
Compi l ing Knowledge into Decomposable Negation Normal Form
A d n a n Darw iche

Cognitive Systems Laboratory
Department of Computer Science

University of California
Los Angeles, CA 90024
darwiche@cs. ucla. edu

Abs t rac t

We propose a method for compiling proposi-
t ional theories into a new tractable form that
we refer to as decomposable negation normal
form (DNNF). We show a number of results
about our compilation approach. First, we
show that every propositional theory can be
compiled into D N N F and present an algorithm
to this effect. Second, we show that if a clausal
form has a bounded treewidth, then its DNNF
compilation has a linear size and can be com­
puted in linear t ime — treewidth is a graph-
theoretic parameter which measures the con­
nectivity of the clausal form. Th i rd , we show
that once a propositional theory is compiled
into DNNF, a number of reasoning tasks, such
as satisfiability and forgett ing, can be per­
formed in linear t ime. Finally, we propose two
techniques for approximating the DNNF com­
pilat ion of a theory when the size of such com­
pilation is too large to be practical. One of
the techniques generates a sound but incom­
plete compilation, while the other generates a
complete but unsound compilation. Together,
these approximations bound the exact compi­
lation from below and above in terms for their
abil i ty to answer queries.

1 I n t r o d u c t i o n
Compil ing propositional theories has emerged as a new
technique for enhancing the computational efficiency of
automated reasoning systems. The basic idea here is
to split the computational effort of such systems into
two phases, off-line and on-line. In the off-line phase,
a propositional theory is compiled into a tractable form
which is then used in an on-line phase to answer mult iple
queries. The main value of such compilation is that most
of the computational overhead is shifted into the off-line
phase, which is amortized over all on-line queries.

One of the key approaches for compiling propositional
theories has been proposed in [7]. Here, a propositional
theory is compiled in an off-line phase into a Horn the­
ory, which is used in an on-line phase to answer mult iple

queries. As it is not always possible to compile a propo­
sitional theory into a Horn theory, the propositional the­
ory is generally compiled into two Horn theories, which
approximate the original theory from below and above
in terms of logical strength.

In this paper, we propose to compile propositional the­
ories into a new form, which we call decomposable nega­
tion normal form (DNNF). This form is a generalization
of disjunctive normal form (DNF) and a specialization of
negation normal form (NNF) [l] . D N N F is tractable as
the satisfiability of theories expressed in D N N F can be
decided in linear t ime. In fact, a number of other inter­
esting reasoning tasks, such as forgetting [6], can also be
performed in linear t ime on theories expressed in DNNF.

We show a number of results about our compilation
approach. First, contrary to compilations into Horn the­
ories, we show that every propositional theory can be
compiled into D N N F and present an algorithm to this
effect. Second, we show that if a clausal form has a
bounded treewidth, then it has a linear DNNF com­
pilation which can be computed in linear t ime. Here,
treewidth is a graph-theoretic parameter which measures
the connectivity of a given clausal form. Even when
the clausal form does not have a bounded treewidth, we
show that its D N N F compilation is exponential only in
its treewidth and linear in all other aspects. Finally,
we present two techniques for approximating the D N N F
compilation of a propositional theory in case such com­
pilat ion is too large to be practical. One of the tech­
niques generates a sound but incomplete compilation,
while the other generates a complete but unsound com­
pi lat ion. Together, these approximations bound the ex­
act compilation from below and above in terms of their
abi l i ty to answer queries.

This paper is structured as follows. Section 2 in­
troduces D N N F and its various properties. Section 3
discusses the compilation of propositional theories into
DNNF. Section 4 discusses the two techniques for ap­
proximating a D N N F compilation and Section 5 focuses
on the operation of forgett ing. Finally, Section 6 closes
wi th some concluding remarks. Proofs of theorems can
be found in the long version of the paper [4].

284 CHALLENGE PAPERS

Figure 1: A proposi t ional sentence in D N N F .

