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Abstract 
A case-based approach to adaptation for estimation tasks 
is presented in which there is no requirement for explicit 
adaptation knowledge. Instead, a target case is estimated 
from the values of three existing cases, one retrieved for 
its similarity to the target case and the others to provide 
the knowledge required to adapt the similar case. With 
recursive application of the adaptation process, any 
problem space can be fully covered by fewer than nk 
selected cases, where n is the number of case attributes 
and k is the number of values of each attribute. 
Moreover, a k x k problem space is fully covered by 
any set of 2k - 1 known cases provided there is no 
redundancy in the case library. Circumstances in which 
the approach is appropriate are identified by theoretical 
analysis and confirmed by experimental results. 

1 Introduction 
Addressing the problems of automatic adaptation has been 
identified as a central problem for the future of CBR [Leake, 
1996]. Recent advances promise to reduce the overhead 
associated with the acquisition of adaptation knowledge by 
automating its discovery from case data (Hanney and Keane, 
1996; Smyth and Keane, 1998], or by a case-based approach 
to adaptation in which adaptation cases are acquired from 
user adaptations or learned from adaptation experience [Leake 
et al 1996; Leaked a/., 1997]. 

This paper presents a case-based approach to adaptation 
for estimation tasks that differs from other approaches to 
adaptation in that there is no requirement for explicit 
adaptation knowledge. Instead, a target case is estimated 
from the values of three existing cases, one retrieved for its 
similarity to the target case and the others to provide the 
knowledge required to adapt the similar case. The 
transformation applied to the similar case is based on a 
simple adaptation heuristic called the difference heuristic 
[McSherry, 1998] or an alternative called the ratio heuristic. 

The demand-driven discovery of adaptation knowledge 
that characterizes the approach is consistent with the 
demand-driven approach to problem solving that 
characterizes CBR itself [Aha, 1998]. The techniques 
presented have been implemented in a case-based reasoner for 
estimation tasks called CREST (Case-based Reasoning for 

ESTimation). Estimation tasks to which CBR has been 
applied include cost estimation of software projects [Bisio 
and Malabocchia, 1995], property valuation [Gonzalez and 
Laureano-Ortiz, 1992], and estimation of sentence duration 
in JUDGE [Riesbeck and Schank, 1989]. 

The retrieval criteria and adaptation heuristics used in 
CREST are presented in the following section. In Section 3, 
coverage of the problem space is shown to be significantly 
increased by recursive application of the adaptation process. 
In Section 4, experimental results are presented which show 
that certain departures from the assumptions on which the 
difference heuristic is based can be tolerated at the expense of 
some loss of coverage. 

2 Case Retrieval and Adaptation 
The value of a case is assumed to be determined by an 
unknown function / o f its attributes A , , X2 A. all of 
which are assumed to be discrete. The task of the case-based 
reasoner is to estimate the value of the case function for a 
target case from the values of existing cases in a case 
library. A problem space P of dimensions K1 x K2 x ... x 
kn is defined by the cartesian product of the attribute 
domains D1 D2, Dn. A case is represented in CREST 
as a tuple C = (a1, a2,..., a ), where for is the 
value of the attribute xi for C. The known (or estimated) 
value of each case is also stored in the case library. 

Table 1. Example library of 7 cases in 
the cylinder volume domain. 

r h Volume 

1 1 3.14 
1 2 6.28 
2 4 50.24 
3 2 56.52 
3 3 84.78 
4 1 50.24 
4 4 200.96 
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Case-based estimation of the volume of a cylinder 
provides an example estimation task in which the case 
function is known. In this domain, the case attributes are the 
radius (r) and height (h) of the cylinder. Seven cases in a 4 x 
4 problem space are shown in Table 1. As illustrated in 
Figure 1, the problem space can be visualised as an array of 
points in the plane consisting of 4 rows and 4 columns. 
The filled circles represent the 7 known cases in the case 
library. The remaining points in the problem space are 
unknown cases which the case-based reasoner may be called 
upon to estimate. 

The steps involved in the use of the difference heuristic 
to estimate the value of a target case C1 are outlined below. 

