Compiling Knowledge into Decomposable Negation Normal Form

Adnan Darwiche
Cognitive Systems Laboratory
Department of Computer Science
University of California

Los Angeles, CA 90024
darwiche@cs. ucla. edu

Abstract

We propose a method for compiling proposi-
tional theories into a new tractable form that
we refer to as decomposable negation normal
form (DNNF). We show a number of results
about our compilation approach. First, we
show that every propositional theory can be
compiled into DNNF and present an algorithm
to this effect. Second, we show that if a clausal
form has a bounded treewidth, then its DNNF
compilation has a linear size and can be com-
puted in linear time — treewidth is a graph-
theoretic parameter which measures the con-
nectivity of the clausal form. Third, we show
that once a propositional theory is compiled
into DNNF, a number of reasoning tasks, such
as satisfiability and forgetting, can be per-
formed in linear time. Finally, we propose two
techniques for approximating the DNNF com-
pilation of a theory when the size of such com-
pilation is too large to be practical. One of
the techniques generates a sound but incom-
plete compilation, while the other generates a
complete but unsound compilation. Together,
these approximations bound the exact compi-
lation from below and above in terms for their
ability to answer queries.

1 Introduction

Compiling propositional theories has emerged as a new
technique for enhancing the computational efficiency of
automated reasoning systems. The basic idea here is
to split the computational effort of such systems into
two phases, off-line and on-line. In the off-line phase,
a propositional theory is compiled into a tractable form
which is then used in an on-line phase to answer multiple
queries. The main value of such compilation is that most
of the computational overhead is shifted into the off-line
phase, which is amortized over all on-line queries.

One of the key approaches for compiling propositional
theories has been proposed in [7]. Here, a propositional
theory is compiled in an off-line phase into a Horn the-
ory, which is used in an on-line phase to answer multiple

284 CHALLENGE PAPERS

queries. As it is not always possible to compile a propo-
sitional theory into a Horn theory, the propositional the-
ory is generally compiled into two Horn theories, which
approximate the original theory from below and above
in terms of logical strength.

In this paper, we propose to compile propositional the-
ories into a new form, which we call decomposable nega-
tion normal form (DNNF). This form is a generalization
of disjunctive normal form (DNF) and a specialization of
negation normal form (NNF) [I]. DNNF is tractable as
the satisfiability of theories expressed in DNNF can be
decided in linear time. In fact, a number of other inter-
esting reasoning tasks, such as forgetting [6], can also be
performed in linear time on theories expressed in DNNF.

We show a number of results about our compilation
approach. First, contrary to compilations into Horn the-
ories, we show that every propositional theory can be
compiled into DNNF and present an algorithm to this
effect. Second, we show that if a clausal form has a
bounded treewidth, then it has a linear DNNF com-
pilation which can be computed in linear time. Here,
treewidth is a graph-theoretic parameter which measures
the connectivity of a given clausal form. Even when
the clausal form does not have a bounded treewidth, we
show that its DNNF compilation is exponential only in
its treewidth and linear in all other aspects. Finally,
we present two techniques for approximating the DNNF
compilation of a propositional theory in case such com-
pilation is too large to be practical. One of the tech-
niques generates a sound but incomplete compilation,
while the other generates a complete but unsound com-
pilation. Together, these approximations bound the ex-
act compilation from below and above in terms of their
ability to answer queries.

This paper is structured as follows. Section 2 in-
troduces DNNF and its various properties. Section 3
discusses the compilation of propositional theories into
DNNF. Section 4 discusses the two techniques for ap-
proximating a DNNF compilation and Section 5 focuses
on the operation of forgetting. Finally, Section 6 closes
with some concluding remarks. Proofs of theorems can
be found in the long version of the paper [4].

— T,

Figure 1: A propositional sentence in DNNF.

