT examines the derived equation that gives the er­
ror for the new constraint, and notes that each constraint
wi th a marker variable in this equation contributes to
keeping the error non-zero. Thus, all the constraints
identified by this equation, plus the new constraint it-
self, compose a conflict set.

In Figure 5 the MinFuel and MaxFuel constraints re­
strain the solution point from coming closer to the All-
Loaded line. If the entire active constraint set were any
two of those three constraints, the intersection of the
two constraints' lines would be a valid solution; however,
there is no valid solution wi th all three constraints.

Note that another conflict set (AllLoaded plus
MaxLoad) exists w i th even smaller cardinality than the
one we find. In general, there may be many minimal
conflict sets, and our conflict discovery technique wi l l
discovery only one of these, wi th no guarantee of discov­
ering the global minimum. Some of these sets may prove
to have better pruning action, but we know of no way
to find the best minimal conflict set efficiently. How­
ever, the minimal conflict set t.s at least as good as (and
usually better than) any of its supersets.

A brief proof that our technique wil l return a min­
imal conflict set appears in the longer version of this
paper [Wolfman and Weld, 1999].

5 The Resource P lann ing A p p l i c a t i o n
In order to demonstrate LPSAT'S ut i l i ty, we implemented
a compiler for metric planning domains (starting from
a base of IPP'S [Koehler et a/., 1997] and B L A C K -
BOX'S [Kautz and Selman, 1998] parsers) which trans­
lates resource planning problems into LCNF form. Af­
ter LPSAT solves the LCNF problem, a small decoding
unit maps the resulting boolean and real-valued assign­
ments into a solution plan (Figure 1). We believe that
this translate/solve/decode architecture is effective for a
wide variety of problems.

5.1 Act ion Language
Our planning problems are specified in an extension
of the PDDL language [McDermott, 1998]; we support
PDDL typing, equality, quantified goals and effects, dis­
junctive preconditions, and conditional effects. In ad­
di t ion, we handle metric values wi th two new built-
in types: float and fluent. A float's value may not
change over the course of a plan, whereas a fluent's value
may change from time step to t ime step. Moreover,
we support fluent- and float-valued functions, such as
?d is tance[Nagoya,Stockho lm] .

Floats and fluents are manipulated wi th three special
bui l t- in predicates: t e s t , se t , and i n f l u e n c e . Test
statements are used as predicates in action precondi­
tions; se t and i n f l u e n c e are used in effects. As its argu-

Figure 6: Two actions which can execute in parallel, but
which cannot be serialized.

ment, t e s t takes a constraint (an equality or inequality
between two expressions composed of floats, fluents, and
basic arithmetic operations); it evaluates to true if and
only if the constraint holds. Set and i n f l u e n c e each
take two arguments: the object (a float or fluent) and an
expression. If an action causes a set to be asserted, the
object's value after the action is defined to be the expres­
sion's value before the action. An asserted i n f l u e n c e
changes an object's value by the value of the expression,
as in the equation object :— object + expression] mul­
tiple simultaneous i n f l u e n c e s are cumulative in their
effect [Falkenhainer and Forbus, 1988].

5.2 Plan Encoding

The compiler uses a regular action representation wi th
explanatory frame axioms and conflict exclusion [Ernst
et a/., 1997]. We adopt a standard fluent model in which
time takes nonnegative integer values. State-fluents oc­
cur at even-numbered times and actions at odd times.
The ini t ia l state is completely specified at t ime zero, in­
cluding all properties presumed false by the closed-world
assumption.

Each t e s t , se t , and i n f l u e n c e statement compiles
to a propositional variable that triggers the associated
constraint. Just as logical preconditions and effects are
implied by their associated actions, the triggers for met­
ric preconditions and effects are implied by their actions.

The compiler must generate frame axioms for con­
straint variables as well as for propositional variables,
but the axiomatizations are very different. Explanatory
frames are used for boolean variables, while for real vari­
ables, compilation proceeds in two steps. First, we create
a constraint which, if activated, wi l l set the value of the
variable at the next step equal to its current value plus
all the influences that might act on it (untriggered influ­
ences arc set to zero). Next, we construct a clause which
activates this constraint unless some action actually sets
the variable's value.

For a parallel encoding, the compiler must consider
certain se t and i n f l u e n c e statements to be mutually
exclusive. For simplicity, we adopt the following con­
vention: two actions are mutually exclusive if and only
if at least one se ts a variable which the other either
i n f l u e n c e s or se ts .