2 Decomposable N N F
A proposi t ional sentence is in negat ion normal fo rm
(N N F) i f i t is constructed f rom l i terals using only the
conjoin and disjoin operators [l] . F igure 1 shows a sen­
tence in N N F depicted as a rooted, directed acyclic graph
where the chi ldren of each node are shown below it in
the graph. Each leaf node represents a l i tera l and each
non-leaf node represents a conjunct ion or a d is junct ion.
We w i l l also al low true and -^ false to appear as leaves
in a D N N F to denote a conjunct ion w i t h no conjuncts.
Simi lar ly, we w i l l al low false and -trne as leaves to rep­
resent a d is junct ion w i t h no dis juncts. The size of an
N N F is measured by the number of edges in its graph­
ical representat ion. Note tha t every dis junct ive normal
fo rm (D N F) is an N N F , and tha t every conjunct ive nor­
ma l form (CNF) is an N N F . There are NNFs , however,
t ha t are neither DNFs nor CNFs.

Our concern here is ma in ly w i t h a subclass of NNFs :

D e f i n i t i o n 1 A decomposable negation normal form
(DNNF) is a negation normal form satisfying the decom-
posability property: for any conjunction /\, a, appearing
in the form, no atoms are si tared by the conjuncts a^.

The N N F in Figure 1 is decomposable. I t has ten con­
junct ions and the conjuncts of each share no atoms.
Decomposabi l i ty is the proper ty which makes D N N F
t ractable. We w i l l explore th is proper ty at length later,
bu t we f irst note tha t every D N F is also a D N N F . 1

Therefore, al l propert ies tha t we shall prove of D N N F s
also hold for DNFs . A question tha t may arise then is
why not compile proposi t ional theories into DNFs? As
i t turns out , there are proposi t ional theories tha t have
l inear D N N F representations, yet exponent ial D N F rep­
resentations. For example, consider a proposi t ional the­
ory over n atoms, which is satisfied exact ly by models
in which an odd number of atoms is set to t rue repre­
sents the odd-par i t y func t ion) . The D N F representation
of th is theory is known to be exponent ia l in n. However,
the theory has a D N N F representat ion which is l inear in
n. F igure 1 depicts such representat ion for n — A.

Proposi t ional theories in D N N F are t ractable:

*We assume that in the DNF . , no atoms are
shared by the literals in

1. Decid ing the sat isf iabi l i ty of a D N N F can be done
in l inear t ime.

2. Forget t ing about some atoms in a D N N F can be
done in l inear t ime [6].

3. Comput ing the m i n i m u m card ina l i ty of models tha t
satisfy a D N N F can be done in l inear t ime, where
card inal i ty is the number of atoms tha t are set to
t rue (or false) by the model [3].

The last task has appl icat ions to model-based diagnosis
and is outside the scope of this paper. Our focus here
w i l l be on the first two tasks, which we consider next.

By a clause (over d is t inct atoms p1,... , p n) , we wi l l
mean a d is junct ion where is either or

By an instant ia t ion (of d is t inct atoms ,
we w i l l mean a conjunct ion We star t w i t h
a l inear test for deciding the sat isf iabi l i ty of NNFs.

D e f i n i t i o n 2 Let SAT? be a predicate over NNFs de-
fined as follows. SAT?(/) is true where I is a literal.

) is true iff each S A T ? is true,
is true iff some SAT? is true.

It should be clear tha t the predicate SAT?(a) can be
evaluated in t ime which is l inear in the size of N N F a.
The previous test is sound and complete for DNNFs :

T h e o r e m 1 DNNF is satisfiable iff is true.

Now tha t we have a sat isf iabi l i ty test, we can also
define an entai lment test. Specifically, to test whether

entails clause we only need to test whether
is satisfiable. Note, however, t ha t even though bo th a
and may be in D N N F , their conjunct ion is
not guaranteed to be in D N N F as and may share
atoms. Th is can be easily dealt w i t h , however, using the
not ion of cond i t ion ing:

D e f i n i t i o n 3 Let be a propositional sentence and let
be an instantiation. The conditioning of on written

is the sentence which results from replacing each
atom p in with true if the positive literal p appears in

and with false if the negative literal appears in

For example, cond i t ion ing the
on ins tant ia t ion and
condi t ion ing i t on gives
Cond i t ion ing allows us to e l iminate reference to atoms
whi le preserving sat isf iabi l i ty :

T h e o r e m 2 For DNNF a and instantiation is
in DNNF, and is satisfiable i f f i s satisfiable.