2 Decomposable NNF

A propositional sentence is in negation normal form
(NNF) if it is constructed from literals using only the
conjoin and disjoin operators [I]. Figure 1 shows a sen-
tence in NNF depicted as arooted, directed acyclic graph
where the children of each node are shown below it in
the graph. Each leaf node represents a literal and each
non-leaf node represents a conjunction or a disjunction.
We will also allow frue and -" false to appear as leaves
in a DNNF to denote a conjunction with no conjuncts.
Similarly, we will allow false and -frne as leaves to rep-
resent a disjunction with no disjuncts. The size of an
NNF is measured by the number of edges in its graph-
ical representation. Note that every disjunctive normal
form (DNF) is an NNF, and that every conjunctive nor-
mal form (CNF) is an NNF. There are NNFs, however,
that are neither DNFs nor CNFs.

Our concern here is mainly with a subclass of NNFs:

Definition 1 A
(DNNF) is a negation normal form satisfying the decom-
posability property: for any conjunction /\, a, appearing
in the form, no atoms are si tared by the conjuncts a”.

decomposable negation normal form

The NNF in Figure 1 is decomposable. It has ten con-
junctions and the conjuncts of each share no atoms.
Decomposability is the property which makes DNNF
tractable. We will explore this property at length later,
but we first note that every DNF is also a DNNF.’
Therefore, all properties that we shall prove of DNNFs
also hold for DNFs. A question that may arise then is
why not compile propositional theories into DNFs? As
it turns out, there are propositional theories that have
linear DNNF representations, yet exponential DNF rep-
resentations. For example, consider a propositional the-
ory A over n atoms, which is satisfied exactly by models
in which an odd number of atoms is set to true (A repre-
sents the odd-parity function). The DNF representation
of this theory is known to be exponential in n. However,
the theory has a DNNF representation which is linear in
n. Figure 1 depicts such representation for n — A.
Propositional theories in DNNF are tractable:

*We assume that in the DNF .«; V...V oy, no atoms are
shared by the literals in «;.

1. Deciding the satisfiability of a DNNF can be done
in linear time.

2. Forgetting about some atoms in a DNNF can be
done in linear time [6].

3. Computing the minimum cardinality of models that
satisfy a DNNF can be done in linear time, where
cardinality is the number of atoms that are set to
true (or false) by the model [3].

The last task has applications to model-based diagnosis
and is outside the scope of this paper. Our focus here
will be on the first two tasks, which we consider next.

By a clause (over distinct atoms p1,.. ,p.), we will
mean a disjunction {; V...V, where [; is either p; or
—pi. By an instantiation (of distinct atoms py,...,pn),
we will mean a conjunction {3 A...Al,,. We start with
a linear test for deciding the satisfiability of NNFs.

Definition 2 Let SAT? be a predicate over NNFs de-
fined as follows. SAT?(/) is true where | is a literal.
SAT? (A, ;) is true iff each sAT?{qx,) is true, SAT?(V/, «;)
is true iff some SAT?(«;) is true.

It should be clear that the predicate SAT?(a) can be
evaluated in time which is linear in the size of NNF a.
The previous test is sound and complete for DNNFs:

DNNF «x is satisfiable

Theorem 1 iff SAT?(cx) is true.

Now that we have a satisfiability test, we can also
define an entailment test. Specifically, to test whether
« entails clause 3, we only need to test whether @ A =3
is satisfiable. Note, however, that even though both a
and =/ may be in DNNF, their conjunction e A =1 is
not guaranteed to be in DNNF as & and —/ may share
atoms. This can be easily dealt with, however, using the
notion of conditioning:

Definition 3 Letc« be a propositional sentence and let 7y
be an instantiation. The conditioning of« on 7y, written

« | 7y, is the sentence which results from replacing each

atom p in « with true if the positive literal p appears in
~ and with false if the negative literal =p appears in Y.