This exclusivity policy results in a plan which is cor­
rect if actions at each step are executed str ict ly in par­
allel; however, the actions may not be serializable, as
demonstrated in Figure 6. In order to make parallel
actions arbitrar i ly serializable, we would have to adopt
more restrictive exclusivity conditions and a less expres­
sive format for our t e s t statements.

WOLFMAN AND WELD 313

Figure 7: Solution times for three versions of LPSAT in
the metric logistics domain. No learning or backjumping
is performed in the line marked "No learning." Global
conflict sets and minimal conflict sets use progressively
better learning algorithms. Note that the final point on
each curve reaches the resource cutoff (one hour).

6 Expe r imen ta l Resul ts
There are currently few available metric planners wi th
which to compare LPSAT. The Z E N O system [Penberthy
and Weld, 1994] is more expressive than our system, but
Z E N O is unable even to complete easy-1 our simplest-
metric logistics problem. There are only a few results
available for Koehler's metric IPP system (Koehler, 1998],
and code is not yet available for direct comparisons.

In light of this, this section concentrates on displaying
results for LPSAT in an interesting domain and on de­
scribing the heuristics and optimization we used to en­
hance LPSAT'S performance. We report LPSAT solve time,
running on a Pentium II 450 MHz processor wi th 128 MB
of R A M , averaged over 20 runs per problem, and show­
ing 95 percent confidence intervals. We do not include
compile time for the (unoptimized) compiler since the
paper's focus is the design and optimization of LPSAT;
however, compile time can be substantial (e.g., twenty
minutes on log-c).

We report on a sequence of problems in the metric
logistics domain, which includes all the features of the
A T T logistics domain [Kautz and Selrnan, 1996]: air­
planes and trucks moving packages among cities and
sites within cities. However, our metric version adds
fuel and distances between cities; airplanes and trucks
both have individual maximum fuel capacities, consume
fuel to move (the amount is per t r ip for trucks and based
on distance between cities for airplanes), and can refuel
at depots, log-a through log-d are the same as the A T T
problems except for the addit ion of fuel, easy-1 through
easy-4 are simplifications of log-a w i th more elements re­
tained in the higher numbered problems. We report on
highly successful experiments wi th learning and back-
jumping as well as two other interesting optimizations.

6.1 Learning and Backjumping
The results in Figure 7 demonstrate the improvement
in solving times resulting from activating the learning
and backjumping facilities which were described in Sec­
tion 4. Runs were cut off after one hour of solve time (the
minimal conflict set technique ran over an hour only on
log-d). Wi thout learning or backjumping LPSAT quickly

Figure 8: Solution times for two types of random
restarts. Tuned cutoff uses raw experimental data to
select a constant cutoff. Cutoff doubling starts wi th a
cutoff of one second and doubles it on each run.

exceeds the maximum time allotted to i t . W i t h learning
and backjumping activated using global conflict sets, the
solver handles larger problems and runs faster. Our best
method, minimal conflict sets, quickly solves even some
of the harder problems in the metric logistics domain.

6.2 Spl i t t ing Heurist ic
Line 7 of the LPSAT pseudocode (Figure 3) makes a non-
deterministic choice of variable v before the recursive
call, and the splitting heuristic used to guide this choice
can bias performance. We expected the standard RELSAT
heuristic to perform poorly (due to a overly strong pref­
erence for trigger variables) for two reasons: 1) the tr ig­
ger itself is an impl ici t clause which is resolved when a
trigger variable is set, and 2) each time the solver modi­
fies a trigger variable, i t may call C A S S O W A R Y , and these
calls often dominate runtime. We tr ied several methods
of including information about the trigger variables in
the spl i t t ing heuristic, including adding and mult iplying
the score of trigger variables by a user-settable prefer­
ence value. To our surprise, however, we were unable
to achieve significant improvement (although increasing
the preference for trigger variables did slow execution).
These results lead us to suspect that either that L C N F
problems are generally insensitive to our heuristics or
that our compilation of metric planning domains already
encodes information about trigger variables in the struc­
ture of the problem. Further experiments wi l l decide the
issue.

6.3 Random Restarts
Because LPSAT uses a randomized backtracking algo­
r i thm and because early experimental results showed a
small percentage of runs far exceeded the median run­
t ime, we experimented wi th random restarts using a pro­
cess similar to the one described in [Gomes et a/., 1998].
We cut off solving at a deadline which can be ei­
ther fixed beforehand or geometrically increasing — and
restart the solver w i th a new random seed.

