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Abs t rac t 

We propose a method for compiling proposi-
t ional theories into a new tractable form that 
we refer to as decomposable negation normal 
form (DNNF). We show a number of results 
about our compilation approach. First, we 
show that every propositional theory can be 
compiled into D N N F and present an algorithm 
to this effect. Second, we show that if a clausal 
form has a bounded treewidth, then its DNNF 
compilation has a linear size and can be com­
puted in linear t ime — treewidth is a graph-
theoretic parameter which measures the con­
nectivity of the clausal form. Th i rd , we show 
that once a propositional theory is compiled 
into DNNF, a number of reasoning tasks, such 
as satisfiability and forgett ing, can be per­
formed in linear t ime. Finally, we propose two 
techniques for approximating the DNNF com­
pilat ion of a theory when the size of such com­
pilation is too large to be practical. One of 
the techniques generates a sound but incom­
plete compilation, while the other generates a 
complete but unsound compilation. Together, 
these approximations bound the exact compi­
lation from below and above in terms for their 
abil i ty to answer queries. 

1 I n t r o d u c t i o n 
Compil ing propositional theories has emerged as a new 
technique for enhancing the computational efficiency of 
automated reasoning systems. The basic idea here is 
to split the computational effort of such systems into 
two phases, off-line and on-line. In the off-line phase, 
a propositional theory is compiled into a tractable form 
which is then used in an on-line phase to answer mult iple 
queries. The main value of such compilation is that most 
of the computational overhead is shifted into the off-line 
phase, which is amortized over all on-line queries. 

One of the key approaches for compiling propositional 
theories has been proposed in [7]. Here, a propositional 
theory is compiled in an off-line phase into a Horn the­
ory, which is used in an on-line phase to answer mult iple 

queries. As it is not always possible to compile a propo­
sitional theory into a Horn theory, the propositional the­
ory is generally compiled into two Horn theories, which 
approximate the original theory from below and above 
in terms of logical strength. 

In this paper, we propose to compile propositional the­
ories into a new form, which we call decomposable nega­
tion normal form (DNNF). This form is a generalization 
of disjunctive normal form (DNF) and a specialization of 
negation normal form (NNF) [ l ] . D N N F is tractable as 
the satisfiability of theories expressed in D N N F can be 
decided in linear t ime. In fact, a number of other inter­
esting reasoning tasks, such as forgetting [6], can also be 
performed in linear t ime on theories expressed in DNNF. 

We show a number of results about our compilation 
approach. First, contrary to compilations into Horn the­
ories, we show that every propositional theory can be 
compiled into D N N F and present an algorithm to this 
effect. Second, we show that if a clausal form has a 
bounded treewidth, then it has a linear DNNF com­
pilation which can be computed in linear t ime. Here, 
treewidth is a graph-theoretic parameter which measures 
the connectivity of a given clausal form. Even when 
the clausal form does not have a bounded treewidth, we 
show that its D N N F compilation is exponential only in 
its treewidth and linear in all other aspects. Finally, 
we present two techniques for approximating the D N N F 
compilation of a propositional theory in case such com­
pilat ion is too large to be practical. One of the tech­
niques generates a sound but incomplete compilation, 
while the other generates a complete but unsound com­
pi lat ion. Together, these approximations bound the ex­
act compilation from below and above in terms of their 
abi l i ty to answer queries. 

This paper is structured as follows. Section 2 in­
troduces D N N F and its various properties. Section 3 
discusses the compilation of propositional theories into 
DNNF. Section 4 discusses the two techniques for ap­
proximating a D N N F compilation and Section 5 focuses 
on the operation of forgett ing. Finally, Section 6 closes 
wi th some concluding remarks. Proofs of theorems can 
be found in the long version of the paper [4]. 
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Figure 1: A proposi t ional sentence in D N N F . 