Therefore, to test whether D N N F entails clause , we
only need to test whether a | ---ZB is satisfiable, which
is guaranteed to be in D N N F . We can now define a l i n ­
ear entai lment test for D N N F s . Actua l ly , we w i l l (more
generally) define i t for NNFs :

D e f i n i t i o n 4 For NNF and clause define to
be true when SAT? is false, where is the in­
stantiation negating clause ..

This l inear test is bo th sound and complete for D N N F s :

T h e o r e m 3 For DNNF a and clause

DARWICHE 285

Figure 2: A preposi t ional sentence in D N N F .

Consider the D N N F ά in Figure 1, the clause
-B , and suppose we want to test whether

Theorem 3 suggests that we condi t ion ά on ,
to yield , and then test whether S A T ? > is
false. Figure 2 depicts the condi t ion ing of a on and
the result of apply ing the SAT? test. Since SAT?
is false, we conclude and also

Before we close this section, we present three impor­
tant results on D N N F entai lment. F i rs t , that the entai l ­
ment test is sound w i t h respect, to sentences in N N F :

T h e o r e m 4 For NNF

T h a t is, even though may not be decomposable, the
entai lment test is st i l l sound, but not necessarily com-
plete. Even completeness of this test, however, can be
guaranteed under the fo l lowing condi t ion.

D e f i n i t i o n 5 NNF ά is decomposable, except on atoms
X iff for any conjunction that appears in only
atoms in X are shared by the conjunct

For example, the is decom­
posable except on B.

T h e o r e m 5 Let be an NNF -which, is decomposable
except on X. Let be a clause which mentions all atoms
in X. Then

Consider the N N F and the
queries Since is decompos­
able except on B, the test is sound and complete w i th
respect to the first two queries bu t is only sound w i th
respect to the t h i r d query. Par t ia l decomposabi l i ty is
extremely impor tan t in pract ice since the less decompos­
able a sentence is, the smaller its size wi l l be. F inal ly :

T h e o r e m 6 For NNFr which is decomposable except
on X, and for clause for each
clause over atoms appearing in X but not in B.

Therefore, if the size of X is bounded by a constant,
then can be decided in linear t ime for any query
B, even though ά i tself is not decomposable.

3 Compil ing Knowledge into D N N F
We established two main results in the previous section.
F i rs t , we identi f ied the class of D N N F theories. Second,

Figure 3: A decomposi t ion tree.

we showed tha t sat isf iabi l i ty and entai lment can be de­
cided in l inear t ime w i t h respect to D N N F theories. Our
goal in this section is two fo ld. F i rs t , to prove tha t every
proposi t ional theory can be expressed in D N N F . Second
to provide an a lgo r i thm for this purpose.

The fo l lowing theorem is the key to prov ing tha t even
proposi t ional theory can be converted in to D N N F .

T h e o r e m 7 Let and be two propositional sen
tences in DNNF. Let be the sentence

where is an instantiation of all atom:
shared by a n d . Then is in DNNF and i:
equivalent to

Here is a recursive a lgor i thm DNNF1), based on the
above theorem, which converts any clausal form intc
an equivalent theory in D N N F :

1. If contains a single clause ά, DNNFl

2. Otherwise,
T '

DNNF is a part i­
t ion of the clauses in and is an ins tant ia t ion o
the atoms shared by arrd

This a lgor i thm converts any theory in clausal fo rm intf
an equivalent theory in D N N F , bu t at the expense o:
increasing the theory size. The increase in size comet
main ly f rom the case analysis performed on the atoms

286 CHALLENGE PAPERS

We have two key observations about the above proce­
dure. F i rs t , the size of resul t ing D N N F is very sensitive
to the way we spl i t the theory in to two sub-theories
and . Second, the above procedure is not determinis­
tic, since it does not specify how to spl i t the theory in to
two sub-theories. To make the procedure determinist ic ,
we wi l l ut i l ize a decomposi t ion tree, which represents a
recursive pa r t i t i on ing of the clauses in

D e f i n i t i o n 6 A decomposition tree T for clausal form
is a full binary tree whose leaves correspond to the

clauses in . If N is the leaf node corresponding to

clause Ά in

Figure 4: Compi l i ng a theory in to D N N F .