For example, conditioning the DNNF (~AA-DB)V(BAC)
on instantiation BAD gives (mAA-true)V (lrue AC) and
conditioning it on "BAD gives (mAA—false)V(false AC)
Conditioning allows us to eliminate reference to atoms
while preserving satisfiability:

Theorem 2 For DNNF a and
in DNNF, and v |y is satisfiable

instantiation ~y, « | 7y is
i« Ny s satisfiable.

Therefore, to test whether DNNF « entails clause 3, we
only need to test whether a | —ZB is satisfiable, which
is guaranteed to be in DNNF. We can now define a lin-
ear entailment test for DNNFs. Actually, we will (more
generally) define it for NNFs:

Definition 4 For NNF « and clause [3,
be true when SAT?{a | =3) is false,
Stantiation negating clause 03.

define at 3 to
where =3 is the in-

This linear test is both sound and complete for DNNFs:

Theorem 3 For DNNF a and clause 3, aFf3 iff a = 3

DARWICHE 285

or ‘
- e '-\n._h.““-’
f M“_"-’ o H-‘"‘"‘-..,__ ‘
3nd ungl
T o : T :
f ___/ .~ l l o -‘—“‘.'h‘ 1
or or ot or
R T oy gl T T T
{ e I T RSl Yso
and and and and and and and and
'/ ™, . -"x_ __.“'-"\'_ ,"“ \‘\‘ o
. // \\\ _"_.r‘" \\ /__,.f- ! x\\ P \“)_; /.-’ \"\\(_/"“']
/K - X\ ./,"‘!‘\\ ,-./_/3"-._‘\ \ // \\‘..‘ ,’J’_._a’ \‘\ l
~ -~ \\ e \“ - w V \\
false true talse truc truc false truec false

Figure 2: A prepositional sentence in DNNF.

Consider the DNNF & in Figure 1, the clause [= .1V
-B V =('V -1}, and suppose we want to test whether
«v = 3. Theorem 3 suggests that we condition & on —3,
to yield «+ | =/}, and then test whether s /v | —f3) is
false. Figure 2 depicts the conditioning of a on —/3 and
the result of applying the SAT? test. Since SAT?(a | —;3)
is false, we conclude at(J and also «v k= /7.

Before we close this section, we present three impor-
tant results on DNNF entailment. First, that the entail-
ment test I is sound with respect, to sentences in NNF:

.
That is, even though ¢+ may not be decomposable, the
entailment test I is still sound, but not necessarily com-

plete. Even completeness of this test, however, can be
guaranteed under the following condition.

Definition 5 NNF a
conjunction /\; i3, that appears in ¢¥, only
conjunct /3,

(=13 Vv (") is decom-

Theorem 4 For NNF a. ot (3 only of a =

iIs decomposable, except on atoms

X iff for any
atoms in X are shared by the

For example, the NNF (=A vV B) A
posable except on B.

Theorem 5 Let ¢+ be an NNF -which, is decomposable
except on X. Let /3 be a clause which mentions all atoms
in X. Then ot[3 iff v }= /4

Consider the NNF a = (=1 V B)A (=B v ('} and the
queries ADD, BD.A and AD(C. Since i is decompos-
able except on B, the test |~ is sound and complete with
respect to the first two queries but is only sound with
respect to the third query. Partial decomposability is
extremely important in practice since the less decompos-
able a sentence is, the smaller its size will be. Finally:

Theorem 6 For NNF «, which is decomposable except
on X, and for clause i3, o = 3 iff b, V 3 for each
clause -y; over atoms appearing in X but not in B.

Therefore, if the size of X is bounded by a constant,
then «v I: i3 can be decided in linear time for any query
B, even though ¢ itself is not decomposable.

3 Compiling Knowledge into DNNF

We established two main results in the previous section.
First, we identified the class of DNNF theories. Second,

286 CHALLENGE PAPERS

O

B =>(C C=>D

(23

A=>R

Figure 3: A decomposition tree.

we showed that satisfiability and entailment can be de-
cided in linear time with respect to DNNF theories. Our
goal in this section is two fold. First, to prove that every
propositional theory can be expressed in DNNF. Second
to provide an algorithm for this purpose.