2 Decomposable N N F 
A proposi t ional sentence is in negat ion normal fo rm 
( N N F ) i f i t is constructed f rom l i terals using only the 
conjoin and disjoin operators [ l ] . F igure 1 shows a sen­
tence in N N F depicted as a rooted, directed acyclic graph 
where the chi ldren of each node are shown below it in 
the graph. Each leaf node represents a l i tera l and each 
non-leaf node represents a conjunct ion or a d is junct ion. 
We w i l l also al low true and -^ false to appear as leaves 
in a D N N F to denote a conjunct ion w i t h no conjuncts. 
Simi lar ly, we w i l l al low false and -trne as leaves to rep­
resent a d is junct ion w i t h no dis juncts. The size of an 
N N F is measured by the number of edges in its graph­
ical representat ion. Note tha t every dis junct ive normal 
fo rm ( D N F ) is an N N F , and tha t every conjunct ive nor­
ma l form (CNF) is an N N F . There are NNFs , however, 
t ha t are neither DNFs nor CNFs. 

Our concern here is ma in ly w i t h a subclass of NNFs : 

D e f i n i t i o n 1 A decomposable negation normal form 
(DNNF) is a negation normal form satisfying the decom-
posability property: for any conjunction /\, a, appearing 
in the form, no atoms are si tared by the conjuncts a^. 

The N N F in Figure 1 is decomposable. I t has ten con­
junct ions and the conjuncts of each share no atoms. 
Decomposabi l i ty is the proper ty which makes D N N F 
t ractable. We w i l l explore th is proper ty at length later, 
bu t we f irst note tha t every D N F is also a D N N F . 1 

Therefore, al l propert ies tha t we shall prove of D N N F s 
also hold for DNFs . A question tha t may arise then is 
why not compile proposi t ional theories into DNFs? As 
i t turns out , there are proposi t ional theories tha t have 
l inear D N N F representations, yet exponent ial D N F rep­
resentations. For example, consider a proposi t ional the­
ory over n atoms, which is satisfied exact ly by models 
in which an odd number of atoms is set to t rue repre­
sents the odd-par i t y func t ion) . The D N F representation 
of th is theory is known to be exponent ia l in n. However, 
the theory has a D N N F representat ion which is l inear in 
n. F igure 1 depicts such representat ion for n — A. 

Proposi t ional theories in D N N F are t ractable: 

*We assume that in the DNF . , no atoms are 
shared by the literals in 

1. Decid ing the sat isf iabi l i ty of a D N N F can be done 
in l inear t ime. 

2. Forget t ing about some atoms in a D N N F can be 
done in l inear t ime [6]. 

3. Comput ing the m i n i m u m card ina l i ty of models tha t 
satisfy a D N N F can be done in l inear t ime, where 
card inal i ty is the number of atoms tha t are set to 
t rue (or false) by the model [3]. 

The last task has appl icat ions to model-based diagnosis 
and is outside the scope of this paper. Our focus here 
w i l l be on the first two tasks, which we consider next. 

By a clause (over d is t inct atoms p1,... , p n ) , we wi l l 
mean a d is junct ion where is either or 

By an instant ia t ion (of d is t inct atoms , 
we w i l l mean a conjunct ion We star t w i t h 
a l inear test for deciding the sat isf iabi l i ty of NNFs. 

D e f i n i t i o n 2 Let SAT? be a predicate over NNFs de-
fined as follows. SAT?(/) is true where I is a literal. 

) is true iff each S A T ? is true, 
is true iff some SAT? is true. 

It should be clear tha t the predicate SAT?(a) can be 
evaluated in t ime which is l inear in the size of N N F a. 
The previous test is sound and complete for DNNFs : 

T h e o r e m 1 DNNF is satisfiable iff is true. 

Now tha t we have a sat isf iabi l i ty test, we can also 
define an entai lment test. Specifically, to test whether 

entails clause we only need to test whether 
is satisfiable. Note, however, t ha t even though bo th a 
and may be in D N N F , their conjunct ion is 
not guaranteed to be in D N N F as and may share 
atoms. Th is can be easily dealt w i t h , however, using the 
not ion of cond i t ion ing: 

D e f i n i t i o n 3 Let be a propositional sentence and let 
be an instantiation. The conditioning of on written 

is the sentence which results from replacing each 
atom p in with true if the positive literal p appears in 

and with false if the negative literal appears in 

For example, cond i t ion ing the 
on ins tant ia t ion and 
condi t ion ing i t on gives 
Cond i t ion ing allows us to e l iminate reference to atoms 
whi le preserving sat isf iabi l i ty : 

T h e o r e m 2 For DNNF a and instantiation is 
in DNNF, and is satisfiable i f f i s satisfiable. 

