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Abstract 
Compilation to boolean satisfiability has be­
come a powerful paradigm for solving AI prob­
lems. However, domains that require metric 
reasoning cannot be compiled efficiently to SAT 
even if they would otherwise benefit from com­
pilation. We address this problem by intro­
ducing the LCNF representation which combines 
propositional logic wi th metric constraints. We 
present LPSAT, an engine which solves LCNF 
problems by interleaving calls to an incremental 
simplex algorithm wi th systematic satisfaction 
methods. We describe a compiler which con­
verts metric resource planning problems into 
LCNF for processing by LPSAT. The experimen­
tal section of the paper explores several op­
timizations to LPSAT, including learning from 
constraint failure and randomized cutoffs. 

1 Introduct ion 
Recent advances in satisfiability (SAT) solving technol­
ogy have rendered large, previously intractable prob­
lems quickly solvable [Crawford and Auton, 1993; Sel-
man et ai, 1996; Cook and Mitchel l , 1997; Bayardo 
and Schrag, 1997; Li and Anbulagan, 1997; Gomes et 
ai, 1998]. SAT solving has become so successful that 
many other difficult tasks arc being compiled into propo­
sitional form to be solved as SAT problems. For ex­
ample, SAT-encoded solutions to graph coloring, plan­
ning, and circuit verification are among the fastest ap­
proaches to these problems [Ku i t z and Selman, 1996; 
Selman et ai, 1997J. 

But many real-world tasks have a metric aspect. For 
instance, resource planning, temporal planning, schedul­
ing, and analog circuit verification problems all require 
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Figure 1: Data flow in the demonstration resource plan­
ning system; space precludes discussion of the grey com­
ponents. 

reasoning about real-valued quantities. Unfortunately, 
metric constraints are difficult to express in SAT en­
codings1. Hence, a solver which could efficiently han­
dle both metric constraints and propositional formulae 
would yield a powerful substrate for handling AI prob­
lems. 

This paper introduces a new problem formulation, 
LCNF, which combines the expressive power of proposi­
tional logic wi th that of linear equalities and inequalities. 
We argue that LCNF provides an ideal target language 
into which a compiler might translate tasks that combine 
logical and metric reasoning. We also describe the LPSAT 
LCNF solver, a systematic satisfiability solver integrated 
wi th an incremental Simplex algori thm. As LPSAT ex­
plores the propositional search space it updates the set 
of metric requirements managed by the linear program 
solver; in turn, Simplex notifies the propositional solver 
if these requirements become unsatisfiable. 

We report on three optimizations to LPSAT: learn­
ing and backjumping, adapting LPSAT'S core heuristic to 
trigger variables, and using random restarts. The most 
effective of these is the combination of learning and back-
jumping; LPSAT learns new clauses by discovering expla­
nations for failure when a branch of its search terminates. 
The resulting clauses guide backjumping and constrain 
future t ru th assignments. In particular, we show that 
analysis of the state of the linear program solver is cru­
cial in order to learn effectively from constraint conflicts. 

To demonstrate the ut i l i ty of the LCNF approach, we 
also present a ful ly implemented compiler for resource 
planning problems. Figure 1 shows how the components 
fit together. Their performance is impressive: LPSAT 
solves large resource planning problems (encoded in a 

E n c o d i n g each value as a separate boolean variable 
is a simple but unwieldy solut ion; bitwise-encodings pro­
duce smaller formulae but ones which appear very hard to 
solve [Ernst et ai, 1997]. 
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Figure 2: Port ion of a t iny LCNF logistics problem 
(greatly simplified from compiler output) . A truck with 
load and fuel l imits makes a delivery but is too small to 
carry all load available (the AllLoaded constraint). Ital­
icized variables are boolean-valued; t ype face are real. 

variant of the PDDL language [McDermott, 1998] based 
on the metric constructs used by metric IPP [Koehler, 
1998]), including a metric version of the A T T Logistics 
domain [Kautz and Selman, 199G]. 

