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A b s t r a c t 

Constructing "good" models for chemical car­
cinogenesis was identified in IJCAI-97 as pro­
viding a substantial challenge to "knowledge 
discovery" programs. Attent ion was drawn to 
a comparative exercise which called for pre­
dictions on the outcome of 30 rodent carcino­
genicity bioassays. This - the Predictive Tox­
icology Evaluation (or PTE) Challenge - was 
seen to provide AI programs wi th an opportu­
nity to participate in an enterprise of scientific 
merit , and a yardstick for comparison against 
strong competit ion. Here we provide an assess­
ment of the machine learning (ML) submissions 
made. Models submitted are assessed on: (1) 
their accuracy, in comparison to models devel­
oped wi th expert collaboration; and (2) their 
explanatory value for toxicology. The princi­
pal findings were: (a) using structural informa­
t ion available from a standard modelling pack­
age, layman-devised features, and outcomes of 
established biological tests, results from ML-
derived models were at least as good as those 
wi th expert-derived techniques. This was sur­
prising; (b) the combined use of structural and 
biological features by ML-derived models was 
unusual, and suggested new avenues for toxi­
cology modelling. This was also unexpected; 
and (c) significant effort was required to inter­
pret the output of even the most "symbolic" of 
ML-derived models. Much of this could have 
been alleviated wi th measures for converting 
the results into a more "toxicology-friendly" 
form. As it stands, their absence is sufficient 
to prevent a whole-hearted acceptance of these 
promising methods by toxicologists. This sug­
gests that ML techniques have been able to re­
spond - not fully, but nevertheless substantially 
- to the P T E Challenge. 

1 I n t r o d u c t i o n 
In his essay "Two conceptions of science" [Medawar, 
1984], the distinguished biologist Peter Medawar de­
scribes the valuation of contributions to science thus:-

Here then are some of the criteria used by scientists 
when judging their colleagues' discoveries and the 
interpretations put upon thern. Foremost is their 
explanatory value - their rank in the grand hier­
archy of explanations and their power to establish 
new pedigrees of research and reasoning. A second 
is their clarifying power, the degree to which they 
resolve what has hitherto been perplexing. .. 

Explanations that reach this stage of inspection are 
usually understood to have achieved an acceptable level 
of accuracy, however measured. W i th the emergence of 
ML programs capable of constructing empirical gener­
alisations from scientific data, it is possible to examine 
the extent to which such machine-authored descriptions 
meet the criteria used to judge their human counterparts. 
This is of special interest if such programs are intended 
to act as genuine scientific assistants to experts. 

One area for conducting such an examination was pro­
posed in the form of the Predictive Toxicology Eval­
uation Challenge (in IJCAI-97, see [Srinivasan et a/., 
1997]). The problem of predicting chemical carcinogen­
esis described there is part icularly well-suited as a test-
bed for a number of reasons. Besides its undisputed hu­
manitarian value, principal reasons are that: (1) there 
is an urgent need for low-cost, accurate toxicity mod­
els that can reduce a reliance on slow, expensive rodent 
bioassays [Bristol et a/., 1996]; (2) there is much to be 
learnt about the molecular mechanisms underlying car­
cinogenic activi ty; and (3) there is a well-established sci­
entific programme wi th in the U.S. National Toxicology 
Program (NTP) concerned with the comparative evalu­
ation of toxicity models (which may be of human origin, 
see: dir.niehs.nih.gov/dirlecm/pte2.htm1). These pro­
vide machine-based "hypothesis constructors" the op­
portuni ty to construct accurate models, which may yield 

1 Al l Internet sites mentioned in this paper are to be pre­
fixed with http:// unless otherwise indicated 
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new insights and subject to review much in the manner 
described by Medawar. 

This paper reports on the machine learning (ML) sub­
missions made to this I J C A I challenge from its inception 
in August, 1997 to December, 1998. The paper is organ­
ised as follows. Section 2 summarises the course of the 
challenge from 1997, and presents the models selected 
for further evaluation. Section 3 contains an assessment 
of the accuracies of the ML models in comparison to 
those developed under the guidance of expert toxicolo-
gists (this includes toxicology expert systems). Section 
4 contains an appraisal of the explanatory value of the 
ML models2. Section 5 concludes this paper. 