Figure 8 shows the results of these experiments. We
first ran the algorithm twenty times on each problem
to produce the "Raw" entries4. Then, we calculated the

4 Al l three sets of runs use minimal conflict sets, learning,
and backjumping.

314 CHALLENGE PAPERS

cutoff t ime which minimized the expected runtime of the
system based on these twenty runs. Finally, we reran
the problems w i th this tuned cutoff t ime to produce the
"Tuned Cutoff" data.

Whi le this technique provides some speedup on log-b
and impressive speedup on log-c, it requires substantial,
preliminary research into the difficulty of the problem (in
order to determine the appropriate cutoff t ime). Unless
LPS AT is being used repeatedly to solve a single problem
or several very similar problems, the process of finding
good restart times wi l l dominate overall runtime.

Therefore, we also experimented wi th a restart system
which requires no prior analysis. This "Cutoff doubling"
approach sets an ini t ial restart l imi t of one second and
increases that l imi t by a factor of two on each restart
unti l reaching a solution. We have not yet performed any
theoretical analysis of the effectiveness of this technique,
but Figure 8 demonstrates a small improvement. More
interesting than the average improvement, however, is
the fact that this method improved the consistency of
the runtimes on the harder problems; indeed, on log-c
five of the twenty "Raw" runs lasted longer than the
longest "Cutoff doubling" run.

7 Related Work
Limited space precludes a survey of propositional satis­
fiabil ity algorithms and linear programming methods in
this paper. See [Cook and Mitchel l , 1997] for a survey
of satisfiability and [Karloff, 1991] for a survey of linear
programming.

Our work was inspired by the idea of compiling prob­
abilistic planning problems to MA.JSAT [Majercik and
L i t tman, 1998]. It seemed that if one could extend the
SAT "v i r tual machine" to support probabilistic reason­
ing, then it would be useful to consider the orthogonal
extension to handle metric constraints.

Other researchers have combined logical and con­
straint reasoning, usually in the context of programming
languages. CLPR may be thought of as an integration
of Prolog and linear programming, and this work intro­
duced the notion of incremental Simplex [Jaffar et a/.,
1992]. Saraswat's thesis (Saraswat, 1989] formulates a
family of programming languages which operate through
the incremental construction of a constraint framework.
C H I P [Van Hentenryck, 1989] augments logic program­
ming wi th the tools to efficiently solve constraint satis­
faction problems (e.g., consistency checking), but deals
only wi th variables over finite domains. NUMERICA ex­
tends this work by adding a variety of differential equa­
tion solvers to the mix [Van Hentenryck, 1997]. Hooker
et al. describe a technique for combining linear program­
ming and constraint propagation [Hooker et a/., 1999].

BLACKBOX uses a translate/solve/decode scheme for
planning and satisfiability [Kautz and Selman, 1998].
ZENO is a causal l ink temporal planner which handled
resources by calling an incremental Simplex algorithm
within the plan-refinement loop [Penberthy and Weld,
1994]. The G R A P H P L A N [Blum and Furst, 1995] descen­
dant IPP has also been extended to handle metric rea­
soning in its plan graph [Koehler, 1998]. SIPE [Wilkins,

1990] and OPLAN [Currie and Tate, 1991] are indus­
tr ia l strength planners which include resource planning
capabilities. Two recent systems address the metric
planning problem using compilation to integer program­
ming [Kautz and Walser, 1999; Vossen et a/., 1999].

8 Conclusions and Future Work
LPS AT is a promising new technique that combines the
strengths of fast satisfiability methods wi th an incremen­
tal Simplex algorithm to efficiently handle problems in­
volving both propositional and metric reasoning. This
paper makes the following contributions:

• We defined the LCNF formalism for combining
boolean satisfiability with linear (in)equalities.

• We implemented the LPSAT solver for LCNF by com-
bining the RELSAT satisfiability solver [Bayardo and
Schrag, 1997] wi th the CASSOWARY constraint rea-
soner iBadros and Borning, 1998].

• We experimented wi th three optimizations for
LPSAT: adapting the spl i t t ing heuristic to trigger
variables, adding random restarts, and incorporat­
ing learning and backjumping. Using minimal con­
flict sets to guide learning and backjumping pro­
vided four orders of magnitude speedup.

• We implemented a compiler for resource planning
problems, LPSAT'S performance with this compiler
was much better than that of ZENO [Penberthy and
Weld, 1994].

Much remains to be done. There are many ways we
could improve the compiler: improving its runtime by
optimizing exclusion detection, exploring new exclusion
encodings, optimizing the number of constraints used for
influences, and improving our handling of conditional ef­
fects. In addit ion, we wish to investigate the issue of tun­
ing restarts to problems, including a thorough investiga­
tion of exponentially growing resource l imits. It would
also be interesting to implement an LCNK solver based on
a stochastic engine. We hope to add support for more
expressive constraints by adding nonlinear solvers.

