
Abs t rac t 
A central problem in case based reasoning 
(CBR) is how to store and retrieve cases. One 
approach to this problem is to use exemplar 
based models, where only the prototypical cases 
are stored. However, the development of an ex­
emplar based model (EBM) requires the solu­
tion of several problems: (i) how can a E B M 
be represented? (ii) given a new case, how can 
a suitable exemplar be retrieved? (iii) what 
makes a good exemplar? (iv) how can an E B M 
be learned incrementally? This paper develops 
a new model, called a probabilistic exemplar 
based model, that addresses these questions. 
The model utilizes Bayesian networks to de­
velop a suitable representation and uses prob­
abilistic propagation for assessing and retriev­
ing exemplars when a new case is presented. 
The model learns incrementally by revising the 
exemplars retained and by updating the con­
dit ional probabilities required by the Bayesian 
network. The paper also presents the results of 
evaluating the model on three datasets. 

1 I n t r o d u c t i o n 
Case Based Reasoning (CBR) is an approach that 
utilises past situations in an attempt to solve new prob­
lems. The basic CBR cycle involves retrieving cases that 
are similar to the current problem and uti l ising them to 
solve the current problem. This makes memory organisa­
tion and indexing a fundamental part of CBR systems. 
One approach is to store a flat database of cases and 
scan all the cases to identify the most similar cases. For 
applications where many more are involved, this simple 
organisation is considered to be slow [Kolodner, 1993]. 

A more sophisticated method is to part i t ion the cases 
into clusters and organise them hierarchically. The hier­
archy can then be searched more efficiently by following 
a path depending on the features of the new case. Dif­
ferent types of hierarchies have been proposed leading 
to different approaches. One approach is to use deci­
sion trees so that the leaf nodes contain the cases and 
where the internal nodes contain questions that can be 

used to part i t ion the cases. So for example, systems like 
ReMind [Althoff et o/., 1995] provide a tree induction 
algorithm that can be used to avoid examining all the 
cases. This kind of approach is part icularly useful when 
large databases of cases are already available. However, 
when cases are not available in advance, and the domain 
is not well defined this approach is more difficult to ap­
ply. 

Another approach is to use an abstraction hierarchy 
where each internal node is an abstraction of the cases 
represented by its children. These hierarchies are known 
as discrimination networks or redundant discrimination 
networks when the nodes represent overlapping regions 
of cases. A number of research systems, such as M E D I A ­
T O R and CASEY (see [Kolodner, 1993] for a description 
and references) have used this approach and their out­
comes have shown its ut i l i ty. However, these systems 
require much more memory to store the network and 
the procedures for adding new cases arc very expensive 
since the abstraction hierarchy may need to be restruc­
tured [Kolodner, 1993]. 

Thus, current approaches to CBR work well in some 
situations, but also have problems in other situations. 
In particular, for domains, sometimes called weak do-
jnains [Porter et a/., 1990], where: (i) the categories or 
concepts are difficult to define by necessary and sufficient 
features, (ii) the categories can be non-disjoint, (ii i) the 
data are not structured, (iv) all the data do not exist 
in advance, and (v) there is uncertainty in how the cat­
egories are represented by cases, these approaches have 
l imitations since they often require all the features and 
examples in advance, and do not handle uncertainty ex­
pl ici t ly (they use a weighted sum of the differences). 

An alternative approach, that is perhaps more ap­
plicable to weak domains, is to store only prototypi­
cal cases. This approach, known as the exemplar" based 
model has its basis in cognitive theories, which postulate 
that concepts can be represented by exemplars [Smith 
and Medin, 1981]. Exemplar based models do not neces­
sarily require all the features or all the cases in advance. 

This paper focuses on developing an exemplar based 
model. The next section presents the main problems of 
developing exemplar based models. The paper is organ­
ised as follows: section 3 presents the model in terms 
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of the knowledge representation, the classification, and 
learning processes; section 4 presents an empirical eval­
uations on three datasets; and section 5 presents the 
conclusions. 

