
Dynamic Refinement of Feature Weights Using Quantitative 
Introspective Learning 

Zhong Zhang and Qiang Yang 
School of Computing Science 

Simon Fraser University 
Burnaby, B.C. 

Canada V5A 1S6 

Abstract 
Recently more and more researchers have been 
supporting the view that learning is a goal-
driven process. One of the key properties of 
a goal-driven learner is introspectiveness - the 
ability to notice the gaps in its knowledge and 
to reason about the information required to 
fill in those gaps. In this paper, we introduce 
a quantitative introspective learning paradigm 
into case-based reasoning (CBR). The result is 
an integrated problem-solving model which will 
learn introspectively feature weights in a case 
base in order to be responsive dynamically to 
its users. In contrast to the existing qualitative 
methods for introspective learning, our model 
has the advantage of being able to capture ac­
curate learning information in the interactions 
with its users. A CBR system equipped with 
quantitative introspective learning ability can 
allow the feature weights to be captured auto­
matically and to track its users' changing pref­
erences continuously. In such a system, while 
the reasoning part is still case-based, the learn­
ing part is shouldered by a quantitative in­
trospective learning model. Weight learning 
and evolution are accomplished in the back­
ground. The effectiveness of this integration 
will be demonstrated through a series of em­
pirical experiments. 

1 Introduct ion 
Case-based reasoning (CBR) is a problem-solving strat­
egy which uses stored previous cases to solve current 
problems [Kolodner, 1993]. It has enjoyed tremen­
dous success for solving problems related to knowledge 
reuse [Leake and Ram, 1993]. Usually in a case base 
a case's index is a set of important descriptors of the 
case. It can be used to distinguish a case from others. 
In many implementations, these descriptors are repre­
sented as feature-value pairs and usually a feature is as­
sociated with an importance value called feature weight 
to indicate how important it is in the case retrieval pro­
cess. When a new problem is presented, its index will be 

extracted and used to trigger a search in the case base. 
The cases with the most similar indices will be retrieved 
for further consideration [Kolodner, 1993]. 

The performance of a CBR system depends on how to 
use appropriate features to index cases, and how to ob­
tain an accurate measurement of the similarity between 
cases in the case retrieval process. Therefore the feature 
weights play an important role in determining the suc­
cess of CBR applications. How to choose and maintain 
an appropriate set of feature weights in a case base is a 
non-trivial problem in CBR research. In addition, the 
relative importance of the cases is changing with time, 
partly due to the uneven and changing distribution of the 
inherent problem space, also partly due to the changing 
interests of its users. How to evolve a case base con­
tinuously in an automated manner is also becoming an 
urgent task of the knowledge base industry. 

One approach to tackling this problem is to use in­
trospective learning, which has a representation of its 
own process in order to detect deviations that show 
when the learning is needed as well as what the learning 
needs [Leake et a/., 1995; Ram and Cox, 1993]. In the 
past, various introspective learning methods have been 
employed in feature weighting in CBR systems [Fox and 
Leake, 1995; Leake et a/., 1995; Wettschereck et a/., 1997; 
Bonzano et a/., 1997]. A main theme is to learn through 
qualitative introspective learning, whereby the feature 
weights are adjusted based on a rough estimate of the 
direction for a change: if the weights are too high, then 
adjust them so that they become lower, and vice versa. 
But how much has to be changed quantitatively is not 
sufficiently determined. In this work, we extend qual­
itative introspective learning to quantitative introspec­
tive learning within CBR. With the quantitative learn­
ing methods, we can adjust the weights not only in the 
right direction, but also in the right amount. We claim 
that such an extension provides a sound and promising 
continual weight introspective learning method in CBR. 

This paper is organized as follows. In Section 2, we 
introduce some related work on the application of intro­
spective learning to feature weighting. Section 3 presents 
a novel quantitative introspective learning model inte­
grated into case-based reasoning. In Section 4 we demon­
strate the experimental results for evaluating the perfor-

228 CASE-BASED REASONING 



mance of our integrated model. And also there we cross-
validate our work with others'. Section 5 concludes our 
discussion, where we will also explore our future work. 

