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Abstract 

We propose a formal framework for modelling 
case-based inference ( C B I ) , which is a cru­
cial part of the case-based reasoning ( C B R ) 
methodology. As a representation of the sim-
ilarity structure of a system, the concept of 
a similarity profile is introduced. This con­
cept makes it possible to formalize the C B R 
hypothesis that "similar problems have simi­
lar solutions" and to realize C B I in the form 
of constraint-based inference. In order to ex­
ploit the similarity structure more efficiently, 
a probabilistic generalization of the constraint-
based view is developed. This formalization al­
lows for realizing C B I in the context of proba­
bilistic reasoning and statistical inference and, 
hence, makes a powerful methodological frame-
work accessible to C B R . Within the gener­
alized setting, a (formalized) C B R hypothe­
sis corresponds to the assumption of a certain 
stochastic model, and a memory of cases can 
be seen as statistical data underlying the in­
ference process. As a particular result we es­
tablish an approximate probabilistic reasoning 
scheme which generalizes the constraint-based 
approach. 

1 In t roduc t ion 
The approach of case-based reasoning ( C B R ) relies on 
the hypothesis that "similar problems have similar so­
lutions." This assumption, which we subsequently re­
fer to as the " C B R hypothesis," is the guiding princi­
ple underlying most C B R systems. Until recently, how­
ever, there have been only few attempts at formalizing 
this hypothesis [Dubois et a/., 1998; Esteva et a/., 1997; 
Plaza et a/., 1998] and, thus, at making an important 
step toward a theoretical foundation of C B R . 

In this paper, we develop a formalization in which we 
proceed from a constraint-based interpretation of the 
C B R hypothesis, according to which the similarity of 
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problems imposes a constraint on the similarity of as­
sociated solutions in form of a lower bound [Dubois et 
a/., 1998]. We then propose a generalization of this ap­
proach, according to which the similarity of problems 
allows for deriving conclusions about the (conditional) 
probability distribution of the similarity of associated 
solutions. A probabilistic formalization of the C B R hy­
pothesis according to which "similar problems do prob­
ably have similar solutions" seems appropriate since it 
emphasizes the heuristic character of C B R and is suit­
able for modelling the "exception to the rule." 

The formal model we are going to propose is not re­
lated to the complete methodological framework of case-
based reasoning in the sense of the so-called " C B R cy­
cle." Rather, we focus on C B R as case-based inference 
( C B I ) , which essentially corresponds to the R E U S E pro­
cess within the (informal) R4 model of the C B R cycle 
[Aamodt and Plaza, 1994]. More precisely, we emphasize 
the idea of case-based reasoning as a prediction method 
[Dubois et a/., 1998; Faltings, 1997], which is close to 
the idea of instance-based reasoning [Aha et a/., 1991]. 
According to this point of view, the main task of C B I is 
to exploit past experience in the form of observed cases 
in order to predict or characterize the solution of a new 
problem. In this narrow sense, C B R may not even cover 
the complete process of problem solving, i.e., the process 
of ultimately finding the solution, but may only consti­
tute the first part thereof. Typically, the characteriza­
tion of the solution provided via C B I wil l be utilized by 
methods applied in subsequent stages of the overall prob­
lem solving procedure. Indeed, these subsequent stages, 
which roughly correspond to the R E V I S E part of the R4 

model, are often not directly "case-based" but make use 
of domain-specific knowledge or user input. 

According to the point of view represented above, C B I 
has important aspects in common with statistical meth­
ods, and, more generally, with approaches to machine 
learning. An important difference, however, concerns 
structural assumptions about an underlying data gen­
erating process, which machine learning algorithms are 
based on, and which are generally represented in form 
of a hypothesis space H. As a simple example con­
sider the case where H is given as a class of functions 

. Each of these functions corresponds to a 
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certain hypothesis which is considered for explaining ob­
served data . As in this example, 
the hypotheses h typically relate properties (attributes) 
of the instances . The C B R hypothe-
sis, however, concerns the (supplementary) concept of 
similarity, which can be seen as a derived property re­
lated to pairs of instances. Thus, C B R makes structural 
assumptions about the data generating process not di­
rectly at the system or instance level but at the, say, sim­
ilarity level. Seen from this perspective, the process of 
C B I should mainly take place in some kind of similarity 
space instead of instance space (such as, e.g., instance-
based reasoning.) Consequently, a formalization of C B I , 
whether probabilistic or not, should proceed from this 
level. 