2 T h e P r o b l e m 
To understand the problem, consider the diagram shown 
in Fig. 1 that shows a weak domain in which there are 
two categories A and B (solid lines). The category A 
has nine cases (the points) and 

and the category B has five cases and 
Note that the cases are common cases 

that occur in both categories. The main problem is to 

Figure 1: Example of a weak domain. 

proceed from a view like the one shown in Fig. 1 to an 
exemplar based view like the one shown in Fig. 2 where 
the exemplars e6,e8,e9, and e11 represent sets of similar 
cases (dashed lines). That is, instead of storing all the 

Figure 2: Exemplar based view in weak domain. 

cases, only the prototypical cases are stored. Although 
conceptually, this is an elegant idea, attempting to de­
velop it raises the following difficult questions: 

1. What is a good representation of the model? 

2. How can a new case be classified? 

3. What notion of similarity can be adopted? 

4. What makes a good exemplar? 

5. How can the model be learned incrementally? 

The next section of this paper develops the model by 
addressing these questions. 

3 The Model 
3.1 The Knowledge Representation 
One way of representing the information in Fig. 2 is to 
use a network in which nodes can be used to denote ex­
emplars, features, and categories. Thus, Fig. 3 shows the 
network representing the exemplar based model shown 
in Fig. 2. In this representation, the dashed lines show 
the relationship between categories and exemplars, and 
the solid lines show the relationship between exemplars 
and their features. So for example, category A has the 
exemplars e6, e8, and e9 and exemplar e6 has the features 
f1,f2, and F3. Notice that exemplars can be shared by 
categories, and features can be shared by exemplars. 

As it stands, Fig. 3 is not an adequate representation 
of an exemplar based model since it does not contain any 
information about the degree of dependency between a 
category and its exemplars and an exemplar and its fea­
tures. So for example, a car can have features such as 
colour, engine, and make. But , which of them is more 
relevant in the representation of a car? The above rep­
resentation would not differentiate between the strong 
dependency: an object being a car and having an en­
gine, and the weak dependency: an object being a car 
and its colour. 

Figure 3: A basic exemplar based representation. 

Hence, to include the strengths of such dependencies, 
the relationships between exemplars and features are 
represented as probabilistic dependencies. That is, each 
feature , that is a leaf node in the network, is labelled 
wi th the conditional probabil i ty , where 

are the exemplars that share the feature fj. Sim­
ilarly, the importance of an exemplar in the category is 
represented by probabilistic dependencies. Each exem­
plar c,, which is an intermediate node in the network, 
is labelled wi th the conditional probabil i ty 
where JC is the jo int category formed by the parents 
of This probabil i ty is the prior probabil i ty of the 
exemplar when no evidence is available. W i t h this ad­
dit ional information, the network of Fig. 3 becomes a 
hybrid representation. 

3.2 T h e C l a s s i f i c a t i o n P r o c e s s 
Given the above representation, how can the following 
questions, raised earlier, be addressed: 

• How can a new case be classified? 

• What notion of similari ty can be adopted? 
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The major i ty of current CBR systems address these 
questions by adopting a similari ty metric, which is a 
weighted sum of the differences between a new case and 
a stored case [Kolodner, 1993]. The main problem wi th 
this approach is that the weights of the similarity metric 
need to be estimated and obtaining reliable weights is 
not easy for non-tr iviai problems (see [Wettschereck et 
al, 1997] for a survey). 

In this paper, the notion of similarity adopted is that 
two cases are similar if they are represented by the same 
exemplar. But how can one determine if a new case is 
represented by a particular exemplar? Since in the above 
representation, the lower network that relates exemplars 
and features is a Bayesian network, the degree to which 
a new case wi th features finc-, fqnc is represented by 
an exemplar e can be computed by: 

This computation can be carried out by using propaga­
t ion methods developed by Pearl [1988]. 

Given this capability of calculating the extent to which 
an exemplar represents a new case, all the exemplars 
could be investigated, in theory at least. However, prob­
abilistic propagations methods can be computationally 
expensive (it is known to be NP-hard in general) and 
investigating all the exemplars is therefore not practical. 

Hence, first it is necessary to rank the categories in 
order of the likelihood of them containing a suitable ex­
emplar. This ranking has to be performed in a way that 
avoids missing suitable exemplars but is computationally 
efficient. This ranking can be obtained by uti l izing an 
observation by Smith and Medin [1981] who point out 
that: 

"the features that represent a concept are 
salient ones that have a substantial probabil­
ity of occurring in instances of the concept". 

Thus, the important features wi l l have high values 
of occurrence given an exemplar, i.e., high values of 
P(fj | e). Hence, a reasonable way of ranking the cate­
gories is to obtain the contr ibution of the features of the 
exemplar that are present in the new case, averaged over 
the number of features in the exemplar e i 

where 

In this equation, nc is a new case and n / e i is the number 
of features in the exemplar e i. 