2 Qualitative Introspective Learning 
Methods 

Leake et al. [Leake and Ram, 1993] summarize in a sym­
posium report the goal-driven learning process from var­
ious aspects. They indicate that one of the three key 
properties of a goal-driven learner is its introspectiveness, 
an ability to notice the gaps in its knowledge and to rea­
son about the information needed to fill in those gaps. 
They also pinpoint that introspective learning acquires 
problem-solving knowledge by monitoring its run-time 
performance, seeking chances in this process to learn by 
itself. 

In [Fox and Leake, 1995], Fox et al. describe their ex­
periences with introspective learning in CBR. The ROB­
BIE system described is an application of an introspec­
tive model to the task of refining indexes used to retrieve 
cases. Its goal is to improve reasoning process when en­
countering failures in its reasoning. The introspective 
learning component in the system monitors its reasoning 
process by comparing it with a declarative model which 
is used to describe the system's ideal reasoning process. 
Once a failure is found, the model is used to create an 
explanation of the failure in terms of other failed asser­
tions, and to suggest a repair. The authors claim that 
even under knowledge-poor initial conditions, the intro­
spective learning of new feature indexes improves the 
success rate of the system. But they still indicate that 
there exists a problem with the ordering of the presenta­
tion of training cases to the system due to the inherent 
shortcoming of their learning mechanism. 

As a variation of a model that is introduced in [Munoz-
Avilz and Huellen, 1996], Bonzano et al. [Bonzano ct a/., 
1997] also propose introspective learning as an approach 
to feature weighting in CBR, demonstrating their system 
which combines introspective learning with CBR. They 
first pose the problem with their experience in construct­
ing a CBR system for Air Traffic Control. The problem 
encountered is that it is difficult to determine the impor­
tant features and adjust their relative importance. The 
situation is further complicated by the fact that the fea­
tures are highly context-sensitive; the predictiveness of 
a feature depends heavily on the current context. They 
use so-called pu l l ing and pushing techniques to adjust 
the feature weights. Given a target T and two cases A 
and B, if it is judged that A is a correct solution to T but 
B is not, the learning method will push B away from T, 
and pu l l A closer to T. As to its weight updating pol­
icy, their introspective learning method uses a decaying 
learning process as shown in the following two formulae. 

(1) 

(2) 

where Kc represents the number of times that a case 
has been correctly retrieved, Fc represents the number 

of times that a case has been incorrectly retrieved, and 
determines the initial weight change. The ratio be­

tween Fc and Kc is used to reduce the influence of the 
weight update as the number of successful retrievals in­
creases. We can observe that the timing of triggering 
the adjustment process is very important; when to trig­
ger the adjustment of the weights using the above two 
formulae is a crucial issue yet to be further addressed 
in the work. This limitation makes it necessary to in­
volve a human user in the learning process. In contrast, 
instead of relying on a domain-independent decaying fac­
tor, what we propose in this paper is a continual learning 
process in the lifetime of the case based reasoner. This 
extension releases the human manager of the decision to 
explicitly trigger a learning process. 

The second limitation of the work by Bonzano et al. 
is that it is qualitative in nature. While the direction of 
change in feature weights is indicated in the above two 
formulae, the amount of change is only influenced by 
the frequency of successes and failures and the decaying 
factor. A quantitative change would be needed to reflect 
the amount of adjustment in proportion to the error. 

The third limitation, reported by the authors, is that 
the learning method does not work well for pivotal cases, 
as the redundancy in a case base is essential in such a 
learning process. A pivotal case is the one that pro­
vides coverage not provided by the other cases in a case 
base [Smyth and Keane, 1995]. In contrast, the quantita­
tive introspective learning paradigm that we will present 
in this paper will allow not only pairs of cases to be com­
pared, but also any number of cases to participate in the 
learning process. This is achieved through a process in 
which a user can provide feedback at any time to all top-
ranking cases, not just to a few selected. In Section 4, 
we will provide experimental comparisons between the 
quantitative and qualitative methods. 

3 A Quantitative Introspective 
Learning Paradigm 

3.1 Problem Statement 
Using introspective learning, we wish to acquire feature 
weights in a case base in a changing and multi-user en­
vironment. In a changing environment, users and their 
preferences for what cases are the best for their problems 
also change with time. For example, in an electronic 
commerce application using CBR, cases may represent 
a configuration of a product (say a computer) model. 
The features then can represent various user specifica­
tions on the product, and the weights can indicate the 
level of interest of a user in a particular feature. Since a 
user's preferences may change with time, there is a need 
to acquire and track her/his preferences. Furthermore, 
in a multi-user environment, there is a strong need for 
catering to users with different needs. For example, an 
on-line computer vendor may have different sets of fea­
ture weights for students and teachers. It is desirable to 
adapt a CBR system with its users. 