The remaining part of the paper is organized as fol­
lows: Section 2 introduces the basic framework of case-
based inference. C B I is realized in the form of constraint-
based inference in Section 3. Section 4 is devoted to the 
probabilistic generalization of this approach. The paper 
is concluded with a summary in Section 5. 

2 The Basic Framework 
Within our framework, the primitive concept of a case is 
defined as a tuple consisting of a situation and a result 
or outcome associated with the situation.1 

Def i n i t i on 1 ( C B I se t -up) . A C B I set-up is defined as 
a 6-tuple 

where *S is a countable set of situations, R is a set of 
results, and , assigns results to situations. 
The functions 
define similarity measures over the set of situations and 
the set of results, respectively. M is a finite memory 

(1) 
of cases 

We do not make particular assumptions concerning 
the characterization of situations or results, which will 
generally be marked using an attribute-value represen­
tation. As far as similarity measures are concerned we 
suppose them to be reflexive, symmetric and normalized 
in the sense that degrees of similarity are elements of 
the unit interval [0,1], where a value of 1 corresponds 
to perfect similarity. Observe that card implies 
the same to be true for the sets 

] 
of actually attained similarity degrees. 

Clearly, the assumption that a situation determines 
the associated outcome does not imply that the latter is 
known as soon as the situation is characterized. For ex-
ample, let situations correspond to instances of a class of 

1We prefer these slightly more general expressions to the 
terms "problem" and "solution." 

combinatorial optimization problems. Moreover, define 
the result associated with a situation as the (unique) op­
timal solution of the respective problem. Deriving this 
solution from the description of the problem might in­
volve a computationally complex process. In this con­
nection, we refer to case-based inference as a method 
supporting the overall process of problem solving by pre­
dicting the result associated with a certain situation. To 
this end, C B I performs according to the C B R principle: i t 
exploits experience in form of precedent cases to which it 
"applies" background knowledge in form of the heuristic 
C B R hypothesis. 
De f i n i t i on 2 ( C B I p rob lem) . A C B I problem is a 
tuple consisting of a C B I set-up £ and a new 
situation The task is to exploit the similarity 
structure2 of in conjunction with observed cases in 
order to predict resp. characterize the result 
associated with s0. 

3 C B I as Constraint Propagat ion 
The hypothesis of ''similar situations having similar re­
sults" is interpreted in this section from a constraint-
based point of view, according to which the similarity 
of situations constrains the similarity of the associated 
results (at a minimum level.) 
De f in i t i on 3 (s im i la r i t y p ro f i le ) . For a C B I set-up 

the function is defined by 

and called the similarity profile of the set-up 
The similarity profile is the "fingerprint" of the 

system at the similarity level and (partly) rep­
resents the similarity structure of the set-up It can 
be seen as a condensed representation of knowledge con­
cerning the system structure . Indeed, the domain and 
the range of are one-dimensional, whereas S and R 
will generally be of higher dimension. Consequently, a 
hypothesis related to the similarity structure of a sys­
tem will generally be less constraining than a hypothesis 
related to directly. On the other hand, a similarity 
profile has a relatively simple structure which facilitates 
the formulation, derivation, and adaptation of hypothe­
ses. 
De f in i t i on 4 (s im i la r i t y hypothes is) . A similarity 
hypothesis is identified by a function h : [0,1] -> [0,1] 
(and similarity measures I The intended meaning 
of the hypothesis h (or, more precisely, the hypothesis 

is that 

(2) 

holds true for all A hypothesis h is called 
stronger than a hypothesis h! if h! < h and 
We say that a C B I set-up satisfies the hypothesis h if 

A similarity hypothesis h is thought of as an approxi­
mation of the similarity profile h and can be interpreted 

■ > . 