References
[Badros and Borning, 1998] Greg J. Badros and Alan Born­

ing. The Cassowary Linear Arithmetic Constraint Solving
Algorithm: Interface and Implementation. Technical Re­
port 98-06-04, University of Washington, Department of
Computer Science and Engineering, June 1998.

[Bayardo and Schrag, 1997] R. Bayardo and R. Schrag. Us­
ing CSP look-back techniques to solve real-world SAT in­
stances. In Proceedings of the Fourteenth National Confer­
ence on Artificial Intelligence, pages 203 208, Providence,
R.I., July 1997. Menlo Park, Calif.: AAAI Press.

[Blum and Furst, 1995] A. Blum and M. Furst. Fast plan­
ning through planning graph analysis. In Proceedings of
the Fourteenth International Joint Conference on Artifi­
cial Intelligence, pages 1636 1642. San Francisco, Calif.:
Morgan Kaufmann, 1995.

[Borning et a/., 1997] Alan Borning, Kim Marriott, Peter
Stuckey, and Yi Xiao. Solving linear arithmetic constraints
for user interface? applications. In Proceedings of the 1997

W0LFMAN AND WELD 315

ACM Symposium on User Interface Software and Technol-
ogy, October 1997.

[Cook and Mi tche l l , 1997] S. Cook and D. Mi tchel l . F ind ing
hard instances of the satisf iabi l i ty problem: A survey. Pro-
ceedings of the DIM ACS Workshop on Satisfiability Prob­
lems, pages 11-13, 1997.

[Crawford and A u t o n , 1993] J. Crawford and L. Au ton . Ex­
per imenta l results on the cross-over point in satisf iabi l i ty
problems. In Proceedings of the Eleventh National Confer-
ence on Artificial Intelligence, pages 21-27. Menlo Park,
Calif.: A A A I Press, 1993.

[Curr ie and Tate, 1991] K. Curr ie and A. Tate. O-plan:
the open planning architecture. Artificial Intelligence,
52(l) :49-86, November 1991.

[Ernst et al, 1997] M. Ernst , T. Mi l ls te in , and D. Weld. A u ­
tomat ic SAT-compi lat ion of planning problems. In Pro­
ceedings of the Fifteenth International Joint Conference
on Artificial Intelligence, pages 1169-1176. San Francisco,
Calif.: Morgan Kau fmann , 1997.

[Falkenhainer and Forbus, 1988] B. Falkenhainer and
K. Forbus. Sett ing up large scale qual i tat ive models.
In Proceedings of the Seventh National Conference on
Artificial Intelligence, pages 301-306. Menlo Park, Calif.:
A A A I Press, August 1988. Repr inted in [Weld and de
Kleer, 1989].

[Gomes et a/., 1998] C.P. Gomes, B. Selman, and H. Kautz .
Boost ing combinator ia l search through randomizat ion. In
Proceedings of the Fifteenth National Conference on Arti­
f icial Intelligence, pages 431-437, Madison, W I , July 1998.
Menlo Park, Calif.: A A A I Press.

[Hooker et ai, 1999] J .N. Hooker, G. Ottosson, E.S.
Thorsteinsson, and H. K i m . On integrat ing constraint
propagation and linear programming for combinator ia l
opt imizat ion. In Proceedings of the Sixteenth National
Conference on Artificial Intelligence, Or lando, F lor ida,
July 1999. Menlo Park, Calif.: A A A I Press.

[Jaffar et al, 1992] Joxan Jaffar, Spiro Michaylov, Peter
Stuckey, and Roland Yap. The CLP(7v) Language and
System. ACM Transactions on Programming Languages
and Systems, 14(3):339 395, July 1992.

[Karloff, 1991] H. Karloff. Linear Programming. Birkhauser,
Boston, 1991.

[Kautz and Selman, 1996] H. Kau tz and B. Selman. Pushing
the envelope: Planning, proposit ional logic, and stochas­
t ic search. In Proceedings of the Thirteenth National Con­
ference on Artificial Intelligence, pages 1194-1201. Menlo
Park, Calif.: A A A I Press, 1996.

[Kautz and Selman, 1998] H. Kau tz and B. Selman. Black-
box. A new approach to the appl icat ion of theorem prov­
ing to problem solving. In A IPS98 Workshop on Planning
as Combinatorial Search, pages 58-60. P i t t sburgh , Penn.:
Carnegie Mel lon University, June 1998.