The following theorem is the key to proving that even
propositional theory can be converted into DNNF.

Theorem 7 Let Ay and Ay be two propositional sen

tences in DNNF. Let A be the sentence \/ (A | 3) A
(A2 | B) N3, where /3 is an instantiation of all atom:
shared by Ay a nds. Then A is in DNNF and A i:
equivalent to N; A Ao

Here is a recursive algorithm DNNF1(A), based on the
above theorem, which converts any clausal form A intc
an equivalent theory in DNNF:

1. If 2\ contains a single clause & DNNFI{A)+ .

2. Otherwise, DNNFI{A)4-V ,DNNFLI(A; | p) A
DNNF1{A, | B} A 3, where Ay and Ay is a parti-
tion of the clauses in A, and /3 is an instantiation o
the atoms shared by .\, arrd Ay,

This algorithm converts any theory in clausal form intf
an equivalent theory in DNNF, but at the expense o:
increasing the theory size. The increase in size comet
mainly from the case analysis performed on the atoms
shared by the sub-theories Ay and A,. Consider the
theory A = (ADDB) A (BDC) and let Ay = ADD and
Ay = BDC. Then DNNFI(A) = (DNNEI(A, | B) A
DNNF1(Ao | BYA B)V (DNNFI(A, | =B) A DNNF1(A, |
=By A 1), which simplifics to (C A B)V (—AA D).

We have two key observations about the above proce-
dure. First, the size of resulting DNNF is very sensitive
to the way we split the theory A into two sub-theories 4
and A, . Second, the above procedure is not determinis-
tic, since it does not specify how to split the theory A into
two sub-theories. To make the procedure deterministic,
we will utilize a decomposition tree, which represents a
recursive partitioning of the clauses in A

Definition 6 A decomposition ftree T for clausal form
A is a full binary tree whose leaves correspond to the
clauses in Q. If N is the leaf node corresponding to

, de
clause A in A, then A(N) 4 r}.

Algorithm DNNF1

/* N is a tree node ; « is an instantiation */
DNNF1(N, @)
if N is aleaf node & A(N) = {¢}, then v¢-¢ | «
else y¢- V3 DNNFI(N,a A) ADNNFL(N,, A B) A f3
where [ranges over all instantiations
of atoms(Ny) N atoms(N,) ~ atoms(«)
return vy

Figure 4: Compiling a theory into DNNF.

Algorithmm DNNF2

DNNF2(N, «)

Y4 project («, atoms(N))

if CACHEN (1)) # NiL, return CACHE N (¢)

if N is aleaf node & A(N) = {4}, then ye¢ | o

else v V3 DNNF2(N, a0 A 3) ADNNF2(N,,a A B) A3
where [ranges over all instantiations
of atoms(Ny) N atoms(N,.) -- atoms(cy)

CACHEN (V) 47y

return y

Figure 5: Compiling a theory into DNNF.

Figure 3 depicts a decomposition tree for the theory
A which contains the clauses A3, BOC and ("'DD.

For a decomposition tree to be useful computationally,
we need to associate some information with each of its
nodes. First, for every internal node N: N; and N, de-

note the loft and right children of N, respectively, and
tef

A(N)=A(N)UA(N,). Second, atoms(N) is defined as
the set of atoms appearing in clauses A (A"). For exam-
ple, in Figure 3, A(n,)l contains the clauses ADf and
B> and atoms(112) contains the atoms A,B and C.
Given a. decomposition tree for theory A, Figure 1
depicts an algorithm which compiles A into DNNF.

Theorem 8 DNNFI(/N, «) retun\,,(A") | <+ in DNNF.