2This expression will be defined formally in Section 4. 
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as a quantif ication of the C B R hypothesis for the set-up 
This hypothesis is often formulated as "the more 

similar two situations are, the more similar are the cor­
responding results." Returning to the concept of a sim­
i lar i ty profile such as introduced above, it becomes ob­
vious that this formulation implicitely makes a stronger 
assumption than the formulation used at the beginning 
of this section. Namely, it suggests the function as­
sociated w i th a set-up to be increasing, or at least 
non-decreasing. We, therefore, call h a strict hypothesis 
if it is a non-decreasing function. 

Now, consider a CBI problem , and suppose that 
satisfies the hypothesis h. If the memory M contains a 

case (s, r) such that s = so, the outcome = r can sim­
ply be retrieved. Otherwise, we can derive the following 
restriction: 

(3) 

where the -neighborhood of a result r R is defined as 
the set of all outcomes which are at least a-similar to r: 

(4) 
Thus, in connection w i th the constraint-based view, the 
task of C B I can be seen as one of deriving and represent­
ing the set Ch in (3), or an approximation thereof. This 
may become difficult if, e.g., the definition of the simi­
lari ty R and, hence, the derivation of a neighborhood 
is complicated. The sets (4) may also become large, in 
which case they cannot be represented by simply enu­
merating their elements. 

In the context of C B I it must generally be assumed 
that the similarity profile of a C B I set-up is un­
known. Consequently, we cannot guarantee that sat­
isfies a certain hypothesis h. Nevertheless, taking for 
granted that h is indeed a (more or less) good approxi­
mation of , it seems reasonable to util ize it for deriv­
ing a set Ch according to (3) as an approximation of 
(while keeping the hypothetical character of h in mind.) 
This situation, which reflects the heuristic character of 
C B I as a problem solving method, is closely related to 
the aspect of learning. W i th in our framework, one rea­
sonable way of realizing case-based learning is that of 
finding a good approximation of a similarity profile 
An obvious approach, for instance, is to start from a 
hypothesis space H and to look for the most favorable 
(e.g., strongest) among those hypotheses which 
are consistent w i th the memory M in the sense that (2) 
is satisfied for all 
R e m a r k 5. According to (3), the set Ch depends only 
on the relation of degrees of the (linearly ordered) simi­
lari ty scales Ds and DR, as specified by the hypothesis 
h. Hence, the measures and can be considered as 
ordinal concepts. 

The overall C B I process, as introduced in this section, 
is i l lustrated by Figure 1: 
• In a first step, the problem is characterized 
at the similarity level by means of its similarity struc­
ture, consisting of the similarity profile h resp. a cor­
responding hypothesis h and the similarity structure 

zs = Sstr(.M,so) of the (extended) memory (M,so). 
The latter can be thought of as the set of values 

. In fact, _ resp. zs can be 
seen as the "image" of the system resp. the 
(extended) memory under the transformation defined by 
the similarity measures and 

• The main step of the C B I process is then to uti l ize 
the similari ty structure of the problem for constraining 
the unknown outcome at the similar i ty level. The 
corresponding constraints C are implicit in the sense that 
they refer to the derived (bilateral) property of similarity, 
not to the result itself. 

• By applying the function which 
is inversely related to , to the 
observed outcomes (k = 1 , . . . , n ) , the similarity con­
straints C are transformed into constraints on outcomes, 
which are combined via (3) to a constraint resp. Ch 
at the system level. 

R e m a r k 6. Two characteristics of C B I , as introduced 
above, are worth mentioning. First ly, C B I is indirect in 
the sense that constraints on outcomes are obtained via 
constraints on similarity degrees . Secondly, 
C B I is local in the sense that the rules (2) associated w i th 
a hypothesis h derive evidence concerning the value r0 

from single cases only. These pieces of evidence st i l l have 
to be combined in order to obtain the constraint implied 
by the complete memory M. W i th i n the deterministic 
framework of this section the combination of evidence is 
simply accomplished by (3). 