2 The LCNF Formalism 
The LCNF representation combines a propositional logic 
formula wi th a set of metric constraints. The kev to the 
encoding is the simple but expressive concept of t r ig­
gers — each propositional variable may "trigger" a con­
straint; this constraint is then enforced whenever the 
trigger variable's t ru th assignment is t r u e . 

Formally, an LCNF problem is a five-tuple 
in which R is a set of real-valued 

variables, V is a set of propositional variables, is a 
set of linear equality and inequality constraints over 
variables in R, is a propositional formula in CNF 
over variables in V, and T is a function from V to 

which establishes the constraint triggered by each 
propositional variable. We require that contain a 
special n u l l constraint which is vacuously true, and this 
is used as the T-value for a variable in V to denote that 
it triggers no constraint. Moreover, for each variable v 
we define 

Under this definit ion, an assignment to an LCNF prob­
lem is a mapping, ά, from the variables in R to real val­
ues and from the variables in V to t ru th values. Given 
an LCNF problem and an assignment, the set of active 
constraints is 
We say that an assignment satisfies the LCNF problem 
if and only if it makes at least one literal true in each 
clause of and satisfies the set of active constraints. 

Figure 2 shows a fragment of a sample LCNF problem: 
a truck, which carries a maximum load of 30 and fuel 
level of 15, can make a Delivery by executing the Move 
action. We discuss later why it cannot have a GoodTrip. 

3 The LPSAT Solver 
Our first step in constructing the LPSAT engine was to 
choose solvers to use as the foundation for its metric 
and propositional solving portions. The choice was mo­
tivated by the following criteria: 

1. It must be easy to modify the propositional solver 
in order to support triggers and handle reports of 
inconsistency from the constraint reasoner. 

2. The metric solver must support incremental modi­
fications to the constraint set. 

3. Because a Simplex solve is more expensive than 
setting a single propositional variable's value, the 
propositional solver should minimize modifications 
to the constraint set. 

These principles led us to implement the LPSAT en­
gine by modifying the RELSAT satisfiability engine [Ba-
yardo and Schrag, 1997] and combining it w i th the 
CASSOWARY constraint solver [Borning et a/., 1997; 
Badros and Borning, 1998] using the method described 
in [Nelson and Oppen, 1979]. RELSAT makes an excellent 
start for processing LCNF for three reasons. First, it per­
forms a systematic, depth-first search through the space 
of partial t ru th assignments; this minimizes changes to 
the set of active metric constraints. Second, the code 
is exceptionally well-structured. Th i rd , RELSAT incor­
porates powerful learning and backjumping optimiza­
tions. C A S S O W A R Y is an appropriate Simplex solver for 
handling LCNF because it was designed to support and 
quickly respond to small changes in its constraint set. 

In order to build LPSAT, we modified RELSAT to in­
clude trigger variables and constraints. This required 
four changes. First, the solver must trigger constraints 
as the t ru th assignment changes. Second, the solver must 
now check for a solvable constraint set to ensure that a 
t ru th assignment is satisfying. Th i rd , the solver must 
report in its solution not only a t ru th assignment to the 
boolean variables, but an assignment of real values to the 
constraint variables2. Finally, since even a purely posi­
tive trigger variable may (if set to t r u e ) trigger an incon­
sistent constraint, pure l i teral elimination cannot act on 
positive trigger variables3. Figure 3 displays pseudocode 
for the resulting algori thm. 

4 Incorporating Learning and 
Backjumping 

LPSAT inherits methods for learning and backjumping 
from RELSAT [Bayardo and Schrag, 1997]. LPSAT's 
depth-first search of the propositional search space cre­
ates a partial assignment to the boolean variables. When 
the search fails, it is because the partial assignment 
is inconsistent wi th the LCNF problem. LPSAT iden­
tifies an inconsistent subset of the t ru th assignments 

2While the assignment to the constraint variables is opti­
mal according to CASSOWARY'S objective function, it is not 
guaranteed to be the globally optimal assignment to the real 
variables by the same measure; a different assignment to the 
propositional variables might provide a better solution. So, 
the specific function used is not vital (we use CASSOWARY'S 
default which minimizes the slack in inequalities). 