Therefore, to convert a theory A into DNNF, we
first construct a decomposition tree T for A and call
DNNFI (N true) with N being the root of tree 7. The
following is an important observation about DNNFI:

Theorem 9 If « and « agree on atoms(N),
DNNFI (N, «) is equivalent to DNNFI(N, o)

Therefore, we can improve on DNNFI|I by associat-
ing a cache with each node N to store' the result of
DNNFI (N, «) indexed by the projection of instantiation
« on atoms(N), denoted project | «¢x,atoms(/N)). When
another recursive call DNNFI{/N,«') is made, we first
check the cache of node N to see whether we have an
entry for project(¢t’, atoms(N)). If we do. we return it.
Otherwise, we continue with the recursion. This im-
provement leads to the refined algorithm in Figure 5.
We now address the complexity of DNNF2.

then

Definition 7 Let N be a 'node in a decomposition tree
T. The cluster of node N s defined as follows:

« If N is a leaf node, then its cluster is atoms(N).

then its cluster is the set
that appear either

« If N s an internal node,
of atoms

— above and. below node N in the ftree; or
— in the left and rigid subtrees of node N.

The width of a decomposition ftree is the size of its max-

imal cluster minus one.

In Figure 3, wo have cluster [n;) — \C}, cluster (n,) —
{B,C}, clustering - {AB}, cluster{n,) = ({B,C} and
cluster(ns) = {C,D}). Therefore, the decomposition tree

has width 1.

Theorem 10 Let T be the decomposition tree used in
Figure 5. The time and space complexity of the algorithm
in Figure 5 is 0{nw2"), where n is the number of leaf
nodes in tree T and w is its width.?

Therefore, the complexity of compiling a propositional
theory into DNNF depends crucially on the quality
(width) of decomposition tree used. The question now
is how to construct good decomposition trees (ones with
small width)? As it turns out, there, is a device in the
literature on graph-based reasoning, known as a jointree,
which can be easily converted into a decomposition tree.
A jointree also has a width and good jointrees are those
with small width. We can easily convert, a jointree into a
decomposition tree while maintaining its width. There-
fore, any good method for constructing jointrees is also
a good method for constructing decomposition trees. A
jointree, however, is constructed for an undirected graph
while a decomposition tree is constructed for a proposi-
tional theory. The following definition makes the con-
nection.

Definition 8 [5] Let A\ be a propositional theory in
clausal form. The interaction graph for A is the undi-
rected graph G constructed as follows. The nodes of G
arc the atoms of . There is an edge between two atoms
in G iff the atoms appear in the same clause of 2\

Theorem 11 Let N\ be a propositional theory in clausal
form and let G be its interaction graph. Let J be a join-
free for G with, width. w There is a decomposition tree
for A which has width, << w and which, can be constructed

from J in time linear /n the size of J.

The width of the best jointree for a graph G is known
as the ftreewidth of G. If the treewidth of a graph is
bounded by a constant w, then one can construct an op-
timal jointree in linear time [2|]. A major implication of
this result is that if a clausal form A has an interaction
graph with a bounded treewidth, then (a) computing
an optimal decomposition tree (jointree) for that the-
ory, (b) compiling the theory based on the computed
decomposition tree, and (c) answering queries based on

Note that if T is a decomposition tree for a clausal form
2, then n is also the number of clauses in &

DARWICHE 287

Rl Pi ~R2 P2 P3 ~R3

Figure 6: A prepositional sentence in DNNF.

the resulting compilation, can all be done in linear time.
This is our central result on the complexity of compiling
theories into DNNF.°

We stress, however, that the interaction graph of a
theory may not have a bounded treewidth, yet the the-
ory may have a polynomial compilation into DNNF,
Consider the theory A = {4 A ... A P,DQ, R A
-~P1DQ,...., Ry A =P, DQ}. The interaction graph of
this theory has treewidth n, yet it has a DNNF compi-
lation of size 0(n°) (shown in Figure 6 for n = 3).

The theory we just considered is not equivalent to any
Horn theory. In fact, even its Horn approximation is
known to be exponential in n [7], This shows that there
are theories with exponential Horn approximations, yet
polynomial DNNF representations.