Then, the categories can be ranked in order of the rank 
of their exemplars. Once the ranking is obtained, a suit­
able investigation strategy can be adopted. For example, 
the list of categories can be investigated in order of rank 
unti l a good exemplar is found. Wi th in each category, 
propagation methods can be used to assess the merits of 
an exemplar e by computing and stopping if 
this is above a threshold that is normally dependent on 
the application. 

3.3 The Learn ing Process 
Learning an exemplar based model incrementally in­
volves two aspects: (i) learning the the model and (ii) 
estimating its parameters, both of which are described 
in this subsection. 

L e a r n i n g t h e m o d e l 
The learning process of an exemplar based model needs 
to answer the following questions, that were raised ear­
lier: 

1. What makes a good exemplar? 
2. How can the model be learned incrementally? 

To answer these questions, consider a situation where 
there is a category C that is represented by three exem­
plars e1,e<2 arrives- Suppose a new training case withcategory C arrives, then there are two situations that 
can arise: (i) the new case is not classified by the exem­
plars in C, and (ii) the new case is correctly classified by 
an exemplar in C. 

In the first case, clearly the new case should be re­
tained as a new exemplar since it must be different from 
the other exemplars. In the second case, criteria need to 
be developed for deciding which of the two, the new case 
or exemplar, wi l l be the best representative of all cases 
in the region. 

For exemplar based models these criteria have to be 
based on the notion of prototypicality. Before describing 
the measure of prototypical i ty used in this work, it is 
necessary to first describe the idea of a summary rep­
resentation. Earlier, an exemplar was represented as a 
Bayesian network wi th dependencies from the exemplar 
to its features. In general, an exemplar may not have 
the same features as all the similar cases that it repre­
sents. For example, an exemplar e2 may have the fea­
tures f4, f6, and f9 while the union of all the features of 
the cases it represents may be f3,f4,f6,f7, and f9. A 
summary representation is a Bayesian network where all 
the features of the similar cases are included. 

Returning to the notion of prototypical i ty, the prob­
lem is to develop a measure of prototypical i ty so that a 
good prototype can be selected. Rosch and Mervis [1975] 
argued that a case is an ideal prototype if : 

• it has the highest family resemblance wi th other 
members in the same category, (this is known as 
focality [Biberman, 1995]) and 

• it has the least family resemblance wi th members 
of other categories (this is known as peripheral-
ity [Biberman, 1995]). 

In the context of the model being developed here, family 
resemblance is viewed as the collection of similar cases 
and which have a summary representation. In terms of 
regions, a case that maximizes the probabil i ty of cover­
ing a region can be considered to have the highest family 
resemblance. Since the summary representation denotes 
regions, and takes the form of a Bayesian network, a suit­
able measure of focality of an exemplar e i is the proba­
bi l i ty of covering a region: 
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where SR(ei) denotes the summary representation of the 
region that contains e i. 
Likewise, a suitable measure of per iphera l ly is obtained 
by working out the average probabil i ty of an exemplar 
representing regions in other categories: 

These two measures can be used to define a measure of 
prototypical i ty as follows. Since a good prototype is one 
that has the greatest focality and the least per ipheral ly, 
the measure of prototypical i ty adopted here is: 

This measure of prototypical i ty can now be used to de­
cide which case makes the better exemplar in a region. 
These considerations lead to a learning algorithm that 
can be summarised as follows. Given a new training case, 
nc, first use the classification process described above. If 
the case is not classified successfully, then the training 
case becomes an exemplar. If it is correctly classified by 
an exemplar e then use the above prototypical i ty mea­
sure to determine which of the two best represents the 
region of cases and retain the more representative one. 

E s t i m a t i n g t h e p r o b a b i l i t i e s 
To use the above classification and learning processes, 
one needs the probabilit ies that define the Bayesian net­
work which represents the exemplars. Since the model is 
incremental, and the cases are not retained, estimating 
the probabilities in a manner that enables a good exem­
plar based model to be learned is a non-tr iv ial problem. 