Figure 5: Compi l i ng a theory in to D N N F .

Figure 3 depicts a decomposit ion tree for the theory
A which contains the clauses

For a decomposit ion tree to be useful computat ional ly ,
we need to associate some in fo rmat ion w i t h each of its
nodes. F i rs t , for every in ternal node N: N1 and Nr de­
note the loft and r ight chi ldren of N, respectively, and

. Second, atoms(N) is defined as
the set of atoms appear ing in clauses (A r) . For exam­
ple, in Figure 3, I contains the clauses and

and atoms(112) contains the atoms A,B and C.
Given a. decomposit ion tree for theory , Figure 1

depicts an a lgor i thm which compiles into D N N F .

T h e o r e m 8 DNNFl returns„,(Ar) in DNNF.

Therefore, to convert a theory into D N N F , we
first construct a decomposit ion tree T for and call
DNNFl (N true) w i t h N being the root of tree T. The
fo l lowing is an impor tan t observation about DNNFl:

T h e o r e m 9 If and agree on atoms(N), then
DNNFl is equivalent to DNNFl

Therefore, we can improve on DNNFl by associat­
ing a cache w i t h each node N to store1 the result of
DNNFl) indexed by the pro ject ion of instant ia t ion

on atoms(N), denoted project (). When
another recursive call DNNFl is made, we first
check the cache of node N to see whether we have an
entry for project . If we do. we return i t .
Otherwise, we continue w i t h the recursion. Th is im­
provement leads to the refined a lgor i thm in Figure 5.

We now address the complex i ty of DNNF2.

D e f i n i t i o n 7 Let N be a 'node in a decomposition tree
T. The cluster of node N is defined as follows:

• If N is a leaf node, then its cluster is atoms(N).

• If N is an internal node, then its cluster is the set
of atoms that appear either

— above and. below node N in the tree; or
— in the left and rigid subtrees of node N.

The width of a decomposition tree is the size of its max­
imal cluster minus one.

In Figure 3, wo have cluster [n1) — \C}, cluster (n2) —
{ B , C } , clustering - {A,B}, cluster{nA) = {B,C} and
cluster(n5) = {C,D}. Therefore, the decomposit ion tree
has width 1.

T h e o r e m 10 Let T be the decomposition tree used in
Figure 5. The time and space complexity of the algorithm
in Figure 5 is 0{nw2w), where n is the number of leaf
nodes in tree T and w is its width.2

Therefore, the complexi ty of compi l ing a proposi t ional
theory in to D N N F depends crucial ly on the qual i ty
(w id th) of decomposit ion tree used. The question now
is how to construct good decomposit ion trees (ones w i th
small w id th)? As it turns out , there, is a device in the
l i terature on graph-based reasoning, known as a jo intree,
which can be easily converted into a decomposit ion tree.
A jo int ree also has a w id th and good jointrees are those
w i t h small w i d t h . We can easily convert, a jo intree into a
decomposit ion tree whi le ma in ta in ing its w id th . There­
fore, any good method for construct ing jointrees is also
a good method for construct ing decomposit ion trees. A
jointree, however, is constructed for an undirected graph
while a decomposit ion tree is constructed for a proposi­
t ional theory. The fo l lowing def in i t ion makes the con­
nect ion.

D e f i n i t i o n 8 [5] Let be a propositional theory in
clausal form. The interaction graph for is the undi­
rected graph G constructed as follows. The nodes of G
arc the atoms of . There is an edge between two atoms
in G iff the atoms appear in the same clause of

T h e o r e m 1 1 Let be a propositional theory in clausal
form and let G be its interaction graph. Let J be a join-
tree for G with, width. w There is a decomposition tree
for which has width, w and which, can be constructed
from J in time linear in the size of J.