2 T h e I J C A I P T E Chal lenge: detai ls 
and submissions 

As part of the NTP, the National Inst i tute of Envi­
ronmental Health Sciences (NIEHS) organises the Pre­
dictive Toxicology Evaluation (or PTE) project. The 
project [Bristol et a/., 1996] is concerned with predict­
ing the outcome of rodent bioassays measuring the can­
cerous act ivi ty of a pre-specified set of compounds. In 
its simplest setting, predictions are restricted to either 
"POS" to denote carcinogenic, or "NEG" if otherwise. 
There is no restriction on the type of method used to 
construct the toxici ty model. The P T E project accepted 
predictions unt i l late 1996 for 30 compounds (collectively 
known as PTE2) undergoing bioassays wi th in the NTP 
- the last of these assays being completed by June, 1998. 

The relevance of the P T E project to programs con­
cerned w i th "knowledge discovery" directly led to the 
P T E Challenge in IJCAI-97. Here, it was proposed 
to collect submissions from AI techniques. Submis­
sions were to be made at a prescribed Internet site 
(www. comlab.ox. ac.uk/oucl/groups/machlearn/PTE) 
and consisted of two parts: (1) prediction: POS and 
NEG classification for the PTE2 compounds; and (2) 
description: details of the materials and methods used, 
and results obtained w i th the technique. The former 
was needed to assess model accuracy, and the latter for 
replicabii ity of results and evaluations of model compre-
hensibilty. 

The site accepted submissions from August 29, 1997 
(one week after the challenge was announced at I JCAI -
97). Submissions received up to November 15, 1998 
were eligible for assessments of chemical comprehensi-
bil i ty. The challenge was regularly advertised at major 
AI conferences and in electronic newsgroups, and our 
records indicate that the data provided by the challenge 
site were retrieved over 100 times3 . By November 15 

2Performed by one of the authors (D.W.B.), who is a 
toxicologist. 

3Clearly, only very limited conclusions can be drawn from 
this figure. Our records suggest that the data were extracted 
by groups with a wide range of research interests. However, 
the reader will note that the final submissions appear to be 
largely from those interested in Inductive Logic Programming 
(ILP). While it is possible that the emphasis on a descriptive 

1998, 9 legal submissions were received (by legal here we 
mean that both "predict ion" and "description" parts of 
the submission were in order). These are summarised in 
Figure 1. Space restrictions prevent us from providing 
a description here of each entry the reader is directed 
to the Internet site under the "Descript ion" column for 
complete details4. 

At this point, it is worth noting an important point of 
difference between the submissions made to the NTP's 
P T E project, and those in Figure 1. A l l predictions by 
the former were made before true classifications on any 
chemical in PTE2 were known. The t iming and duration 
of the I J C A I challenge has precluded the possibility of 
such a truly bl ind t r ia l . We rely on submissions to abide 
by challenge regulations that prevent the use of PTE2 
classifications in any way to direct model formation or 
selection. 

3 Assessment of pred ic t ive accuracy 
At the t ime of wri t ing this paper, the classification of 
23 of the 30 compounds had become available. Figure 2 
tabulates the predictive accuracies achieved by the mod­
els described in the submissions in Figure 1 (henceforth 
called "ML-derived models"). 

Benigni [Benigni, 1998] provides a tabulation of the 
predictions made by several toxicity prediction methods 
on a subset of the PTE2 compounds. We concentrate 
here on those techniques that involve substantial input 
from experts. These include models devised directly by 
toxicologists or those that rely on the application of com­
pilations of such specialist knowledge (that is, expert 
systems). In [Benigni, 1998], there are 9 such "expert-
derived" models due to: Huff et al. (HUF, [Huff et 
al, 1996]), OncoLogic (ONC, [Woo et a/., 1997]), Boot-
man (BOT\ [Bootman, 1996]), Tennant et al. (TEN, 
[R.W. Tennant, 1996]), Ashby (ASH, [Ashby, 1996J), Be­
nigni et al (BEN, [R.Benigni et al., 1996]), Purdy (PUR, 
[Purdy, 1996]), DEREK (DER, [Marchant, 1996]), and 
C O M P A C T / H A Z A R D E X P E R T (COM, [Lewis et a/., 
1996]). Excluding missing entries, predictions are avail­
able from these methods for 18 PTE2 compounds. A 
comparative tabulation on this subset against the ML-
dcrived models is in Figure 3. 