3This restriction falls in line with the pure literal elim­
ination rule if we consider the triggers themselves to be 
clauses. The trigger from Fig­
ure 2 would then become the clause MaxLoad V (load < 
30), and MaxLoad could no longer be purely positive. 
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Figure 3: Core LPSAT algorithm (without learning or 
backjumping). BAD? denotes a check for constraint in­
consistency; SOLVE returns constraint variable values. 
T(u) returns the constraint triggered by u (possibly 
n u l l ) . E(u) denotes the result of setting literal u true 
in E and simplifying. 

Figure 4: Possible search tree for the constraints from 
Figure 2. Each node is labeled wi th the variable set 
at that node; branchpoints have true (T) and false (F) 
branches. ± indicates an inconsistent constraint set. 
The bold variables are members of the conflict set. 

in the part ial assignment, a conflict set, and uses this 
subset to learn in two ways. First, since making the 
t ru th assignments represented in the conflict set leads 
inevitably to failure, LPSAT can learn a clause disal­
lowing those particular assignments. For example, in 
the problem from Figure 2 the constraints triggered by 
setting MinFuel, MaxFuel, MaxLoad, and AllLoaded to 
true are inconsistent, and MinFuel, MaxFuel, and Al-
lLoaded form a conflict set. So, LPSAT can learn the 
clause . Second, 
because continuing the search is futi le unt i l at least one 
of the variables in the conflict set has its t ru th assign­
ment changed, LPSAT can backjump in its search to the 
deepest branch points at which a conflict set variable re­
ceived its assignment, ignoring any deeper branch points. 
Figure 4 shows a search tree in which MinFuel, MaxFuel, 
MaxLoad, and AllLoaded have all been set to true. Using 
the conflict set containing MinFuel, MaxFuel, and All-
Loaded, LPSAT can backjump past the branchpoint for 
MaxLoad to the branchpoint for MinFuel, the deepest 
member of the conflict set which is a branchpoint. 

However, while LPSAT inherits methods to use con­
flict sets from RELSAT, LPSAT must produce those conflict 
sets for both propositional and constraint failures while 

Figure 5: Graphical depiction of the constraints from 
Figure 2. The shaded area represents solutions to the 
set of solid-line constraints. The dashed AllLoaded con­
straint causes an inconsistency. 

RELSAT produces them only for propositional failures. 
Thus, given a propositional failure LPSAT uses RELSAT's 
conflict set discovery mechanism unchanged, learning a 
set based on two of the clauses which led to the con­
tradict ion [Bayardo and Schrag, 1997]. For a constraint 
conflict, however, LPSAT identifies an inconsistent sub­
set of the active constraints, and the propositional tr ig­
gers for these constraint compose the conflict set. We 
examine two methods for identifying these inconsistent 
subsets. 

In our first method, called global conflict set discovery, 
LPSAT includes the entire set of active constraints in the 
conflict set. This mechanism is simple but often subop-
t imal since a smaller conflict set would provide greater 
pruning action. Indeed, preliminary experiments showed 
that - while global conflict set discovery did increase 
solver speed over a solver w i th no learning or backjump­
ing facil ity - the conflict sets were on average twice as 
large as those found for logical conflicts. 

In our second method, called minimal conflict set dis­
covery, LPSAT identifies a (potential ly) much smaller 
set of constraints which are responsible for the conflict. 
Specifically, our technique identifies an inconsistent con­
flict set of which every proper subset is consistent. 