The w id th of the best jo in t ree for a graph G is known
as the treewidth of G. If the t reewid th of a graph is
bounded by a constant w, then one can construct an op­
t imal jo intree in l inear t ime [2|. A major impl icat ion of
this result is tha t if a clausal form has an interact ion
graph w i t h a bounded t reewid th , then (a) comput ing
an opt imal decomposit ion tree (jointree) for tha t the­
ory, (b) compi l ing the theory based on the computed
decomposit ion tree, and (c) answering queries based on

2Note that if T is a decomposition tree for a clausal form
, then n is also the number of clauses in

DARWICHE 287

Figure 6: A prepositional sentence in DNNF.

the resulting compilation, can all be done in linear t ime.
This is our central result on the complexity of compiling
theories into DNNF. 3

We stress, however, that the interaction graph of a
theory may not have a bounded treewidth, yet the the­
ory may have a polynomial compilation into DNNF,
Consider the theory =

. The interaction graph of
this theory has treewidth n, yet it has a D N N F compi­
lation of size 0(n2) (shown in Figure 6 for n = 3).

The theory we just considered is not equivalent to any
Horn theory. In fact, even its Horn approximation is
known to be exponential in n [7], This shows that there
are theories wi th exponential Horn approximations, yet
polynomial DNNF representations.

4 Approximate Compilat ion
What if we have a theory for which the best decom­
position tree has an unacceptable width? We have two
key choices to address this problem. First, we can t ry to
improve on algorithm DNNF2. Second, we can t ry to gen­
erate an approximate compilation, which is the direction
we shall peruse in this section.

Consider the algorithm DNNF2 in Figure 5. It should
be clear that the reason for possible intractabi l i ty in

this algorithm is the size of :(N/)
atoms - atoms(a), which contains some of the atoms
shared by sub-theories i and Specifically,
the algorithm wi l l consider a number of instantiations
which is exponential in the size of Therefore,
we can control the size of resulting compilation by re­
ducing the number of instantiations considered. We can
do this in two ways:

1. Ignoring atoms: We can ignore some of the atoms
in by performing a case analysis on only a
subset of . That is, we consider all instan-

3The satisfiability of this class of theories can also be do
cided in linear time using directional resolution [5].

t iations of a subset of . This leads to a
variation on algorithm DNNF2 which we call DNNFU.

2. Ignoring instantiations: We can ignore some of the
instantiations That is, we only consider some
instantiations of . This leads to a variation
on algori thm D N N F 2 which we call DNNF/.

In either case, we can control the size of resulting com­
pilation and to the degree we wish. In fact, using either
technique we can ensure a linear compilation if we decide
to ignore enough atoms or instantiations. This leaves two
questions. First, what atoms or instantiations should we
ignore? Second, what can we guarantee about the re­
sulting compilations?

The choice of atoms or instantiations to ignore is typ­
ically heuristic and wi l l not be addressed in this paper.
We only address the second question here.

T h e o r e m 12 is in NNF and is equivalent
to

That is, ignoring atoms preserves equivalence to the ex­
act compilat ion, but compromises the decomposability
property. The more atoms we ignore, the less decom­
posable the approximation is. But in all cases, the com­
pilat ion generated by DNNFU is sound, although not nec­
essarily complete, wi th respect to entailment.

C o r o l l a r y 1

Here is the guarantee about the second approximation:

T h e o r e m 13 is in DNNF and

That is, ignoring instantiations preserves the decompos­
abil i ty property but could lead to strengthening the com­
pi lat ion. The more instantiations we ignore, the stronger
the approximate compilation is. But in all cases, the
compilation generated by DNNF/ is complete, although
not necessarily sound, w i th respect to entailment.

C o r o l l a r y 2

Therefore, if the size of a D N N F compilation T is too
large, we can replace it w i th two approximations T1 and

Given a query we first test whether and
We have three possibilities: If T1

then then
the approximations are not good enough to answer this
query. Note that the case is impossible.

The bounds and are inspired by the lower and
upper Horn approximations proposed in [7]. In their
approach, however, these bounds are crucial since not
every theory has a Horn representation. In our case,
however, the approximations are only meant to address
intractabi l i ty; our compilat ion approach would continue
to be meaningful wi thout them.