4 Approximate Compilation

What if we have a theory A for which the best decom-
position tree has an unacceptable width? We have two
key choices to address this problem. First, we can try to
improve on algorithm DNNF2. Second, we can try to gen-
erate an approximate compilation, which is the direction
we shall peruse in this section.

Consider the algorithm DNNF2 in Figure 5. It should
be clear that the reason for possible intractability in

this algorithm is the size of S(N,a)d—("::-fatom.é(N/) N
atoms (N,.) - atoms(a), which contains some of the atoms
shared by sub-theories A(/N;)i and A(/N,). Specifically,
the algorithm will consider a number of instantiations /3
which is exponential in the size of S(/N,a). Therefore,
we can control the size of resulting compilation by re-
ducing the number of instantiations considered. We can
do this in two ways:

1. Ignoring atoms: We can ignore some of the atoms
in S(N,«) by performing a case analysis on only a
subset of S(:N,«). That is, we consider all instan-

*The satisfiability of this class of theories can also be do
cided in linear time using directional resolution [5].

288 CHALLENGE PAPERS

tiations 3 of a subset of S(IN,«). This leads to a
variation on algorithm DNNF2 which we call DNNFy.

2. Ignoring instantiations: We can ignore some of the
instantiations (3. That is, we only consider some
instantiations 3 of §(/V,). This leads to a variation
on algorithm DNNF2 which we call DNNF/.

In either case, we can control the size of resulting com-
pilation and to the degree we wish. In fact, using either
technique we can ensure a linear compilation if we decide
to ignore enough atoms or instantiations. This leaves two
questions. First, what atoms or instantiations should we
ignore? Second, what can we guarantee about the re-
sulting compilations?

The choice of atoms or instantiations to ignore is typ-
ically heuristic and will not be addressed in this paper.
We only address the second question here.

Theorem 12 DNNF (N,a) is in NNF and is equivalent
to DNNF2(N,)

That is, ignoring atoms preserves equivalence to the ex-
act compilation, but compromises the decomposability
property. The more atoms we ignore, the less decom-
posable the approximation is. But in all cases, the com-
pilation generated by DNNFy is sound, although not nec-
essarily complete, with respect to entailment.

Corollary 1 DNNF,(N,a)F3 only if DNNF2(N,)k 3.
Here is the guarantee about the second approximation:

Theorem 13 DNNF;(N,a) s in DNNF and
DNNF; (N, o) = DNNF2(N, o)

That is, ignoring instantiations preserves the decompos-
ability property but could lead to strengthening the com-
pilation. The more instantiations we ignore, the stronger
the approximate compilation is. But in all cases, the
compilation generated by DNNF/ is complete, although
not necessarily sound, with respect to entailment.

Corollary 2 DNNF;(N,«) F73 only if DNNF2(N,a) F(

Therefore, if the size of a DNNF compilation T is too
large, we can replace it with two approximations T4 and
['.. Given a query 3, we first test whether I'tH3 and
I',F58. We have three possibilities: If F 3, then A F
8. If T+, then A = g, If TG and T’y A3, then
the approximations are not good enough to answer this
query. Note that the case I} J-3 and ' /3 is impossible.

The bounds I'; and I', are inspired by the lower and
upper Horn approximations proposed in [7]. In their
approach, however, these bounds are crucial since not
every theory has a Horn representation. In our case,
however, the approximations are only meant to address
intractability; our compilation approach would continue
to be meaningful without them.