Figure 5 illustrates the constraints from the example in 
Figure 2. The constraints MaxLoad, MaxFuel, and Min­
Fuel and the impl ic i t constraints that f u e l and l oad be 
non-negative are all consistent; however, w i th the intro­
duction of the dashed constraint marked AllLoaded the 
constraint set becomes inconsistent. Informally, LPSAT 
finds a minimal conflict set by identifying only those con­
straints which are, together, in greatest conflict w i th the 
new constraint. We now discuss how LPSAT discovers 
the conflicting constraints in this figure and which set it 
discovers. 

When LPSAT adds the AllLoaded constraint to 
CASSOWARY'S constraint set, C A S S O W A R Y ini t ial ly adds 
a "slack" version of the constraint which allows error and 
is thus t r iv ia l ly consistent w i th the current constraint 
set. This error is then minimized by the same routine 
used to minimize the overall objective function [Badros 
and Borning, 1998]. In Figure 5, we show the minimiza­
t ion as a move from the in i t ia l solution at the upper 
left corner point to the solution at the upper right cor­
ner point of the shaded region. The error in the solu­
t ion is the horizontal distance from the solution point to 
the new constraint AllLoaded. Since no further progress 
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within the shaded region can be made toward AllLoaded, 
the error has been minimized; however, since the error 
is non-zero, the strict constraint is inconsistent. 

At this point, LPS AT uses "marker variables" (which 
CASSOWARY adds to each original constraint) to estab­
lish the conflict set. A marker variable is a variable that 
was added by exactly one of the original constraints and 
thus identifies the constraint in any derived equations. 
LPSAT examines the derived equation that gives the er­
ror for the new constraint, and notes that each constraint 
wi th a marker variable in this equation contributes to 
keeping the error non-zero. Thus, all the constraints 
identified by this equation, plus the new constraint it-
self, compose a conflict set. 

In Figure 5 the MinFuel and MaxFuel constraints re­
strain the solution point from coming closer to the All-
Loaded line. If the entire active constraint set were any 
two of those three constraints, the intersection of the 
two constraints' lines would be a valid solution; however, 
there is no valid solution wi th all three constraints. 

Note that another conflict set (AllLoaded plus 
MaxLoad) exists w i th even smaller cardinality than the 
one we find. In general, there may be many minimal 
conflict sets, and our conflict discovery technique wi l l 
discovery only one of these, wi th no guarantee of discov­
ering the global minimum. Some of these sets may prove 
to have better pruning action, but we know of no way 
to find the best minimal conflict set efficiently. How­
ever, the minimal conflict set t.s at least as good as (and 
usually better than) any of its supersets. 

A brief proof that our technique wil l return a min­
imal conflict set appears in the longer version of this 
paper [Wolfman and Weld, 1999]. 

5 The Resource P lann ing A p p l i c a t i o n 
In order to demonstrate LPSAT'S ut i l i ty, we implemented 
a compiler for metric planning domains (starting from 
a base of IPP'S [Koehler et a/., 1997] and B L A C K -
BOX'S [Kautz and Selman, 1998] parsers) which trans­
lates resource planning problems into LCNF form. Af­
ter LPSAT solves the LCNF problem, a small decoding 
unit maps the resulting boolean and real-valued assign­
ments into a solution plan (Figure 1). We believe that 
this translate/solve/decode architecture is effective for a 
wide variety of problems. 

5.1 Act ion Language 
Our planning problems are specified in an extension 
of the PDDL language [McDermott, 1998]; we support 
PDDL typing, equality, quantified goals and effects, dis­
junctive preconditions, and conditional effects. In ad­
di t ion, we handle metric values wi th two new built-
in types: float and fluent. A float's value may not 
change over the course of a plan, whereas a fluent's value 
may change from time step to t ime step. Moreover, 
we support fluent- and float-valued functions, such as 
?d is tance[Nagoya,Stockho lm] . 