Comparisons based on predictive accuracy overlook 
an important practical concern, namely that the costs 
of different types of errors may be unequal. In toxi­
cology modelling, the cost of false negatives is usually 
higher than those of false positives. Borrowing from ter­
minology in signal-detection, "sensitivity" refers to the 
fraction of POS chemicals classified as POS by a model; 
and "specificity" refers to the fraction of NEG chemicals 

component discouraged the use of methods like neural net­
works, we have no way of knowing why some ML researchers 
failed to respond to the challenge. 

4 The reader should note that the submission OU2 was 
from two of the authors here (A.S. and R.D.K.). As far as 
we are aware, none of the submissions appear to have involved 
a toxicologist during model-development. 
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Figure 1: Legal submissions to the P T E Challenge. Here " I L P " stands for Inductive Logic Programming. 

Figure 2: Estimated accuracies of submissions made to the P T E Challenge. Here, accuracy refers to the fraction of 
PTE2 compounds correctly classified by the ML-derived model. The quantity in parentheses next to the accuracy 
figure is the estimated standard error. The classifications are based on the outcome of 23 of the 30 PTE2 bioassays. 
The classification of remaining 7 is yet to be decided. "DEF" refers to the simple rule that states that all compounds 
wi l l be "POS" . This was not an official submission to the challenge and is only included here for completeness. 

classified as NEG by a model. Figure 4 is a scatter-
diagram that shows the position of each model in this 
two-dimensional probabil i ty space. 

Complementary to sensitivity and specificity are: the 
fraction of POS predictions that are actually POS, and 
the fraction of NEG predictions that are actually NEG. 
Termed here as "positive predict iv i ty" and "negative 
predict iv i ty" , these measure the accuracy of each type 
of prediction. Good models should exhibit high predic­
t iv i ty values. Figure 5 shows the scatter-diagram of the 
models along these dimensions. 

Keeping in mind the mandatory caution that must 
be exercised when interpreting figures derived from such 
small test-sets, Figures 2, 3, 4 and 5 appear to suggest 
that ML-derived models are able to at least match the 
performance attained by their expert counterparts. As 
is evident, 7 of the 9 ML-derived models achieve the 
predictive accuracy threshold set by the DEF model. 
This is in contrast to 3 of the 9 expert-derived mod­
els. 6 ML-derived models (LE2, LE3, L R D , LRG, O A I , 
OU2) achieve false-negative error rates of at most 0.25 
wi th false-positive rates of no more than 0.50. This is 
matched by only 1 expert-derived model (ONC). 7 M L -
derived models (the previous 6 and OU1) also achieve 
positive and negative predictive rates of at least 0.50 

(Figure 5). This is in contrast to 4 expert-derived mod­
els. Elsewhere, we present a more detailed assessment, of 
these trends based on a cost-sensitive technique termed 
ROC-analysis [Srinivasan et a/., 1999]. Due to space 
restrictions, a summary has to suffice here. The analy­
sis shows the ML-derived models to be extremely com­
petit ive, wi th LRG being the pick of the best across a 
range of reasonable error-costs and prior distributions 
over class values. LRG was obtained w i th a stochastic 
technique which resulted in rules that use, amongst oth­
ers, attributes encoding the results from ILP methods. 

4 Assessment of explanatory value 
At the outset of this section, it is worth emphasising that 
as submitted, none of the ML-derived models would be 
considered toxicology acceptable. This comment extends 
even to the most transparent submission like OU2, which 
presents a relatively simple (by ML standards) decision-
tree obtained from a well-known algori thm (C4.5). Much 
of this probably stems from a lack of toxicology expertise 
amongst the program users, and the lack of any "client 
specifications" in the statement of the challenge. We in­
tend to rectify the latter in future experiments (PTE-3, 
see [Srinivasan et a/., 1999]). However, some attempt by 
all developers at improving clarity by including tables of 
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Figure 3: Comparison of estimated accuracies of expert and ML-derived models. The figures are based on the 
classification of 18 of the 30 PTE2 compounds for which predictions are available from all models. As before, 
estimates of standard errors are in parentheses. Some expert-derived models include a third category of classification 
called "borderline carcinogen." These are simply taken as a POS classification here. As before DEF predicts all 
chemicals as POS. 

names and structures identified by the rules, clear state­
ments of their reliability etc., would have greatly assisted 
the evaluation exercise. The application of ML tech­
niques to modelling toxicity endpoints is a relatively new 
research development in toxicology, and it is essential 
that descriptions of representations used and results ob­
tained are as thorough as possible (see for example, [Bris­
tol, 1995] for an appraisal of the requirements of mod­
els from both developer and prospective-client points of 
view). Nevertheless, the performance of the models have 
been sufficiently intriguing to foster further examination. 