Step 1. Retrieve three existing cases C2, C3, C4 such 
that C1 and C2 differ only in the value of a single 
attribute, C3 and C4 also differ only in the value of 
the same attribute, and the values of the 
distinguishing attribute for C3 and C4 are the same as 
its values for C1 and C2 respectively. The triple C2, 
C3, C4 of retrieved cases is called an estimation triple 
for C1. 

Step 2a. According to the difference heuristic, an 
estimate for the value of the target case is: 

where est(C2), est(C3) and est(C4) are the known (or 
estimated) values of in the case 
library. 

Adaptation based on the ratio heuristic differs only in the 
transformation applied to the value of the similar case. 
Step 2b. According to the ratio heuristic, an estimate for 

the value of the target case is: 

To avoid division by zero, a necessary condition for its 
application is that est(C4) > 0. The rationale for the 
difference heuristic is that provided the case function is an 
additive function of the form: 

then for any case C1 and estimation triple C2, C3 C4 for 
. It follows that the 

difference heuristic always gives the correct value for a target 
case provided the case function is an additive function and 
the values of existing cases are known without error 
[McSherry, 1998]. Similar justification of the analogous 
ratio heuristic follows an example of its use to estimate the 
volume of a target case C1 = (4,2) in the cylinder volume 
domain. 

Figure 1. A 4 x 4 problem space in the 
cylinder volume domain. 

An existing case which differs from the target case only 
in its radius is C2 = (1,2), with an estimated volume of 
6.28. Two existing cases are now retrieved from the case 
library which also differ only in their radii and which have 
the same radii as C1 and C2 respectively. Two such cases 
are C3 = (4,1) and C4 = (1,1). According to the ratio 
heuristic, an estimate for the value of the target case is 
therefore: 

Since the volume of a cylinder is the correct volume 
of the target case, based on the same approximate value of 
as the values of the known cases, is 3.14 x 4 x 2 = 
100.48. As the following theorem shows, the ratio heuristic 
always gives the correct value for a target case provided the 
case function is multiplicative and the values of existing 
cases are known without error. 

Theorem 1 Provided the case function is a multiplicative 

function of the form: , then for 

any target case C and estimation triple C2, C3 C4 for C1, 

The proof is similar to that of the analogous result for 
additive case functions [McSherry, 1998]. In addition to the 
target case (4,2) in the above example, four other cases can 
be estimated by adaptation based on the values of known 
cases. However, there remain 4 cases that cannot be 
estimated. For example, there is no estimation triple in the 
case library for the unknown case (2,3). Coverage of the 
problem space by the 7 known cases, defined as the 
percentage of cases that are known or can be estimated, is 
therefore only 75%. As shown in the following section, 
problem-space coverage is significantly increased by relaxing 
the condition that all 3 cases in an estimation triple for a 
target case must be known cases. 
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Figure 2. Recursive adaptation in the 
cylinder volume domain. 

3 Recursive Adaptation 
If the value of one of the cases in an estimation triple for a 
target case is unknown, it may be possible to estimate the 
value of the unknown case, which may in turn require the 
estimation of another unknown case. Recursive adaptation in 
the cylinder volume domain, with C1 = (2,3) as the target 
case, is illustrated in Figure 2. 

An estimation triple for the target case is provided by the 
known cases C2 = (3,3) and C3 = (2,4) and the unknown 
case C4 = (3,4). An estimation triple for (3,4) is provided by 
the known cases (4,4) and (3,2) and the unknown case (4,2). 
Finally, an estimation triple for (4,2) is provided by the 
known cases (1,2), (4,1) and (1,1). According to the ratio 
heuristic, an estimate for the value of the target case is 
therefore: 

Again this is the correct value of the target case according 
to the known case function. In fact, all the unknown cases 
in the problem space can be estimated by a sequence of 
estimation triples in which at most one case is unknown. 
So even with recursive adaptation restricted to estimation 
triples in which at most one case is unknown, full coverage 
of the problem space is provided by the 7 known cases. 