Floats and fluents are manipulated wi th three special 
bui l t- in predicates: t e s t , se t , and i n f l u e n c e . Test 
statements are used as predicates in action precondi­
tions; se t and i n f l u e n c e are used in effects. As its argu-

Figure 6: Two actions which can execute in parallel, but 
which cannot be serialized. 

ment, t e s t takes a constraint (an equality or inequality 
between two expressions composed of floats, fluents, and 
basic arithmetic operations); it evaluates to true if and 
only if the constraint holds. Set and i n f l u e n c e each 
take two arguments: the object (a float or fluent) and an 
expression. If an action causes a set to be asserted, the 
object's value after the action is defined to be the expres­
sion's value before the action. An asserted i n f l u e n c e 
changes an object's value by the value of the expression, 
as in the equation object :— object + expression] mul­
tiple simultaneous i n f l u e n c e s are cumulative in their 
effect [Falkenhainer and Forbus, 1988]. 

5.2 Plan Encoding 

The compiler uses a regular action representation wi th 
explanatory frame axioms and conflict exclusion [Ernst 
et a/., 1997]. We adopt a standard fluent model in which 
time takes nonnegative integer values. State-fluents oc­
cur at even-numbered times and actions at odd times. 
The ini t ia l state is completely specified at t ime zero, in­
cluding all properties presumed false by the closed-world 
assumption. 

Each t e s t , se t , and i n f l u e n c e statement compiles 
to a propositional variable that triggers the associated 
constraint. Just as logical preconditions and effects are 
implied by their associated actions, the triggers for met­
ric preconditions and effects are implied by their actions. 

The compiler must generate frame axioms for con­
straint variables as well as for propositional variables, 
but the axiomatizations are very different. Explanatory 
frames are used for boolean variables, while for real vari­
ables, compilation proceeds in two steps. First, we create 
a constraint which, if activated, wi l l set the value of the 
variable at the next step equal to its current value plus 
all the influences that might act on it (untriggered influ­
ences arc set to zero). Next, we construct a clause which 
activates this constraint unless some action actually sets 
the variable's value. 

For a parallel encoding, the compiler must consider 
certain se t and i n f l u e n c e statements to be mutually 
exclusive. For simplicity, we adopt the following con­
vention: two actions are mutually exclusive if and only 
if at least one se ts a variable which the other either 
i n f l u e n c e s or se ts . 

This exclusivity policy results in a plan which is cor­
rect if actions at each step are executed str ict ly in par­
allel; however, the actions may not be serializable, as 
demonstrated in Figure 6. In order to make parallel 
actions arbitrar i ly serializable, we would have to adopt 
more restrictive exclusivity conditions and a less expres­
sive format for our t e s t statements. 
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Figure 7: Solution times for three versions of LPSAT in 
the metric logistics domain. No learning or backjumping 
is performed in the line marked "No learning." Global 
conflict sets and minimal conflict sets use progressively 
better learning algorithms. Note that the final point on 
each curve reaches the resource cutoff (one hour). 

6 Expe r imen ta l Resul ts 
There are currently few available metric planners wi th 
which to compare LPSAT. The Z E N O system [Penberthy 
and Weld, 1994] is more expressive than our system, but 
Z E N O is unable even to complete easy-1 our simplest-
metric logistics problem. There are only a few results 
available for Koehler's metric IPP system (Koehler, 1998], 
and code is not yet available for direct comparisons. 

In light of this, this section concentrates on displaying 
results for LPSAT in an interesting domain and on de­
scribing the heuristics and optimization we used to en­
hance LPSAT'S performance. We report LPSAT solve time, 
running on a Pentium II 450 MHz processor wi th 128 MB 
of R A M , averaged over 20 runs per problem, and show­
ing 95 percent confidence intervals. We do not include 
compile time for the (unoptimized) compiler since the 
paper's focus is the design and optimization of LPSAT; 
however, compile time can be substantial (e.g., twenty 
minutes on log-c). 