5 Compiling Out Atoms

Given a theory A, we may only be interested in queries
3 which do not mention atoms A'. In this case, it makes
sense to compile A into a theory which does not mention
atoms X either, yet is equivalent to A with respect to

~R1 true ~R2 true true ~R3

Figure 7: Forgetting atoms in a DNNF.

queries (3. Such theory is the result of forgetting about
atoms X in A [6]. As it turns out, once a theory is
converted into DNNF, forgetting takes linear time:

Definition 9 For DNNF ¢« and atoms X, define
FORGET(cx, X) as the result of replacing each literal in
a with true iff that literal refers to an atom in X

The following theorem shows that the above linear op-
eration does correspond to forgetting as defined in [6]:

Theorem 14 Let o« be a sentence in DNNF and let B

be a clause that does not mention atoms X. Then «x |,= I5;
iff FORGET(«, X) l‘: 3.

Consider the DNNF in Figure 6, which is equiva-
lent to the theory A = {P} A Py, A P3DQ, Ry A
-~ 0Q, Ry A P DQ, Ry AN - FP3DQ}. Forgetting about
atoms P4, Py, P3 in this theory gives the DNNF in Fig-
ure 7, which can be easily simplified to) A Ra A R3D(Q.

Forgetting has three major applications. First, re-
ducing the size of a DNNF compilation by forgetting
about atoms that would never appear in queries. Second,
computing DNNF representations of Boolean functions.
Consider the circuit in Figure 8 which implements the
odd-parity function, and let A be a theory representing
this circuit. If we compile AU{G} into DNNF, and then
forget atoms E, F and G, we obtain a DNNF represen-
tation of this Boolean function. This technique can be
used to compile any circuit representation of a Boolean
function into its DNNF representation.* A final applica-
tion of forgetting is in computing the implications of a
given theory on a particular set of atoms X (by forget-
ting about all atoms other than A"). This has proven to
be very useful in model based diagnosis [3].

6 Conclusion

We have proposed an approach for compiling preposi-
tional theories into a tractable form, which we refer to as
decomposable negation normal form (DNNF). We have

*In [4], we compare DNNFs with Binary Decision Dia-
grams (BDDs) as a representation of Boolean functions.

O

> G
/’

P

[N FE S

Figure 8: An odd-parity circuit.

shown that once a theory is compiled into that form,
a number of reasoning tasks including entailment, sat-
isfiability and forgetting can be accomplished in linear
time. We have shown that every propositional theory
can be compiled into DNNF and presented an algorithm
to this effect. We then presented a key result according
to which the time and space complexity of our compi-
lation technique is linear given that the propositional
theory has a clausal form with bounded treewidth. Fi-
nally, we presented two techniques for approximating
DNNF compilations. One of the techniques generates
sound compilations, the other generates complete com-
pilations. Together, the two approximations bound the
original theory from below and above in terms of their
ability to answer queries. There are at least three key
distinctions between our compilation approach and the
one proposed in [7]. First, every theory has a DNNF
representation, while not every theory lias a Horn rep-
resentation. Second, there are theories with exponential
Horn approximations, yet polynomial DNNF represen-
tations. Third, we have characterized a class of theories
which is guaranteed to have linear DNNF compilations.
We are not aware of a similar guarantee on the Horn
approximations of this class of theories.

References

[I] Jon Barwise, editor. Handbook of Mathematical
Logic. North-Holland, Amsterdam, 1977.

[2] Hans. L. Bodlaender. A linear time algorithm
for finding tree-decompositions of small treewidth.
SIAM Journal of Computing, 25(6):1305-1317, 1996.

[3] Adrian Darwiche. Compiling devices: A structure-
based approach. In KR98, pages 156 166, 1998.

[4] Adnan Darwiche. Compiling knowledge into decom-
posable negation normal form. Technical Report R-
262, Cognitive Systems Laboratory, UCLA, 1999.

[5] Rina Dechter and Irina Rish. Directional resolution:
The davis-putnam procedure, revisited. In KR94,
pages 134-145, 1994.

[6] Fangzhen Lin and Ray Reiter. Forget it! In Working
notes: AAAl Fall Symposium on Relevance, 1994.

[71 Bart Selman and Henry Kautz. Knowledge compila-
tion and theory approximation. Journal of the ACM,
43(2):193-224*, March, 1996.

DARWICHE 289