Therefore, to test whether D N N F entails clause , we 
only need to test whether a | ---ZB is satisfiable, which 
is guaranteed to be in D N N F . We can now define a l i n ­
ear entai lment test for D N N F s . Actua l ly , we w i l l (more 
generally) define i t for NNFs : 

D e f i n i t i o n 4 For NNF and clause define to 
be true when SAT? is false, where is the in­
stantiation negating clause .. 

This l inear test is bo th sound and complete for D N N F s : 

T h e o r e m 3 For DNNF a and clause 
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Figure 2: A preposi t ional sentence in D N N F . 

Consider the D N N F ά in Figure 1, the clause 
-B , and suppose we want to test whether 

Theorem 3 suggests that we condi t ion ά on , 
to yield , and then test whether S A T ? > is 
false. Figure 2 depicts the condi t ion ing of a on and 
the result of apply ing the SAT? test. Since SAT? 
is false, we conclude and also 

Before we close this section, we present three impor­
tant results on D N N F entai lment. F i rs t , that the entai l ­
ment test is sound w i t h respect, to sentences in N N F : 

T h e o r e m 4 For NNF 

T h a t is, even though may not be decomposable, the 
entai lment test is st i l l sound, but not necessarily com-
plete. Even completeness of this test, however, can be 
guaranteed under the fo l lowing condi t ion. 

D e f i n i t i o n 5 NNF ά is decomposable, except on atoms 
X iff for any conjunction that appears in only 
atoms in X are shared by the conjunct 

For example, the is decom­
posable except on B. 

T h e o r e m 5 Let be an NNF -which, is decomposable 
except on X. Let be a clause which mentions all atoms 
in X. Then 

Consider the N N F and the 
queries Since is decompos­
able except on B, the test is sound and complete w i th 
respect to the first two queries bu t is only sound w i th 
respect to the t h i r d query. Par t ia l decomposabi l i ty is 
extremely impor tan t in pract ice since the less decompos­
able a sentence is, the smaller its size wi l l be. F inal ly : 

T h e o r e m 6 For NNFr which is decomposable except 
on X, and for clause for each 
clause over atoms appearing in X but not in B. 

Therefore, if the size of X is bounded by a constant, 
then can be decided in linear t ime for any query 
B, even though ά i tself is not decomposable. 

3 Compil ing Knowledge into D N N F 
We established two main results in the previous section. 
F i rs t , we identi f ied the class of D N N F theories. Second, 

Figure 3: A decomposi t ion tree. 

we showed tha t sat isf iabi l i ty and entai lment can be de­
cided in l inear t ime w i t h respect to D N N F theories. Our 
goal in this section is two fo ld. F i rs t , to prove tha t every 
proposi t ional theory can be expressed in D N N F . Second 
to provide an a lgo r i thm for this purpose. 

The fo l lowing theorem is the key to prov ing tha t even 
proposi t ional theory can be converted in to D N N F . 

T h e o r e m 7 Let and be two propositional sen 
tences in DNNF. Let be the sentence 

where is an instantiation of all atom: 
shared by a n d . Then is in DNNF and i: 
equivalent to 

Here is a recursive a lgor i thm DNNF1 ), based on the 
above theorem, which converts any clausal form intc 
an equivalent theory in D N N F : 

1. If contains a single clause ά, DNNFl 

2. Otherwise, 
T ' 

DNNF is a part i­
t ion of the clauses in and is an ins tant ia t ion o 
the atoms shared by arrd 