5 Compil ing Out Atoms
Given a theory , we may only be interested in queries

which do not mention atoms A'. In this case, it makes
sense to compile into a theory which does not mention
atoms X either, yet is equivalent to wi th respect to

288 CHALLENGE PAPERS

Figure 7: Forgetting atoms in a DNNF.

queries Such theory is the result of forgetting about
atoms X in [6]. As it turns out, once a theory is
converted into D N N F , forgetting takes linear time:

D e f i n i t i o n 9 For DNNF and atoms X, define
FORGET as the result of replacing each literal in
ά with true iff that literal refers to an atom in X.

The following theorem shows that the above linear op­
eration does correspond to forgetting as defined in [6]:

T h e o r e m 14 Let be a sentence in DNNF and let
be a clause that does not mention atoms X. Then , ,
iff FORGET
Consider the D N N F in Figure 6, which is equiva­
lent to the theory

. Forgetting about
atoms P1, P2, P3 in this theory gives the DNNF in Fig­
ure 7, which can be easily simplified to

Forgetting has three major applications. First, re­
ducing the size of a D N N F compilation by forgetting
about atoms that would never appear in queries. Second,
computing D N N F representations of Boolean functions.
Consider the circuit in Figure 8 which implements the
odd-parity function, and let be a theory representing
this circuit. If we compile into DNNF, and then
forget atoms E, F and G, we obtain a DNNF represen­
tat ion of this Boolean function. This technique can be
used to compile any circuit representation of a Boolean
function into its D N N F representation.4 A final applica­
t ion of forgetting is in computing the implications of a
given theory on a particular set of atoms X (by forget­
t ing about all atoms other than A"). This has proven to
be very useful in model based diagnosis [3].

6 Conclusion
We have proposed an approach for compiling preposi­
tional theories into a tractable form, which we refer to as
decomposable negation normal form (DNNF). We have

4In [4], we compare DNNFs with Binary Decision Dia­
grams (BDDs) as a representation of Boolean functions.

Figure 8: An odd-parity circuit.

shown that once a theory is compiled into that form,
a number of reasoning tasks including entailment, sat­
isfiability and forgetting can be accomplished in linear
t ime. We have shown that every propositional theory
can be compiled into DNNF and presented an algorithm
to this effect. We then presented a key result according
to which the t ime and space complexity of our compi­
lation technique is linear given that the propositional
theory has a clausal form wi th bounded treewidth. F i ­
nally, we presented two techniques for approximating
DNNF compilations. One of the techniques generates
sound compilations, the other generates complete com­
pilations. Together, the two approximations bound the
original theory from below and above in terms of their
abil ity to answer queries. There are at least three key
distinctions between our compilation approach and the
one proposed in [7]. First, every theory has a DNNF
representation, while not every theory lias a Horn rep­
resentation. Second, there are theories wi th exponential
Horn approximations, yet polynomial DNNF represen­
tations. Th i rd , we have characterized a class of theories
which is guaranteed to have linear D N N F compilations.
We are not aware of a similar guarantee on the Horn
approximations of this class of theories.

References
[l] Jon Barwise, editor. Handbook of Mathematical

Logic. North-Hol land, Amsterdam, 1977.

[2] Hans. L. Bodlaender. A linear t ime algorithm
for f inding tree-decompositions of small treewidth.
SIAM Journal of Computing, 25(6):1305-1317, 1996.

[3] Adrian Darwiche. Compil ing devices: A structure-
based approach. In KR98, pages 156 166, 1998.

[4] Adnan Darwiche. Compil ing knowledge into decom­
posable negation normal form. Technical Report R-
262, Cognitive Systems Laboratory, UCLA, 1999.

[5] Rina Dechter and I r ina Rish. Directional resolution:
The davis-putnam procedure, revisited. In KR94,
pages 134-145, 1994.

[6] Fangzhen Lin and Ray Reiter. Forget i t ! In Working
notes: AAAI Fall Symposium on Relevance, 1994.

[7] Bart Selman and Henry Kautz. Knowledge compila­
tion and theory approximation. Journal of the ACM,
43(2):193-224*, March, 1996.

DARWICHE 289