In performing an evaluation of the explanatory value 
provided by the ML-derived models, we have found it in­
structive to examine their contributions in the following 
categories: 

A. Those that suggest any new lines of investigation 
for toxicology modelling; 

B. Those that confirm, clarify or contribute to current 
ideas in toxicology; and 

C. Those that are uninteresting or unlikely. 

Our examination is restricted to the models that showed 
the most promise in the previous section, namely: LE2, 
LE3, LRG, OAI , OU2. Unfortunately, the most accu­
rate model (LRD) could not be considered, as no explicit 
model was provided. Further, it is not our intention to 
single out any one model as being the "best" - rather, it 
is to provide an overall assessment of the value of using 
ML methods in toxicology. 

Of most interest is the frequent use of combinations, 
in models like LRG, of chemical structure and biologi­
cal tests. For some time, there has been vigourous de­
bate on how classical structure-activity modelling can 
be applied to toxicity problems. This form of mod­
elling relates chemical features to activity, and works 
well in-vitro. The extent to which these ideas transfer 
to toxicity modelling - which deals with the interaction 
of chemical factors with biological systems - is not evi­
dent. By using a combination of chemical features and 
biological test outcomes, the ML-derived models provide 
one possible method for dealing with the chemical ef­
fects in such "open" systems. If the accuracies obtained 
with such rules are borne out on larger datasets, then 
this would constitute a significant advance in structure-
activity modelling for toxicology. This is certainly worth 
further investigation and falls in Category A. 

A number of aspects of some of the models can be 
categorised in Category B. As an example, OU2 se­
lects a combination of mouse lymphoma and Drosophilla 
tests as a strong indicator of carcinogenicity. Many tox-
icologists believe that relationships exist between geno-
toxicity and carcinogenicity. While the only accepted 
correlation involves the Salmonella assay, this rule sug­
gests a different combination of short-term tests could 
be equally, or more effective. Similar comments could 
be made on a number of other fronts: the presence 
of methoxy groups, sulphur compounds, and biphenyl 
groups are all identified in various ways as being re­
lated to toxicity. These are in line with what is currently 
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Figure 4: Scatter-diagram showing the performance of expert and ML-derived models based on their false positive 
(x-) and false negative (y-) error rates. For two models w i th the same x-value, the one w i th the smaller y-value is 
preferable. 

known in toxicology. 
Given the relative opaqueness of the output, it is hard 

to judge the extent to which the models have identified 
aspects in Category C. The general approach in toxicol­
ogy is to be wary of "explanations" that only pertain 
to a few or uninteresting chemical structures. These do 
occur in the models submitted, and appeal to have been 
ignored (except in the case of OU2, where some editing 
attempt is undertaken). We do not enumerate examples 
of this here. 

5 Conclusions 
Toxicology is a young science that is pr imari ly driven by 
intense health and industrial interests focused on spe­
cific chemical substances. A practicing toxicologist is 
regularly confronted wi th urgent requests to provide re­
liable information about the next substance of interest 
- whatever it might be. This situation demands that 
the toxicologist be able to call on, or develop, predic­
tive models that are not only accurate, but also cover an 
extremely wide range of noncongeneric dissimilar chemi­
cals. These range from pure organic and inorganic com­
pounds to polymers and complex mixtures. Predictions 
also need to be generated for a variety of toxicity end-
points [Bristol, 1995]. Aspir ing assistants - human or 
otherwise - seeking to aid an expert toxicologist in this 
model-building endeavour, must be capable of suggesting 
robust solutions that are accurate and understandable. 
This forms the crux of the P T E Challenge - do AT pro­
grams meet these requirements when constrained to the 
task of predicting chemical carcinogenesis? The short 
answer, for the submissions part icipating in the chal­
lenge, is: "not yet." The qualifier is important though, 
as they do show considerable potential to achieve this 
goal. This opinion is based on the evidence that (a) mod­

els developed by these programs are clearly competit ive 
on accuracy terms w i th those derived wi th significant 
expert assistance; and (b) even w i th almost no effort 
made to render the output chemically understandable 
the models have sti l l suggested unusual ways to proceed 
wi th toxicology modelling. Whether such programs can 
make the transit ion from promising apprentices to valu­
able assistants wi l l depend on whether their developers 
recognise the paramount importance of ensuring that the 
models are phrased in terms familiar to a toxicologist, 
and on continued good results wi th larger datasets. 
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