We report on a sequence of problems in the metric 
logistics domain, which includes all the features of the 
A T T logistics domain [Kautz and Selrnan, 1996]: air­
planes and trucks moving packages among cities and 
sites within cities. However, our metric version adds 
fuel and distances between cities; airplanes and trucks 
both have individual maximum fuel capacities, consume 
fuel to move (the amount is per t r ip for trucks and based 
on distance between cities for airplanes), and can refuel 
at depots, log-a through log-d are the same as the A T T 
problems except for the addit ion of fuel, easy-1 through 
easy-4 are simplifications of log-a w i th more elements re­
tained in the higher numbered problems. We report on 
highly successful experiments wi th learning and back-
jumping as well as two other interesting optimizations. 

6.1 Learning and Backjumping 
The results in Figure 7 demonstrate the improvement 
in solving times resulting from activating the learning 
and backjumping facilities which were described in Sec­
tion 4. Runs were cut off after one hour of solve time (the 
minimal conflict set technique ran over an hour only on 
log-d). Wi thout learning or backjumping LPSAT quickly 

Figure 8: Solution times for two types of random 
restarts. Tuned cutoff uses raw experimental data to 
select a constant cutoff. Cutoff doubling starts wi th a 
cutoff of one second and doubles it on each run. 

exceeds the maximum time allotted to i t . W i t h learning 
and backjumping activated using global conflict sets, the 
solver handles larger problems and runs faster. Our best 
method, minimal conflict sets, quickly solves even some 
of the harder problems in the metric logistics domain. 

6.2 Spl i t t ing Heurist ic 
Line 7 of the LPSAT pseudocode (Figure 3) makes a non-
deterministic choice of variable v before the recursive 
call, and the splitting heuristic used to guide this choice 
can bias performance. We expected the standard RELSAT 
heuristic to perform poorly (due to a overly strong pref­
erence for trigger variables) for two reasons: 1) the tr ig­
ger itself is an impl ici t clause which is resolved when a 
trigger variable is set, and 2) each time the solver modi­
fies a trigger variable, i t may call C A S S O W A R Y , and these 
calls often dominate runtime. We tr ied several methods 
of including information about the trigger variables in 
the spl i t t ing heuristic, including adding and mult iplying 
the score of trigger variables by a user-settable prefer­
ence value. To our surprise, however, we were unable 
to achieve significant improvement (although increasing 
the preference for trigger variables did slow execution). 
These results lead us to suspect that either that L C N F 
problems are generally insensitive to our heuristics or 
that our compilation of metric planning domains already 
encodes information about trigger variables in the struc­
ture of the problem. Further experiments wi l l decide the 
issue. 

6.3 Random Restarts 
Because LPSAT uses a randomized backtracking algo­
r i thm and because early experimental results showed a 
small percentage of runs far exceeded the median run­
t ime, we experimented wi th random restarts using a pro­
cess similar to the one described in [Gomes et a/., 1998]. 
We cut off solving at a deadline which can be ei­
ther fixed beforehand or geometrically increasing — and 
restart the solver w i th a new random seed. 

Figure 8 shows the results of these experiments. We 
first ran the algorithm twenty times on each problem 
to produce the "Raw" entries4. Then, we calculated the 

4 Al l three sets of runs use minimal conflict sets, learning, 
and backjumping. 
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cutoff t ime which minimized the expected runtime of the 
system based on these twenty runs. Finally, we reran 
the problems w i th this tuned cutoff t ime to produce the 
"Tuned Cutoff" data. 

Whi le this technique provides some speedup on log-b 
and impressive speedup on log-c, it requires substantial, 
preliminary research into the difficulty of the problem (in 
order to determine the appropriate cutoff t ime). Unless 
LPS AT is being used repeatedly to solve a single problem 
or several very similar problems, the process of finding 
good restart times wi l l dominate overall runtime. 

Therefore, we also experimented wi th a restart system 
which requires no prior analysis. This "Cutoff doubling" 
approach sets an ini t ial restart l imi t of one second and 
increases that l imi t by a factor of two on each restart 
unti l reaching a solution. We have not yet performed any 
theoretical analysis of the effectiveness of this technique, 
but Figure 8 demonstrates a small improvement. More 
interesting than the average improvement, however, is 
the fact that this method improved the consistency of 
the runtimes on the harder problems; indeed, on log-c 
five of the twenty "Raw" runs lasted longer than the 
longest "Cutoff doubling" run. 