This a lgor i thm converts any theory in clausal fo rm intf 
an equivalent theory in D N N F , bu t at the expense o: 
increasing the theory size. The increase in size comet 
main ly f rom the case analysis performed on the atoms 
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We have two key observations about the above proce­
dure. F i rs t , the size of resul t ing D N N F is very sensitive 
to the way we spl i t the theory in to two sub-theories 
and . Second, the above procedure is not determinis­
tic, since it does not specify how to spl i t the theory in to 
two sub-theories. To make the procedure determinist ic , 
we wi l l ut i l ize a decomposi t ion tree, which represents a 
recursive pa r t i t i on ing of the clauses in 

D e f i n i t i o n 6 A decomposition tree T for clausal form 
is a full binary tree whose leaves correspond to the 

clauses in . If N is the leaf node corresponding to 

clause Ά in 



Figure 4: Compi l i ng a theory in to D N N F . 

Figure 5: Compi l i ng a theory in to D N N F . 

Figure 3 depicts a decomposit ion tree for the theory 
A which contains the clauses 

For a decomposit ion tree to be useful computat ional ly , 
we need to associate some in fo rmat ion w i t h each of its 
nodes. F i rs t , for every in ternal node N: N1 and Nr de­
note the loft and r ight chi ldren of N, respectively, and 

. Second, atoms(N) is defined as 
the set of atoms appear ing in clauses (A r) . For exam­
ple, in Figure 3, I contains the clauses and 

and atoms(112) contains the atoms A,B and C. 
Given a. decomposit ion tree for theory , Figure 1 

depicts an a lgor i thm which compiles into D N N F . 

T h e o r e m 8 DNNFl returns„,(Ar) in DNNF. 

Therefore, to convert a theory into D N N F , we 
first construct a decomposit ion tree T for and call 
DNNFl (N true) w i t h N being the root of tree T. The 
fo l lowing is an impor tan t observation about DNNFl: 

T h e o r e m 9 If and agree on atoms(N), then 
DNNFl is equivalent to DNNFl 

Therefore, we can improve on DNNFl by associat­
ing a cache w i t h each node N to store1 the result of 
DNNFl ) indexed by the pro ject ion of instant ia t ion 

on atoms(N), denoted project ( ). When 
another recursive call DNNFl is made, we first 
check the cache of node N to see whether we have an 
entry for project . If we do. we return i t . 
Otherwise, we continue w i t h the recursion. Th is im­
provement leads to the refined a lgor i thm in Figure 5. 

We now address the complex i ty of DNNF2. 

D e f i n i t i o n 7 Let N be a 'node in a decomposition tree 
T. The cluster of node N is defined as follows: 

• If N is a leaf node, then its cluster is atoms(N). 

• If N is an internal node, then its cluster is the set 
of atoms that appear either 

— above and. below node N in the tree; or 
— in the left and rigid subtrees of node N. 

The width of a decomposition tree is the size of its max­
imal cluster minus one. 

In Figure 3, wo have cluster [n1) — \C}, cluster (n2) — 
{ B , C } , clustering - {A,B}, cluster{nA) = {B,C} and 
cluster(n5) = {C,D}. Therefore, the decomposit ion tree 
has width 1. 

T h e o r e m 10 Let T be the decomposition tree used in 
Figure 5. The time and space complexity of the algorithm 
in Figure 5 is 0{nw2w), where n is the number of leaf 
nodes in tree T and w is its width.2 

Therefore, the complexi ty of compi l ing a proposi t ional 
theory in to D N N F depends crucial ly on the qual i ty 
(w id th) of decomposit ion tree used. The question now 
is how to construct good decomposit ion trees (ones w i th 
small w id th )? As it turns out , there, is a device in the 
l i terature on graph-based reasoning, known as a jo intree, 
which can be easily converted into a decomposit ion tree. 
A jo int ree also has a w id th and good jointrees are those 
w i t h small w i d t h . We can easily convert, a jo intree into a 
decomposit ion tree whi le ma in ta in ing its w id th . There­
fore, any good method for construct ing jointrees is also 
a good method for construct ing decomposit ion trees. A 
jointree, however, is constructed for an undirected graph 
while a decomposit ion tree is constructed for a proposi­
t ional theory. The fo l lowing def in i t ion makes the con­
nect ion. 