ZHANG AND YANG 229 



Figure 1: Two-layer Architecture of a Case Base 

Our assumptions for the research are as follows. We 
assume that our desired quantitative introspective learn­
ing model is given as an input a set of features where 
each feature has some values. Some subset of the fea­
tures and values may be relevant to a particular case at 
hand at any given time, but there is no prior knowledge 
on which ones are actually useful to the reasoner cur­
rently. Our model monitors its running process through 
the interactions with its users. 

For a case base our learning task is of two folds: 
1. Weight acquisition to acquire the feature weights 

after a user has used the system for a certain period 
of time; 

2. Continual tracking to adapt the feature weights to a 
user's preference which may change with time, and 
to allow different users to have different preferences. 

3.2 S t ra tegy fo r Fea tu re W e i g h t i n g 
The mechanism in our quantitative introspective learn-
ing process resembles that of a back-propagation neural 
network, which is a very popular learning paradigm in 
AI. For details on the mathematical foundation and ap­
plications of back-propagation neural networks, see [Zu-
rada, 1992; Gupta and Ding, 1994]. 

More specifically, we use a two-layer architecture to 
model a case base. The front layer consists of a set of 
feature-value pairs. The back layer consists of a set of 
cases. A feature-value pair is associated with a case if 
it may exert influence on that case. Furthermore, there 
is a weight attached to the association. Although we 
use a two-layer feature weighting system in this paper, 
the architecture can be potentially extended to multiple 
layers which can include hidden layers. We address this 
situation in [Zhang and Yang, 1998]. 

Using two-layer architecture to model a case base is 
conceptually shown in Figure 1 

For a case base of J cases, suppose that there are N 
features. For each feature Fi, there arc mi values, where 
i = 1,2, • • •, TV. There is a total of feature-
value pairs. We label these feature-value pairs as , 
where i = 1,2, 3, • • •, I. We use Cj to represent each case, 
where jf = 1 , 2 , 3 , , . / . There is a weight attached 
to the connection between case Cj and feature-value pair 
FVi if there is an association between thern. 

Comput ing A Case's Score 
A case's score is computed using the feature-value pairs 
selected by a user to represent an input query. For each 
case C j , its score is computed using the following for­
mula: 

(3) 

Figure 2: Quantitative Introspective Learning in A CBR 
System 

where j= 1,2,3, j, Sc, is the score of case Cj, and 
Xi is 1 if there is a connection between case Cj and 
feature-value pair FVi and FVi is selected. Otherwise 
Xi is 0. 

Learning Feature Weights 
After a query is presented, all the previous cases have 
been scored according to Formula 3 with the promising 
ones at higher positions. If the user wants to feed back 
some information to the system as whether a case is de­
sired or not, we then can employ the following formula 
to compute a new weight based on her/his feedback in­
formation. 

where Vp?w is the new weight to be computed, is 
the old weight attached to the connection between case 
Cj and feature-value pair FVi, DSCJ is the desired score 
for Cj, So, is the score computed in Formula 3, and 77 is 
the learning rate. Xi is 1 if there is a connection between 
case Cj and feature-value pair FVi and FVi is selected 
by the user. Otherwise it is zero. 

We have to emphasize that, in the above formula, the 
term encodes the quantitative 
information, i.e., the actual gap between the desired and 
computed behavior. On the other hand, in Formulae 1 
and 2 there is no such quantitative information encoded. 
Although they try to use the number of retrieval success 
and failure in their weight learning, we consider that 
such a representation is not sufficiently accurate when 
compared with ours. 

3.3 User's Interaction Model 
The introspective learning process in our integrated 
model is similar to that of a back-propagation neural net­
work. An important difference between them is that our 
learning process is interactive rather than batching and 
automatic. In our learning process, there is no training 
data explicitly defined; the system is continuously being 
trained by its user throughout its lifetime. A user's re­
sponses to the system's behavior form an implicit source 
of training data. 