Of course, the more "convenient" the similari ty struc­
ture of a set-up is, the more successful C B I wi l l be. 
W i th in our framework, we have quantified this conve­
nience, i.e., the degree to which the C B R hypothesis 
holds true for the set-up , by means of the similar­
i ty profile . This quantif ication, however, may appear 
rather restrictive. The existence of some "exceptional" 
pairs of cases, for instance, might call for small values 

of the similari ty profile in order to guaran­
tee the validity of (3). Then, the predictions (3) which 
reflect the success of the C B I process might become im­
precise even though the similar i ty structure of is oth­
erwise strongly developed. This motivates the proba­
bilistic generalization of the constraint-based approach 
as proposed in the next section. 
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4 C B I as Probabi l is t ic Reasoning 
4.1 Basic probabilistic concepts 
We now extend the definit ion of a C B I set-up such that 
the set S of situations is endowed wi th a probabil i ty 
measure (defined on 2s.) This measure models the 
occurence of situations. Thus, we assume that the sit­
uations resp. the associated cases which constitute the 
memory M are chosen repeatedly (and independently) 
according to The assumption of this kind of proba­
bilistic setting is a typical one for, e.g., machine learning, 
and can also be found in recent (more formally oriented) 
approaches to C B R [Bergmann and Wilke, 1998]. It is 
less restrictive than it might appear and should, there­
fore, not be overrated. In connection wi th probabilistic 
reasoning schemes, for instance, it wi l l generally not be 
necessary to make explicite assumptions about us. 

Now, consider a C B I problem wi th (1) the 
memory of the set-up According to our assumption, 
the sequence of involved situations can 
be seen as the realization of a corresponding random se­
quence characterized by the measure 

(5) 

This measure defines the (discrete) probabil i ty space 
underlying the C B I problem. Since C B R 

is part icularly concerned w i th modelling the (similarity) 
relation between two cases let us consider a random tu ­
ple of situations. The random variable 
Z = (X,Y), where X is the similarity of the 
situations and Y denotes the similarity of the associ­
ated outcomes, is then defined on the probabil i ty space 

as the mapping 

Let be the associated measure over 
, and define ux over Ds and µy over DR in the 

same way. We use notations such as (X = x) for events 
X~](x) and to denote corresponding condi­
t ional probabilit ies. Moreover, we make use of intuit ive 
notations such as 
D e f i n i t i o n 7 ( p r o b a b i l i s t i c s i m i l a r i t y p r o f i l e ) . 
Consider a C B I set-up and let denote the 
class of probabi l i ty measures over [0, l ] . 4 The function 

is called the probabil istic similari ty profile of _ 
The probabil istic similari ty profile H provides a 

much more precise picture of the similarity structure 
of a C B I set-up than a (deterministic) profile 
does. For each degree of similarity Ds it spec­
ifies the probabi l i ty distr ibut ion of the simi­
lar i ty of results, i.e., of the random variable Y, given 

3This means that M is actually a sequence of not neces­
sarily different cases. 

4That is, the class of measures on with B the 
Borel <7-field over [0,1]. 

that the similarity of two situations is x. Compared 
to this, the function specifies only the lower bound 
inf 
D e f i n i t i o n 8 (s tochas t ic d o m i n a n c e ) . For a prob­
abil i ty measure ) define the decumulative 
distr ibution function : [0,1] 0,1] by := 

. We write and say that the measure 
dominates the measure stochastically if 
D e f i n i t i o n 9 ( p r o b a b i l i s t i c h y p o t h e s i s ) . A prob­
abilistic! (similarity) hypothesis is identified by a func­
t ion H : . L e t b e a C B I set-up w i th 
probabilistic similarity profile satisfies the hy­
pothesis H if dominates H(x) stochastically for 
all x Ds> H is called strict if for all 

hypothesis H' is called stronger than 
for all and 

for at least one 
The over P([0,1]) is a natural generaliza­

t ion of the -relation over [0,1]. Again, a C B I set-up 
satisfies a hypothesis // if the latter is "pessimistic1' 

enough in the sense that it never over-estimates the prob­
abil i ty that , for any , the degree of similarity of 
the outcomes associated wi th two situations is equal to 
or larger than The strict version of the C B R hypothe­
sis now means that "the more similar two situations are, 
the larger is the probabil i ty that the associated results 
are at least -similar.'' 