D e f i n i t i o n 8 [5] Let be a propositional theory in 
clausal form. The interaction graph for is the undi­
rected graph G constructed as follows. The nodes of G 
arc the atoms of . There is an edge between two atoms 
in G iff the atoms appear in the same clause of 

T h e o r e m 1 1 Let be a propositional theory in clausal 
form and let G be its interaction graph. Let J be a join-
tree for G with, width. w There is a decomposition tree 
for which has width, w and which, can be constructed 
from J in time linear in the size of J. 

The w id th of the best jo in t ree for a graph G is known 
as the treewidth of G. If the t reewid th of a graph is 
bounded by a constant w, then one can construct an op­
t imal jo intree in l inear t ime [2|. A major impl icat ion of 
this result is tha t if a clausal form has an interact ion 
graph w i t h a bounded t reewid th , then (a) comput ing 
an opt imal decomposit ion tree ( jointree) for tha t the­
ory, (b) compi l ing the theory based on the computed 
decomposit ion tree, and (c) answering queries based on 

2Note that if T is a decomposition tree for a clausal form 
, then n is also the number of clauses in 
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Figure 6: A prepositional sentence in DNNF. 

the resulting compilation, can all be done in linear t ime. 
This is our central result on the complexity of compiling 
theories into DNNF. 3 

We stress, however, that the interaction graph of a 
theory may not have a bounded treewidth, yet the the­
ory may have a polynomial compilation into DNNF, 
Consider the theory = 

. The interaction graph of 
this theory has treewidth n, yet it has a D N N F compi­
lation of size 0(n2) (shown in Figure 6 for n = 3). 

The theory we just considered is not equivalent to any 
Horn theory. In fact, even its Horn approximation is 
known to be exponential in n [7], This shows that there 
are theories wi th exponential Horn approximations, yet 
polynomial DNNF representations. 

4 Approximate Compilat ion 
What if we have a theory for which the best decom­
position tree has an unacceptable width? We have two 
key choices to address this problem. First, we can t ry to 
improve on algorithm DNNF2. Second, we can t ry to gen­
erate an approximate compilation, which is the direction 
we shall peruse in this section. 

Consider the algorithm DNNF2 in Figure 5. It should 
be clear that the reason for possible intractabi l i ty in 

this algorithm is the size of :(N/) 
atoms - atoms(a), which contains some of the atoms 
shared by sub-theories i and Specifically, 
the algorithm wi l l consider a number of instantiations 
which is exponential in the size of Therefore, 
we can control the size of resulting compilation by re­
ducing the number of instantiations considered. We can 
do this in two ways: 

1. Ignoring atoms: We can ignore some of the atoms 
in by performing a case analysis on only a 
subset of . That is, we consider all instan-

3The satisfiability of this class of theories can also be do 
cided in linear time using directional resolution [5]. 

t iations of a subset of . This leads to a 
variation on algorithm DNNF2 which we call DNNFU. 

2. Ignoring instantiations: We can ignore some of the 
instantiations That is, we only consider some 
instantiations of . This leads to a variation 
on algori thm D N N F 2 which we call DNNF/. 

In either case, we can control the size of resulting com­
pilation and to the degree we wish. In fact, using either 
technique we can ensure a linear compilation if we decide 
to ignore enough atoms or instantiations. This leaves two 
questions. First, what atoms or instantiations should we 
ignore? Second, what can we guarantee about the re­
sulting compilations? 

The choice of atoms or instantiations to ignore is typ­
ically heuristic and wi l l not be addressed in this paper. 
We only address the second question here. 

T h e o r e m 12 is in NNF and is equivalent 
to 

That is, ignoring atoms preserves equivalence to the ex­
act compilat ion, but compromises the decomposability 
property. The more atoms we ignore, the less decom­
posable the approximation is. But in all cases, the com­
pilat ion generated by DNNFU is sound, although not nec­
essarily complete, wi th respect to entailment. 