After our introspective learning model is integrated 
into a CBR system, the problem-solving process is 
paradigmed in Figure 2. The CBR system receives a 

230 CASE-BASED REASONING 



user's current problem description and a set of selected 
feature-value pairs (label 1). It will then access the 
weights (label 2) to compute the case scores, and present 
the result to the user for her/his judgment (label 3). If 
the user feeds back some judgment to the system (la­
bel 4), the system will compute quantitatively the gap 
between the computed and the desired score, and if nec­
essary, modify the weights accordingly (label 5). 

4 Empir ical Tests 
The introspective feature-weight learning model is fully 
implemented and integrated in the framework of the 
CaseAd visor™ system [Zhang and Yang, 1998], which 
is a CBR system implemented by the Case-Based Rea­
soning Group at Simon Fraser University. Right now the 
resultant CaseAdvisor™ system from such an integration 
is able to learn the unpredictable information hidden in 
an end user's behavior. A user's interactions with the 
system provide the guidance in determining quantita­
tively not only what the right direction is for updating 
weights but also how much the weight should be updated 
quantitatively. 

In this section, we will demonstrate that our proposed 
learning model conforms to our expectations. In partic­
ular, we wish to confirm through the experiments that 
the model could learn a user's queries after sufficient 
interactions with its users and could scale up to case 
bases with realistic sizes. This is shown in the first ex­
periment suite which is conducted on different case bases 
from the Repository of Machine Learning Databases and 
Domain Theories l at the University of California at 
Irvine (UCI). Furthermore, in the second experiment, we 
perform a comparison between the quantitative method 
and the qualitative method proposed by Bonzano et al. 
We will demonstrate that the quantitative method can 
achieve better learning accuracy and faster convergence 
rate through continual updating. 

4.1 Experiment with Case Bases from UCI 
We take the Dermatology Database and Car Database 
from the UCI Repository. We test our system on both 
databases and obtain the similar experimental results. 
For brevity, in the following we focus on the Dermatology 
Database. The experiments are conducted on a platform 
of SUN SparcStation 4 (SunOS 5.6) with 32 MB memory. 

The Dermatology Database contains 366 instances 
(tuples) and 34 attributes. We divide this database into 
increasingly larger databases, which contain 50, 1.00, 150, 
200, 250, and 300 instances, respectively, and test the 
performance of our learning model. In our experiment, 
we first adapt these databases into the case bases that 
our system can be applied by converting all rows into 
cases and all columns into features. The values for a fea­
ture are contained under each column. After conversion, 
these case bases contain 50, 100, 150, 200, 250, and 300 
cases, respectively. For each case base, we generate a set 
of queries for testing, the size of which is half the number 

1 http://www.ics.nci.edu/mlearn/MLRepository.html 

of cases. For instance, for the case base with 300 cases, 
the number of queries is 150. Note that in these tests, 
the score of a case is scaled to between 0.0 and 1.0. 

The training process is composed of five rounds for 
all the case bases. Figure 3 shows the error conver­
gence chart, of 150 queries for the case base of 300 cases. 
The X-axis represents the training process while the Y-
axis represents the error ranging from 0.0 to 1.0. It can 
be found that, almost all the cases, after five training 
rounds, have their errors falling into an acceptable range 
(in our experiment this range is set to 0.02). The error 
convergence for other five case bases also demonstrates 
the same trends. For brevity, we do not show them here. 

We also measure the average CPU time required for 
the adjustments for individual cases in each of these six 
case bases. The result is shown in Figure 4, where the 
X-axis represents the six case bases with different sizes 
measured in cases, while the Y-axis represents the av­
erage running time for each case in CPU seconds. We 
can see that the increase of the running time is in pro­
portion to the square of the number of cases in a case 
base. Therefore we can say that our algorithm is fast 
enough to be used in real-world practice, in which usu-

ZHANG AND YANG 231 



ally the case base sizes are not very huge. This confirms 
the scalability conjecture we make about our learning 
model. 

4.2 Comparison w i th Bonzano et al.'s 
Approach 

A closely related work on introspective feature-weight 
learning is proposed by Bonzano et al. [Bonzano et ai, 
1997] (also discussed in Section 2). We implement their 
algorithm and examine the convergence and performance 
comparison between our two models. The case base in­
volved is also converted from the Dermatology Database 
in UCI Repository. It contains 100 cases. 