Let us finally introduce the concept of a generalized hy­
pothesis which turns out to be useful in connection wi th 
(approximate) probabilistic inference (cf. Section 4.2). 
D e f i n i t i o n 10 (genera l i zed h y p o t h e s i s ) . A gener­
alized (similarity) hypothesis is identified by a function 

denotes the class of 
normalized uncertainty measures (fuzzy measures) over 
[0,1], i.e., the class of measures r; such that — 0, 

In Section 4.2, a generalized hypothesis G wil l be 
used for modelling upper bounds of probabil i ty mea­
sures. Thus, it is associated w i th rules of the form 

whereas a probabilistic hypothesis H defines rules 

(6) 

4 .2 P r o b a b i l i s t i c i n f e r e n c e 
It has already been mentioned that C B I is not based 
directly on the information provided at the system level. 
Rather, the concept of similarity, quantified in form of 
similarity functions and , is exploited in order to 
transform this information and to represent it at the 
similarity level. The following definition specifies this 
kind of transformation. 
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. We generally assume to be given 
and simply call Sstr(.M,so) the similarity structure of 

. In order to take information about observed 
results into account, we define the outcome structure as 
Ostr 

The values ' and Xj define realizations of 
corresponding random variables and Xj. 
We combine these variables into one vector Zs- Hence, 
the similarity structure of a C B I problem can be thought 
of as a random variable Zs defined on the probability 
space . In the same way, a random vari­
able Zo is associated with the outcome structure of a 
C B I problem. 

The structure Zs can be seen as statistical data at the 
similarity level. The measure (5) determines the prob­
ability of the occurence of such structures completely. 
Thus, given the "observation" , it is 
principally possible to derive (conditional) probabilities 
such as, e.g., 

(7) 
or the likelihood of results 

in connection with the unknown outcome, which 
is now treated as a random variable The indirect 
and local character of C B I (cf. Remark 6 and Figure 1,) 
however, has important consequences for probabilistic 
reasoning. Firstly, results such as (7) wil l not be de­
rived directly. Rather, evidence concernig . is ob­
tained indirectly via evidence concerning similarity vec­
tors , where 
Secondly, the local inference rules (6) do not allow for 
the direct specification of probabilities such as P(V = 

, which condition on a complete similar­
ity structure as an event. This leads to the problem 
of combining probabilistic evidence derived from differ­
ent cases. Due to the stochastic dependency of the 
random variables which constitute a similarity struc­
ture, this problem is more involved than the combina­
tion of evidence in the deterministic approach of Sec­
tion 3. Thirdly, the transformation of a measure over 

in accordance with does not necessarily yield 
a (unique) probability measure over R. 

As a consequence of the characteristics just mentioned, 
probabilistic C B I wil l often be approximative. We can 
establish, for instance, the following result.5 

Propos i t i on 12. Consider a C B I problem and 
suppose the generalized hypothesis G to satisfy G(x) > 

, where denotes 
the upper envelope of the measures and Moreover, 
let . The function 

(8) 

is an upper approximation of the likelihood function 

6 The proof of this result can be found in the full version 
of this paper [Hiillermeier, 1999]. 
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Figure 2: Illustration of the probabilistic C B I process. 

This proposition provides a natural generalization of 
the constraint-based inference scheme (3). Indeed, we re­
cover (3) as a special case of (8) with 
Expression (8) also suggests to represent a generalized 
hypothesis G as a parametrized class of fuzzy measures 
such as, e.g., possibility measures and, hence, to realize 
probabilistic C B I by means of fuzzy set-based approxi­
mate reasoning techniques. 

Figure 2 provides an overview of the probabilistic ap­
proach to C B I . Essentially, this approach realizes a pro­
cess of probabilistic reasoning in similarity space. The 
similarity structure or the outcome structure of 
a C B I problem plays the role of the statistical data. A 
hypothesis H defines the stochastic model which explains 
the occurence of such structures and which underlies the 
reasoning process. The task of case-based learning, un­
derstood as the estimation of the similarity profile H∑, 
thus corresponds to statistical inference. 