Recursive adaptation in a 3 x 3 x 5 problem space in the 
domain of property valuation is illustrated in Figure 3. The 
case attributes are location (1, 2 or 3), style (1, 2 or 3) and 
bedrooms (1, 2, 3, 4 or 5). Suppose that the value of a 
property in £1,000 is determined by the hypothetical case 
function: 

and that the values of existing cases are known without 
error. An estimation triple for the target case C1 = (1,3,3) is 
provided by the known cases C2 = (2,3,3) and C3 = (1,2,2) 

Figure 3. Recursive adaptation in a 3 X 3 x 5 problem space. 

and the unknown case C4 = (2,2,2). An estimation triple for 
(2,2,2) is provided by the known cases (2,1,2), (3,2,4) and 
(3,1,4). According to the difference heuristic, an estimate for 
the value of the target case is therefore: 

Since the case function is additive, this is the correct 
value of the target case. 

3.1 Recursive adaptation in CREST 
An algorithm for recursive adaptation based on the 
adaptation heuristic selected by the user has been 
implemented in CREST. The algorithm gives priority to 
estimation triples consisting only of known cases. If such 
an estimation triple for a target case does not exist, it 
searches for an estimation triple in which two cases are 
known and the third can be estimated by recursive 
application, similarly restricted, of the selected adaptation 
heuristic. For example, if the adaptation heuristic selected by 
the user is the difference heuristic and an estimation triple 
C2, C3, C4 for a target case C1 is found in which C2 and 
C3 are known cases and C4 can be estimated by a sequence 
of estimation triples in which at most one case is unknown, 
then CREST's estimated value of the target case is: 

Theorem 2 In CREST, a problem space P of dimensions 
k 1 x k2 x ... x k n can be fully covered by 

known cases. Moreover, the cases required 

to cover P can be selected in such a way that any target case 
can be estimated in at most n - 1 steps. 

Proof The values of the case attributes x1, X2,..., xn
 c a n 

be assumed without loss of generality to be coded as 
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positive integers. Let L be the set of all cases in P in which 
the value of at most one of the case attributes is greater than 
one. To prove that P is fully covered by L, which can be 
seen to contain the required number of cases, let 

be an unknown target case, where m is the index of the 
rightmost attribute whose value for the target case is greater 
than one. An estimation triple for the target case is provided 
by the cases: 

Of the three cases in the estimation triple, only C2 can 
be unknown, and only if is unknown, an 
estimation triple for it can similarly be constructed in which 
at most one case is unknown and the index of the rightmost 
attribute whose value for the unknown case is greater than 
one is less than m - 1. 

In this way, a sequence of estimation triples can be 
constructed in each of which at most one case is unknown 
and in which the index of the rightmost attribute whose 
value for the unknown case is greater than one is decreasing. 
Since every case in P for which the value of only a single 
attribute is greater than one is a known case, an estimation 
triple containing no unknown cases must be reached in at 
most m - 1 steps. Since m < n, it follows as required that 
the target case can be estimated in at most n - 1 steps. 

With the case library in CREST strategically populated 
as described in Theorem 2, the retrieval of cases required to 
estimate a target case can be guided in such a way that the 
complexity of the estimation task increases only linearly 
with the number of case attributes. However, an unrestricted 
choice of seed cases is seldom possible in practice. Often the 
case library originates from archival sources and the 
acquisition of additional cases is costly. In these 
circumstances, it is important to minimize redundancy in the 
case library. 

3.2 Mutually Independent Cases 
Mutual independence in a case library, as defined below, 
requires the absence of redundancy in the library. For 
example, the 7 known cases which fully cover the 4 x 4 
problem space illustrated in Figure 2 are mutually 
independent. 

Definition 1 Given a problem space P and a library L of 
known cases, the cases in L are mutually independent if 
there exists no such that C can be estimated by 
CREST from L - {C). 

Lemma 1 If P is a k1x k2 problem space which is fully 
covered in CREST by a library L of known cases, then 
every row and column of P must include at least one of the 
cases in L. 

Proof It is easily verified that if any row or column in P 
includes none of the cases in L, then no case in that row or 
column can be estimated. 