The Bayesian exemplar based model requires the es­
t imat ion of two parameters that need to evolve as new 
cases are seen: 

1. prior probabilit ies of the exemplars in the jo int cat­
egory . and 

2. the conditional probabil i ty 

The first of these is obtained in a standard way by u t i l ­
ising the beta distr ibut ion which leads to the following 
equation (see [Lindgren, 1976] for details) that can be 
used to compute and update the prior probabilities: 

Est imating the conditional probabilities 
P(f\parents(f)) is much more diff icult. In general, 2 n + l 

probabilit ies need to be estimated for n parents. In par­
t icular, there may not be enough cases in the intersection 
of the parent events, even if there are enough cases in the 
regions represented by the parents. This means that es­
timates of probabilit ies such as could only 
be based on a small number of cases and would therefore 
be inaccurate even when many cases have been seen. 

To overcome this problem, the noisy or model [Pearl, 
1988] is considered. If this model can be adopted, then 
instead of requiring is 

needed, for each parent ei of f. To see if the noisy 
or model can be used, consider the assumptions that 
it makes [Pearl, 1988]: 

A c c o u n t a b i l i t y An event is false, = 0, if all 
conditions listed as causes of are false. 

E x c e p t i o n i ndependence If an event m j is a conse­
quence of two conditions d1 and d2, then the inhibi­
t ion of the occurrence of under is independent 
of the mechanisms of inhibi t ion of under d 2 . 

In the context of this model, the exception indepen­
dence assumption can be interpreted as requiring that 
the absence of the feature given one exemplar is indepen­
dent of the absence of the feature given another exem­
plar. The extent to which this assumption holds depends 
on the way the exemplars are selected. In Section 3.3, the 
selection scheme uses a measure of prototypical i ty that 
aims to reduce the possibility of selecting exemplars that 
represents similar regions. That is, the selection scheme 
used minimizes the possibility of the exception indepen­
dence assumption being broken. 

The accountability assumption requires that if a case 
is not represented by the parent exemplars of a feature, 
then that feature does not occur in the case. Although 
this may hold when an accurate exemplar based model 
has been learned, it clearly does not hold while it is sti l l 
learning (e.g. consider a new case that should be a new 
exemplar). To overcome this problem, an additional vir­
tual exemplar is added in the representation of each cat­
egory. This addit ional exemplar can be viewed as rep­
resenting all the cases that have not yet been seen and 
therefore ensures that the accountability condition holds. 
W i t h this addit ional exemplar, the revised model is i l ­
lustrated in Fig. 4. As the figure shows, this introduces 
dependencies between the v i r tua l exemplar and the fea­
tures. But how can the strengths of the dependencies be 
estimated, since the v i r tua l exemplar represents unseen 
cases? Est imating the strengths of these dependencies is 

Figure 4: V i r tua l exemplar. 

a task that requires predicting the behaviour of the de­
pendencies as more cases are observed. This behaviour 
can be expected to have the following characteristics: 

• The strengths of the dependencies should be the 
highest ini t ial ly when no cases have been seen and 
ignorance is greatest. 

• As more cases are observed, the strengths of the 
dependencies can be expected to decay since the 
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vi r tual exemplar wi l l represent fewer unseen cases. 

• There is always a small chance that a new case wi l l 
be in the region represented by the vir tual exemplar 
even after many cases have been observed. 

There may be several functions that satisfy these char­
acteristics. However, this work utilises the exponential 
function, which is often used to represent decay (e.g., in 
modelling radioactivity) and takes the form: 

where n is the number of cases in a category and the 
parameters a and A determines the rate of decay. The 
lower bound of 0.1 in this function reflects the possibility 
that a new case wil l be in the region represented by the 
vir tual exemplar even after many cases have been seen. 

This completes the description of how the probabilities 
can be learned incrementally, thereby allowing the use of 
the classification and the learning procedures. 

4 Empirical Evaluation 
The model described has been implemented and eval­
uated on three datasets, votes, zoo, and audiology, 
available from the University of California repository of 
datasets. Due to the lack of space, this section presents 
only a very brief summary of the results which are pre­
sented more fully in [Rodriguez, 1998]. Table 1 sum­
marises the characteristics of each dataset. Each exper­

iment randomly parti t ioned the data into a 70% training 
set and a 30% testing set, and was repeated 20 times to 
obtain an average accuracy and a compression ratio (de­
fined as the proport ion of cases not retained) for each 
class. Al l the experiments were carried out w i th the pa­
rameters A and a set to 0.6 v d 0.1 and a threshold of 
0.75. Although no attempt, has been made to find op­
t imal values for these parameters, the model works well 
wi th these values. The problem of recommending their 
optimal values given the characteristics of the domain 
is a subject for future work. Tables 2 and 3 give the 
results for the votes and the zoo datasets. As the re­
sults show, the model performs well both in terms of 
accuracy and the number of exemplars retained. The 
overall compression ratio for the votes dataset is 97% 
wi th an accuracy of 89%. The overall compression ratio 
for the zoo dataset is 87% with an accuracy of 92%. 
In Table 3, an interesting difference in accuracy occurs 
between class-3, which has a low accuracy of 16%) and 