5 Summary 
The main concern of this paper was to establish a frame-
work for modelling C B I , rather than to derive formal 
results related to particular inference schemes. The fol­
lowing points deserve mentioning: 
• We have introduced a formal framework in which the 
task of case-based inference has been defined as one of 
predicting resp. characterizing the outcome ro associated 
with a new situation S0. The distinction between reason­
ing at the instance level and reasoning at the similarity 
level has been emphasized. 
• We have adopted a constraint-based view of C B I , ac­
cording to which the C B R hypothesis imposes constraints 
on the relation between the similarity of situations and 
the similarity of corresponding outcomes. 
• The concept of a similarity profile has been introduced, 
which establishes a connection between the instance level 
and the similarity level, and represents the similarity 
structure of a C B I set-up. A similarity hypothesis is 
thought of as an approximation of the similarity profile 
and, hence, defines a quantification of the C B R hypoth­
esis. It allows for realizing a constraint-based inference 
procedure. 
• A probabilistic generalization of the constraint-based 



approach has been proposed. The similarity structure 
is now represented by means of a probabilistic similarity 
profile. It allows for replacing the constraint-based in­
ference scheme by more general probabilistic reasoning 
procedures based on, e.g., the derivation of conditional 
probabilities or likelihood functions. An exemplary re­
sult concerning the approximation of a certain likelihood 
function has been established. 

Finally, we would like to point out some additional 
aspects and make some remarks concerning related and 
future work. 
• It should be noted that the probabilistic formalization 
developed here does not rely on very specific assump­
tions but emerges quite naturally as a generalization of 
the constraint-based approach in connection with the 
probabilistic modelling of the occurence of situations. It 
should also be stressed that this formalization does not 
correspond to a particular inference scheme. Rather, it 
provides the basic concepts for "translating" a C B I prob­
lem into one of probabilistic reasoning and case-based 
learning into statistical inference. This way, it makes 
the powerful methodology of statistics accessible to C B R . 
The investigation of particular inference schemes such as, 
e.g., those emerging from Proposition 12, is an important 
aspect of further research. 
• The probabilistic point of view and the idea of (proba­
bilistic) constraint-based inference guarantee for a clear 
semantics underlying our approach to CBI, in which sim­
ilarity should be seen as an essential but at the same time 
auxiliary concept. Indeed, the inference procedure prin­
cipally works with all pairs of similarity functions and 

, each of which defines a certain similarity structure. 
Of course, the more suitably these functions are chosen, 
the better the inference results will be. The interpreta­
tion as an auxiliary concept contrasts with other formal­
izations of C B I [Dubois et al, 1998; Esteva et al, 1997; 
Plaza et al, 1998], in which similarity is awarded a con­
siderable semantical meaning. 
• Probabilistic models, particularly Bayesian networks, 
have been used in connection with case-based reasoning 
by several authors (see, e.g., [Aha and Chang, 1996]). 
As main differences between most of these approaches 
and our work let us emphasize two points. Firstly, the 
concept of similarity is often derived from that of prob­
ability or vice versa. In [Rodriguez et al, 1997], for in­
stance, similarity is interpreted as a certain probability 
related to a classification task. Instead, probability and 
similarity are treated as different concepts in our model. 
Secondly, a probabilistic model is often related to the fea­
tures (attributes) of cases (at the system level) directly, 
whereas our formalization proceeds from the similarity 
level. For example, the problem considered in [Rodriguez 
et al, 1997] is to estimate the (conditional) probability 

for a case c = to belong to category 
Cj as a function of the features fk. Seen from this per­
spective, such approaches are rather case-based, whereas 
our approach is similarity-based: inference results are 
derived from similarity structures at the similarity level 
instead of cases at the system level. 

• The question of how to define suitable hypotheses for 
concrete applications is an important topic of future 
work. Closely related with this question is the realization 
of case-based learning as the adaptation of hypotheses. 
Furthermore, it seems interesting to explore the relation 
between probabilistic inference and (fuzzy set-based) ap­
proximate reasoning mentioned in Section 4. 
• In this paper, C B I utilizes the complete memory M. 
Often, however, one will only take the most similar 
case(s) into account. The approach should therefore be 
generalized in this direction. 
• The concepts developed in this paper have already 
been applied successfully to (repititive) combinatorial 
optimization problems. The thorough investigation of 
such applications is a further topic of future work. 
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