Lemma 2 If P is a k1 k2 problem space which is fully 
covered in CREST by a library L of known cases, and P' is 
the extended problem space defined by adding a new value to 
the domain of one of the case attributes in P, then for any 
known case is fully covered by 

Proof Let. ,..., 

bk2 } be the domains of the case attributes x1 and x2 in P 

respectively, and consider for example the (k1 + 1) x k2 

problem space defined by adding a new value aQ to D1 Let 
C = (A0, bj) be a known case in P' - P, and let C1 = (A0, B1 ) 
be any target case in . Since P is fully covered 
by L, the row of P for which x2 = b1 includes at least one of 
the cases in L by Lemma 1. If is such a case, 
an estimation triple for C1 is provided by where 

and . Of the three cases in the 
estimation triple, only C4 can be unknown, in which case it 
can be estimated from L. It follows as required that C1 can 
be estimated from 
Lemma 3 In CREST, a problem space P of dimensions 
k x k, where is fully covered by any set of 2k -1 
known cases provided they are mutually independent. 
Proof The proposition is clearly true for k = 2, since a 
2 x 2 problem space is fully covered by any set of 3 cases. 
Assume the proposition is true for k-m, where m > 2, and 
let L be any set of 2m + 1 mutually-independent cases in a 
problem space P of dimensions (m + 1) x (w +1). Of the 
m + 1 rows in P, at least one must contain less than 2 of 
the cases in L. Similarly, at least one of the columns in P 
must contain less than 2 of the cases in L. On the other 
hand, there cannot be a row or column in P which contains 
none of the cases in L. For example, if such a row were to 
exist, its deletion together with the deletion of a column 
containing less than 2 of the cases in L would leave an 
m x m problem space containing at least 2m mutually-
independent cases. By assumption, however, such a problem 
space is fully covered by any set of 2m - 1 mutually-
independent cases, and cannot therefore contain 2m such 
cases. 

The existence of a row and column in P each containing 
exactly one of the cases in L has now been established. The 
point of the problem space at which this row and column 
meet cannot be one of the cases in L; otherwise deletion of 
the row and column would again leave an m x m problem 
space containing 2m mutually-independent cases. Deletion 
of the row and column must therefore leave an m x m 
problem space containing 2m - 1 mutually-independent 
cases, which by assumption must fully cover the reduced 
problem space. 
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Extending the reduced problem space by adding back the 
points in the deleted row except for the point in the deleted 
column is equivalent to adding a single value to the domain 
of the second attribute in the reduced problem space. The 
m x (m + 1) problem space so defined contains 2m of the 
cases in L and by Lemma 2 is fully covered by these cases. 
Adding back the points in the deleted column now restores 
the problem space to its original size. The reconstructed 
problem space contains all of the 2m + 1 cases in L and 
again by Lemma 2 is fully covered by these cases. The 
proposition is therefore true for k = m + 1 and so by 
induction for all k £ 2. 
Theorem 3 In CREST, a problem space P of dimensions 
K1 x ky. where is fully covered by any set of 
k1 + k2 - 1 known cases provided they are mutually 
independent. 
Proof For a given value of the proposition is true 
for by Lemma 3. Assume it is true for K1 = m, 
where and let L be any set of mutually-
independent cases in a problem space P of dimensions 

columns in P, at least one 
must contain less than 2 of the cases in L; otherwise the 
number of mutually-independent cases would be more than 
m + k2. On the other hand, there cannot be a column in P 
which contains none of the cases in L; otherwise its deletion 
would leave an , problem space containing m + k2 

mutually-independent cases which by assumption is 
impossible. One of the columns in P can therefore be deleted 
to leave an m x k2 problem space containing m + k2 - 1 
mutually-independent cases, which by assumption must 
fully cover the reduced problem space. When the problem 
space is restored to its original size by adding back the 
points in the deleted column, it follows by Lemma 2 that 
the original problem space is fully covered by the m + k2 

cases in L. The proposition is therefore true for k1 = m + 1 
and so by induction for all k1 > k2- By a similar argument 
it is also true for all K2 >K1 value of k, > 2. 

As shown in the following section, the usefulness of 
Theorem 3 is not limited to two-dimensional problem 
spaces. 

4 Interaction Between Case Attributes 
While the difference heuristic is perhaps the more widely 
applicable of the two adaptation heuristics, its assumption 
of an additive case function with no interaction between case 
attributes may be unrealistic in many estimation tasks. For 
example, consider the following hypothetical function, 
according to which the contributions of style and bedrooms 
to the value (£) of a property depends on its location. 

f{loc, style, beds) = 20,000 + 10,000 x 2loc-l 

+ 2,500 x loc x 2style~l+ 2,000 x loc x beds 

Figure 4. Estimation of the target case (3,1,2) in the 
property valuation domain. 