7 Related Work 
Limited space precludes a survey of propositional satis­
fiabil ity algorithms and linear programming methods in 
this paper. See [Cook and Mitchel l , 1997] for a survey 
of satisfiability and [Karloff, 1991] for a survey of linear 
programming. 

Our work was inspired by the idea of compiling prob­
abilistic planning problems to MA.JSAT [Majercik and 
L i t tman, 1998]. It seemed that if one could extend the 
SAT "v i r tual machine" to support probabilistic reason­
ing, then it would be useful to consider the orthogonal 
extension to handle metric constraints. 

Other researchers have combined logical and con­
straint reasoning, usually in the context of programming 
languages. CLPR may be thought of as an integration 
of Prolog and linear programming, and this work intro­
duced the notion of incremental Simplex [Jaffar et a/., 
1992]. Saraswat's thesis (Saraswat, 1989] formulates a 
family of programming languages which operate through 
the incremental construction of a constraint framework. 
C H I P [Van Hentenryck, 1989] augments logic program­
ming wi th the tools to efficiently solve constraint satis­
faction problems (e.g., consistency checking), but deals 
only wi th variables over finite domains. NUMERICA ex­
tends this work by adding a variety of differential equa­
tion solvers to the mix [Van Hentenryck, 1997]. Hooker 
et al. describe a technique for combining linear program­
ming and constraint propagation [Hooker et a/., 1999]. 

BLACKBOX uses a translate/solve/decode scheme for 
planning and satisfiability [Kautz and Selman, 1998]. 
ZENO is a causal l ink temporal planner which handled 
resources by calling an incremental Simplex algorithm 
within the plan-refinement loop [Penberthy and Weld, 
1994]. The G R A P H P L A N [Blum and Furst, 1995] descen­
dant IPP has also been extended to handle metric rea­
soning in its plan graph [Koehler, 1998]. SIPE [Wilkins, 

1990] and OPLAN [Currie and Tate, 1991] are indus­
tr ia l strength planners which include resource planning 
capabilities. Two recent systems address the metric 
planning problem using compilation to integer program­
ming [Kautz and Walser, 1999; Vossen et a/., 1999]. 

8 Conclusions and Future Work 
LPS AT is a promising new technique that combines the 
strengths of fast satisfiability methods wi th an incremen­
tal Simplex algorithm to efficiently handle problems in­
volving both propositional and metric reasoning. This 
paper makes the following contributions: 

• We defined the LCNF formalism for combining 
boolean satisfiability with linear (in)equalities. 

• We implemented the LPSAT solver for LCNF by com-
bining the RELSAT satisfiability solver [Bayardo and 
Schrag, 1997] wi th the CASSOWARY constraint rea-
soner iBadros and Borning, 1998]. 

• We experimented wi th three optimizations for 
LPSAT: adapting the spl i t t ing heuristic to trigger 
variables, adding random restarts, and incorporat­
ing learning and backjumping. Using minimal con­
flict sets to guide learning and backjumping pro­
vided four orders of magnitude speedup. 

• We implemented a compiler for resource planning 
problems, LPSAT'S performance with this compiler 
was much better than that of ZENO [Penberthy and 
Weld, 1994]. 

Much remains to be done. There are many ways we 
could improve the compiler: improving its runtime by 
optimizing exclusion detection, exploring new exclusion 
encodings, optimizing the number of constraints used for 
influences, and improving our handling of conditional ef­
fects. In addit ion, we wish to investigate the issue of tun­
ing restarts to problems, including a thorough investiga­
tion of exponentially growing resource l imits. It would 
also be interesting to implement an LCNK solver based on 
a stochastic engine. We hope to add support for more 
expressive constraints by adding nonlinear solvers. 
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