[Kautz and Walser, 1999] H. Kau tz and J.P. Walser. State-
space planning by integer opt imizat ion. In Proceedings
of the Sixteenth National Conference on Artificial Intel­
ligence, Or lando, Flor ida, July 1999. Menlo Park, Calif.:
A A A I Press.

[Koehler et ai, 1997] J. Koehler, B. Nebel, J. Hof fmann, and
Y Dimopoulos. Extending p lanning graphs to an A D L
subset. In Proceedings of the Fourth European Conference
on Planning, pages 273-285. Ber l in , Germany: Springer-
Verlag, Sept 1997.

[Koehler, 1998] J. Koehler. P lann ing under resource con­
straints. In Proceedings of the Thirteenth European Confer­
ence on Artificial Intelligence, pages 489-493. Chichester,
U K : John Wi ley & Sons, 1998.

[Li and Anbulagan, 1997] C. Li and Anbulagan. Heuristics
based on un i t propagat ion for sat isf iabi l i ty problems. In
Proceedings of the Fifteenth International Joint Conference
on Artificial Intelligence, pages 366-371. San Francisco,
Calif.: Morgan Kau fmann , August 1997.

[Majercik and L i t t m a n , 1998] S. M. Majerc ik and M. L.
L i t t m a n . M A X P L A N : a new approach to probabil ist ic
p lanning. In Proceedings of the Fourth International Con­
ference on Artificial Intelligence Planning Systems, pages
86-93. Menlo Park, Calif.: A A A I Press, June 1998.

[McDermot t , 1998] Drew McDermot t . PDDL — The Plan­
ning Domain Definition Language. AIPS-98 Compet i t ion
Commit tee, draf t 1.6 ed i t ion, June 1998.

[Nelson and Oppen, 1979] Greg Nelson and Derek C. Op-
pen. Simpl i f icat ion by cooperat ing decision procedures.
ACM Transactions on Programming Languages and Sys­
tems, 1(2):245~ 257, October 1979.

[Penberthy and Weld , 1994] J.S. Penberthy and D. Weld.
Temporal p lanning w i t h continuous change. In Proceed­
ings of the Twelfth National Conference on Artificial In­
telligence. Menlo Park, Calif.: A A A I Press, July 1994.

[Saraswat, 1989] V i jay A. Saraswat. Concurrent Constraint
Programming Languages. P h D thesis, Carnegie-Mellon
Universi ty, Computer Science Depar tment , January 1989.

[Selman et al, 1996] B. Selman, H. Kau tz , and B. Cohen.
Local search strategies for sat isf iabi l i ty testing. DIM ACS
Series in Discrete Mathematics and Theoretical Computer
Science, 26:521 532, 1996.

[Selman et al., 1997] Bar t Selman, Henry Kautz , and Dav id
McAllester. Computa t iona l challenges in proposit ional
reasoning and search. In Proceedings of the Fifteenth Inter­
national Joint Conference on Artificial Intelligence, pages
50-54. San Francisco, Calif.: Morgan Kau fmann , 1997.

[Van Hentenryck, 1989] Pascal Van Hentenryck. Constraint
Satisfaction in Logic Programming. M I T Press, Cam­
bridge, M A , 1989. '

[Van Hentenryck, 1997] P. Van Hentenryck. Numerica: A
model ing language for global opt imizat ion. In Proceedings
of the Fifteenth International Joint Conference on Artifi­
cial Intelligence, 1997.

[Vossen et al, 1999] T. Vossen, M. Ba l l , A. Lo tem, and
D. Nau. On the use of integer programming models
in ai p lanning. In Proceedings of the Sixteenth Interna­
tional Joint Conference on Artificial Intelligence, Stock­
ho lm, Sweden, Aug 1999. San Francisco, Calif.: Morgan
Kau fmann.

[Weld and de Kleer, 1989] D. Weld and J. de Kleer, editors.
Readings in Qualitative Reasoning about Physical Systems.
Morgan Kau fmann , San Mateo, C A , August 1989.

[Wi lk ins, 1990] D. Wi l k ins . Can AI planners solve pract i ­
cal problems? Computational Intelligence, 6(4):232-246,
November 1990.

[Wolfman and Weld , 1999] S. Wol fman and D. Weld. The
L P S A T system and its App l ica t ion to Resource Planning.
Technical Repor t 99-04-04, Univers i ty of Washington, De­
par tment of Computer Science and Engineering, A p r i l
1999.

316 CHALLENGE PAPERS