There are three types of case bases in Bonzano et al.'s 
model. The first is the training case base (It is composed 
of a user's queries in our learning model), the second one 
is the case base itself and the third one is a test case 
base (in our model, there is no explicit test case base; it 
is implicit in the usage of the system). For the experi­
ment using their method, we set the training case base 
and the test case base to be the same. This compari­
son experiment is also conducted on a platform of SUN 
SparcStation 4 (SunOS 5.6) with 32 MB memory. 

Figure 5 (a) shows the comparison on the errors be­
tween our two models. In the figure, the X-axis repre­
sents all the 50 test cases, while the Y-axis represents the 
errors of these cases along the training process. From the 
figure, we can easily see that among the 50 test cases, 
our model produces smaller errors for 43 cases. 

In order to make a further comparison on the conver­
gence trends, we plot the error chart for the first five 
training rounds in Figure 5 (b), where the X-axis rep­
resents the training process, while the Y-axis represents 
the average error for each case. The figure shows that 
at the very first five training rounds our model has al­
ready produced an optimal training result. Most of the 
trained cases in our method show the trends to approx­
imate their desired scores. 

We now analyze the learning and adjustment Formu­
lae 1 and 2 used in Bonzano et al.'s model. These for­
mulae give an estimation of what should be done when 
a retrieval success or failure is encountered. However, 
such an estimation is not precise enough. For example, 
if the desired case has a higher (similarity) score than 
expected, the case is over ranked and we have to reduce 
the weights associated with its feature-value pairs in or­
der for it to be properly ranked, rather than increasing 
its weights. In the two formulae, there is no quantitative 
estimate associated with these information. In contrast, 
our adjustment strategy not only decides when to do 
the adjustments, but also takes into account at a more 
detailed level the quantitative gap between the current 
score and the target score, thus resulting in better learn­
ing quality. 

However, we have to indicate that a limitation of our 
learning model, as compared to the qualitative model, is 
that it might take longer time to learn for each individ­
ual case. On average our model takes about four CPU 

seconds while Bonzano et al.'s uses approximately 1.8 
CPU seconds to complete an individual learning task. 

4.3 Discussion 
Our learning model allows incremental changes to be 
made to a case base. As shown in the above experiments, 
for a case base of 100 cases, our model takes about four 
CPU seconds (running on a Sun SparcStation 4 with 32 
MB memory) to train an individual case. Therefore for 
50 queries, it takes about 20 CPU minutes to train the 
whole case base. This shows that it is practically possi­
ble to retrain the whole network after introducing a new 
case into the case base. 

In our experiments, we also observe an interesting phe­
nomenon among feature-value pairs. In the above case 
base of 300 cases, we find that not all the cases converge 
to their desired scores; in that experiment, five out of 
150 cases in the 150 queries oscillate around their de­
sired scores. We also find that no matter how long our 
training process undertakes, these five cases still cannot 
converge. We attribute this phenomenon to the inter­
actions among feature-value pairs. Definitely, removing 
such interactions from a case base will help increase the 
learning quality. How to detect and remove those inter­
actions pose an interesting research problem we wish to 
address in our future work. 

We have to emphasize again that the quantitative in­
trospective learning in our model is a continuous process 
and can be triggered at any time if necessary. Our sys­
tem will respond to its user at any time. Every time a 
user changes her/his behavior, the change will be cap­
tured, and reflected in the next work session. 

5 Conclusion and Future Work 
We have shown the empirical test results of our quantita­
tive introspective feature-weight learning model. Based 
on the discussions throughout the paper, we can find that 
our proposed quantitative learning model fulfills our ex­
pectations. It captures the interactions between the sys­
tem and its end user, and seeks chances to evolve itself. 
In the experiments, the model quickly approximates a 
user's behavior within a number of iterations. 

Our work aims to introspectively learn feature weights 
in a dynamic context in the case retrieval process of 
CBR. The needs from practical application of CBR in 
a fielded diagnosis system motivate us to explore their 
dynamic nature. The research is also motivated by our 
desire that a CBR system be a responsive system; its 
behavior needs to simulate its end user's behavior, in­
corporating her/his preferences. Furthermore, a user's 
behavior is changing, requiring that a CBR system keep 
its pace with the changes. The integration of an in­
trospective learning network into a CBR system makes 
these expectations possible. 