Thc category of all the unclassified cases is omi t ted . 

class-5 which has an accuracy of 77% and both classes 
have about 3 training cases on average. A close look at 
the classes reveals the reason for this behaviour. Class-
3 consists of five relatively different animals: pitviper, 
seasnake, slowworrn, tortoise, and tuatara, while class-5 
consists of fairly similar animals: frog, poisonous frog, 
newt, and toad. Since, class-3 is very polymorphic and 
only a few cases have been observed, the exemplars rep­
resenting that category are weak and hence the accuracy 
of class-3 is low. However, although there are only a few 
cases in class-5, they are similar and the exemplars are 
therefore more representative of the category. Hence, the 
accuracy for class-5 is significantly better. 

Figure 5 present, the accuracy obtained, and the num­
ber of t raining cases per category for the audiology 
dataset. The accuracies obtained are good for some of 
the categories and poor for some categories where there 
are few training cases. This behaviour is to be expected 
since the model is not expected to learn exemplars from 
a few cases. The motivat ion for applying P E B M to the 
audiology dataset was to enable some comparison wi th 
a closely related system, PROTOS [Bareiss, 1989] that 
utilised that data. Unfortunately, due part ly to the na­
ture of PROTOS, and part ly because of the lack of avail-
abi l i ty of the information utilised in the PROTOS ex­
periments, it is not possible to repeat the experiments 
reported in [Bareiss, 1989]. Al though it would be incor­
rect to draw comparative conclusions from the results of 
the single t r ia l presented in [Bareiss, 1989], it is encour­
aging that the results obtained in terms of accuracy and 
compression rat io, are similar to those obtained when 
PROTOS was trained wi th the aid of an audiology ex­
pert (see [Rodriguez, 1998] for details). 

5 Related Work and Conclusion 
The model presented in this paper is related to work on 
CBR, Bayesian networks, and inductive learning. There 
are numerous systems in these categories and a compari­
son wi th these systems is too lengthy for the space avail-
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Categories 

Figure 5: Accuracy for the audiology dataset. 

able in this paper. It is, however, important to merit ion 
the main differences wi th two of the most related models: 
PROTOS and T i r r i et al.'s [1996] model. The represen­
tat ion used by PROTOS is similar to the one used by 
P E B M in that exemplars are used to define categories. 
The notion of exemplar is, however, very different in that 
cases denote exemplars, whereas in P E B M , exemplars 
are represented by Bayesian networks. The classification 
process used by PROTOS is dependent on the use of in­
dices called remindings, censors, and difference links. In 
contrast, classification in P E B M is achieved by proba-
bilistic propagation. The learning mechanisms are also 
very different since PROTOS relies heavily on heuristics 
that learn from user provided explanations, while P E B M 
learns from data. The most significant difference, how­
ever, is that P E B M has foundations in probabilistic rea­
soning, whereas PROTOS appears to be based primari ly 
on heuristics. 

The Bayesian network representation used in T i r r i et 
al.'s [1996] work is very similar to the one adopted for 
PEBM but w i th the exception that their upper level 
nodes are random variables that represent cases and not 
prototypes. Given the potential ly large number of cases, 
standard propagation methods would not be practical. 
Hence, they assume that the cases are mutually exclu­
sive in order to simplify the network to a tree. The 
extent to which this assumption holds or the effects of 
violat ing the assumption are unclear since a new case 
can be expected to be similar to a number of previous 
cases. In contrast, P E B M does not make this assump­
tion and uses exemplars which aim to represent regions 
of similar cases. This difference is also reflected in the 
requirements for learning, since their model only esti­
mates the probabilit ies from all the cases, while P E B M 
identifies prototypes incrementally. 

To conclude, this paper has presented an exemplar 
based model w i th foundations in Bayesian networks. 
The model learns exemplars by using a measure of pro-

totypical i ty and utilises probabilistic propagation to de­
termine whether a new case is similar to an exemplar. 
The model has been evaluated on 3 datasets and shows 
promising results in terms of accuracy and in terms of 
the number of exemplars retained. 
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