C o r o l l a r y 1 

Here is the guarantee about the second approximation: 

T h e o r e m 13 is in DNNF and 

That is, ignoring instantiations preserves the decompos­
abil i ty property but could lead to strengthening the com­
pi lat ion. The more instantiations we ignore, the stronger 
the approximate compilation is. But in all cases, the 
compilation generated by DNNF/ is complete, although 
not necessarily sound, w i th respect to entailment. 

C o r o l l a r y 2 

Therefore, if the size of a D N N F compilation T is too 
large, we can replace it w i th two approximations T1 and 

Given a query we first test whether and 
We have three possibilities: If T1 

then then 
the approximations are not good enough to answer this 
query. Note that the case is impossible. 

The bounds and are inspired by the lower and 
upper Horn approximations proposed in [7]. In their 
approach, however, these bounds are crucial since not 
every theory has a Horn representation. In our case, 
however, the approximations are only meant to address 
intractabi l i ty; our compilat ion approach would continue 
to be meaningful wi thout them. 

5 Compil ing Out Atoms 
Given a theory , we may only be interested in queries 

which do not mention atoms A'. In this case, it makes 
sense to compile into a theory which does not mention 
atoms X either, yet is equivalent to wi th respect to 
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Figure 7: Forgetting atoms in a DNNF. 

queries Such theory is the result of forgetting about 
atoms X in [6]. As it turns out, once a theory is 
converted into D N N F , forgetting takes linear time: 

D e f i n i t i o n 9 For DNNF and atoms X, define 
FORGET as the result of replacing each literal in 
ά with true iff that literal refers to an atom in X. 

The following theorem shows that the above linear op­
eration does correspond to forgetting as defined in [6]: 

T h e o r e m 14 Let be a sentence in DNNF and let 
be a clause that does not mention atoms X. Then , , 
iff FORGET 
Consider the D N N F in Figure 6, which is equiva­
lent to the theory 

. Forgetting about 
atoms P1, P2, P3 in this theory gives the DNNF in Fig­
ure 7, which can be easily simplified to 

Forgetting has three major applications. First, re­
ducing the size of a D N N F compilation by forgetting 
about atoms that would never appear in queries. Second, 
computing D N N F representations of Boolean functions. 
Consider the circuit in Figure 8 which implements the 
odd-parity function, and let be a theory representing 
this circuit. If we compile into DNNF, and then 
forget atoms E, F and G, we obtain a DNNF represen­
tat ion of this Boolean function. This technique can be 
used to compile any circuit representation of a Boolean 
function into its D N N F representation.4 A final applica­
t ion of forgetting is in computing the implications of a 
given theory on a particular set of atoms X (by forget­
t ing about all atoms other than A"). This has proven to 
be very useful in model based diagnosis [3]. 

6 Conclusion 
We have proposed an approach for compiling preposi­
tional theories into a tractable form, which we refer to as 
decomposable negation normal form (DNNF). We have 

4In [4], we compare DNNFs with Binary Decision Dia­
grams (BDDs) as a representation of Boolean functions. 

Figure 8: An odd-parity circuit. 

shown that once a theory is compiled into that form, 
a number of reasoning tasks including entailment, sat­
isfiability and forgetting can be accomplished in linear 
t ime. We have shown that every propositional theory 
can be compiled into DNNF and presented an algorithm 
to this effect. We then presented a key result according 
to which the t ime and space complexity of our compi­
lation technique is linear given that the propositional 
theory has a clausal form wi th bounded treewidth. F i ­
nally, we presented two techniques for approximating 
DNNF compilations. One of the techniques generates 
sound compilations, the other generates complete com­
pilations. Together, the two approximations bound the 
original theory from below and above in terms of their 
abil ity to answer queries. There are at least three key 
distinctions between our compilation approach and the 
one proposed in [7]. First, every theory has a DNNF 
representation, while not every theory lias a Horn rep­
resentation. Second, there are theories wi th exponential 
Horn approximations, yet polynomial DNNF represen­
tations. Th i rd , we have characterized a class of theories 
which is guaranteed to have linear D N N F compilations. 
We are not aware of a similar guarantee on the Horn 
approximations of this class of theories. 
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