We also note that our learning model has some limita­
tions. Although in our experiments nearly all the cases 
converge to their desired scores, we actually encounter 
divergence several times due to the interactions among 

232 CASE-BASED REASONING 



Figure 5: Comparisons between Bonzano et al.'s Model and Our Mode! (In (a), each case has two bars. The left bar 
corresponds to Bonzano et al.'s model while the right bar corresponds to ours) 

different features. The effects of such interaction could 
be possibly reduced by introducing stronger bias factors 
into the system. We are also seeking other efficient and 
effective techniques to deal with the problem. In ad­
dition, one of the assumptions of our learning model is 
that the user of our system should be consistently one 
person in a certain period. If a different user comes to 
use the system, s/he might not satisfy and thus destroy 
the previous optimal case retrieval result, requiring the 
whole case base be retrained. 

We will further explore, for our model, the more accu­
rate relationship between the average running time and 
the size of a case base (including the number of feature-
value pairs and cases). In the future, we hope to address 
these problems by introducing more effective learning 
and feedback control mechanisms and architectures into 
CBR. 

References 
[Bonzano et al, 1997] A. Bonzano, P. Cunningham, and 

B. Smyth. Using introspective learning to improve 
retrieval in CAR: A case study in air traffic control. 
In Proceedings of the Second International Conference 
on Case-Based Reasoning, ICCBR-97, pages 291-302, 
Providence RI, USA, 1997. 

[Fox and Leake, 1995] S. Fox and D.B. Leake. Learn­
ing to refine indexing by introspective reasoning. In 
Proceedings of the 14th International Joint Conference 
on Artificial Intelligence, Montreal, Canada, August 
1995. 

[Gupta and Ding, 1994] M.M. Gupta and H. Ding. 
Foundations of fuzzy neural computation. In Fred Am-
inzadeh and Mohaamad Jamshidi, editors, Soft Com­
puting, Fuzzy Logic, Neural Networks, and Distributed 
Artificial Intelligence, pages 165-200. PTR Prentice 
Hall, Englewood Cliffs, New Jersey, USA, 1994. 

[Kolodner, 1993] J.L. Kolodner. Case-Based Reasoning. 
Morgan Kaufmann Publishers, Inc., 1993. 

[Leake and Ram, 1993] D.B. Leake and A. Ram. Goal-
driven learning: Fundamental issues (a symposium re­
port). AI Magazine, 14(4):67-72, 1993. 

[Leake et al, 1995] D.B. Leake, A. Kinley, and D. Wil­
son. Learning to improve case adaptation by intro­
spective reasoning and CBR. In Proceedings of the 
First International Conference on Case-Based Rea­
soning, pages 229 240, Sesimbra, Portugal, 1995. 
Springer-Verlag. 

[Munoz-Avilz and Huellen, 1996] H. Munoz-Avilz and 
J. Huellen. Feature weighting by explaining case-
based reasoning planning episodes. In Proceedings of 
Third European Workshop on Case-Based Reasoning 
(EWCBR-96), 1996. 

[Ram and Cox, 1993] A. Ram and M. Cox. Introspec­
tive reasoning using meta-explanations for multistrat-
egy learning. In R. Michalski and G. Tecuci, editors, 
Machine Learning: A Multistategy Approach. Morgan 
Kaufmann, San Mateo, USA, 1993. 

[Smyth and Keane, 1995] B. Smyth and M.T. Keane. 
Remembering to forget. In Proceedings of the 14th In­
ternational Joint Conference on Artificial Intelligence, 
pages 377 382, Montreal, Canada, August 1995. 

[Wettschereck et al, 1997] D. Wettschereck, D.W. Aha, 
and T. Mohri. A review and comparative evalua­
tion of feature weighting methods for lazy learning 
algorithms. Artificial Intelligence Review, 11:273 314, 
1997. 

[Zhang and Yang, 1998] Z. Zhang and Q. Yang. To­
wards lifetime maintenance of case based indexes for 
continual case-based reasoning. In Proceedings of the 
Eighth International Conference on Artificial Intelli­
gence: Methodology, Systems, Applications, Sozopol, 
Bulgaria, 1998. 

[Zurada, 1992] J.M. Zurada. Introduction to Artificial 
Neural Systems. West Publishing Company, 1992. 

ZHANG AND YANG 233 