The interaction caused by loc is likely to affect the 
accuracy of estimates based on the difference heuristic. 
However, with loc held constant, the function reduces to an 
additive function of style and beds. Provided loc is held 
constant, adaptation based on the difference heuristic must 
therefore give the correct value of a target case, subject to 
the absence of errors in the values of existing cases 
[McSherry, 1998]. The trade-off in this strategy is reduced 
coverage of the problem space. In the presence of 
interaction, full coverage of the 3 x 3 x 5 problem space 
illustrated in Figure 4 can no longer be provided by 9 cases 
as described in Theorem 2. However, as illustrated by the 
experiment described below, the problem space can be fully 
covered by 21 known cases even with the estimation process 
modified to eliminate the effects of interaction. 

For each location, a set of 7 mutually-independent cases 
in the 1 x 3 x 5 problem space defined by that location was 
randomly generated. The case library is shown in Figure 4. 
An estimation error of e x £1,000, where e is a random 
integer between -3 and +3, was added to the value of each of 
the 21 generated cases according to the case function. 
CREST was then used to estimate each of the remaining 24 
cases in the 3 x 3 x 5 problem space with loc held constant 
in the estimation of each case. For example, to estimate a 
target case with loc = 3, only estimation triples involving 
cases with loc = 3 were used. This is equivalent to separately 
applying CREST to the 1 x 3 x 5 problem space defined by 
each location. As such a problem space is equivalent to a 3 
x 5 problem space, it follows from Theorem 3 that each of 
the 1 x 3 x 5 problem spaces is fully covered by the 7 
mutually-independent cases it contains. 

Recursive adaptation was necessary in only three cases: 
(3,2,3), (3,2,5) and (3,1,2). The sequence of estimation 
triples used by CREST to estimate the target case (3,1,2) is 
shown in Figure 4. Table 2 shows the value of each of the 8 
unknown cases in location 3 according to the case function 
and its value as estimated by CREST. The average 
estimation error for the 8 cases, attributable only to the 
errors introduced in the values of existing cases, is £2,750. 
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Table 2. Estimated values (£) of 8 cases in the 
property valuation problem space. 

At the expense of additional computational effort, more 
accurate results may be achievable by basing the estimate of 
the target case on the average of the estimates provided by 
all available estimation triples (or sequences of estimation 
triples) rather than a single estimate as in this experiment. 

5 Conclusions 
A case-based approach to adaptation for estimation tasks has 
been presented in which a target case is estimated from three 
existing cases, one retrieved for its similarity to the target 
case, and the others to provide the knowledge required to 
adapt the similar case. Recursive application of the 
adaptation process significantly increases problem-space 
coverage, with full coverage in ideal circumstances by a 
relatively small number of selected cases. 

Even with recursive adaptation, the requirement for the 
similar case to differ from the target case only in the value 
of a single attribute may restrict coverage in realistic 
problem spaces. The effects on retrieval efficiency and 
coverage of allowing the similar case to differ from the 
target case in more than one attribute are being investigated. 
Another interesting possibility is the development of 
interactive tools to guide the acquisition of cases to 
maximize coverage and minimize redundancy in the case 
library. Support for interactive authoring of cases is a topic 
of increasing importance in CBR research [Smyth and 
McKenna, 1998]. 

As confirmed by experimental results, certain departures 
from the assumptions on which the difference heuristic are 
based can be tolerated at the expense of some loss of 
coverage. However, in many domains, the case function 
may be neither an additive function nor reducible to an 
additive function, while the ratio heuristic's assumption of a 
multiplicative case function may be equally untenable. In 
some potential applications, the nature of the relationship 
between the value of a case and its attributes may be such 
that different adaptation heuristics are appropriate in different 
parts of the problem space. Further research will investigate 
the use of introspective reasoning to automate the selection 
of an appropriate adaptation heuristic, or combination of 
heuristics, thereby increasing the autonomy and scope of the 
case-based reasoner. 
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