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Abstract 
Previous studies considered quality optimization 
of anytime algorithms by taking into account the 
quality of the final result. The problem we are 
interested in is the maximization of the average 
quality of a contract algorithm over a time 
interval. We first informally illustrate and 
motivate this problem with few concrete 
situations. Then we prove that the problem is NP-
hard, but quadratic if the time interval is large 
enough. Eventually we give empirical results. 

1 Introduction 
Hard problems like planning or decision making cannot be 
reasonably treated by complete methods. That is the reason 
why [Dean and Boddy, 1988] first considered anytime 
algorithms, also called flexible algorithms in (Horvitz, 
1988]. These algorithms offer a trade-off between time and 
performance. They are characterized by a Performance 
Profile [Grass, 1996] that enables a prediction about the 
quality of the results given by the algorithm depending on 
the execution time duration. This method has been used to 
solve several problems in various domains like robot control 
[Zilberstein and Russel, 1993], knowledge-based 
computation [Mouaddib and Zilberstein, 1995] and reactive 
agents [Adelantado and de Givry, 1995]. 

Quality is not the essential characteristic of a computation 
result: what really matters is its utility. The intuitive idea is 
that, in many situations, the utili' of a result decreases over 
time, and a result of medium quality rapidly obtained is more 
useful than a result of high quality obtained after a long time 
[Zilberstein and Russel, 1996]. But, when the algorithm 
operates on an uncertain environment, utility can be of 
another nature. This is the case in the following examples, 
which are all associated to a "crisis situation": 
• a person (P) has to give his boss (B) a report in the 

morning. P only knows that B will ask for the report at 
some time between 8 a.m. and 11 a.m. The problem for P 
is that trying to achieve the best quality would be a good 
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strategy only if the report were claimed at 11. If it is not 
the case, no report at all is available! Hence it seems better 
to ensure a medium quality draft for 8 a.m. and, once the 
draft is ready, to start to write a better quality report, 
expecting that the claim will occur late in the morning. 

• Every time the enemy is going to launch a satellite, only 
the temporal window on which the event will occur is 
known in advance. Tb perturb the launching, some 
electromagnetic jamming action must be set up (planes 
have to take-off, lures must be activated...). All these 
actions take time and the best jamming is useless if 
achieved after the launch. What could be considered is to 
set up the jamming in order to ensure the best average 
quality on the time interval, then to maximize the utility 
(in the long term). 

• When a tornado is announced, very little time is available 
to prepare oneself (and one's house) for any possible 
destruction. Hence it is important to achieve the best 
"utility" of the protections set in place, e.g. to ensure that 
minimal actions have been taken first (securing the kids), 
before improving the quality of the protections (nailing 
down the shutters). 

In the previously described situations, an interruptible 
algorithm would be the best solution: at the time of the event, 
the best possible quality would be achieved. Unfortunately, 
interruptible algorithms are not always available since: 
• none of the available algorithms might be interruptible, 
• anytime algorithms might result from the composition of 

elementary interruptible algorithms. In that case, the 
result is of the contract kind [Zilberstein and Russel, 
1996], 

• contract algorithms can be transformed into interruptible 
ones [Zilberstein and Russel, 1996] but, notwithstanding 
the fact that the execution time is 4 times longer, this 
method only applies if the contract durations can be 
chosen freely (exponential series) which is generally not 
the case. 
Finally, even with a genuine interruptible algorithm, 

situations exist in which the contract case re-occurs: if 
applying the results of the algorithm causes a change in the 
environment, it is no longer possible to let the algorithm 
continue in order to improve the solution from the previously 
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obtained one; it must be restarted from scratch. For instance, 
this might occur in counter-measure applications, if the 
result of the interruptible algorithm is a jamming action 
which itself provokes a counter-jamming decision from the 
enemy. 

In [Delhay et al, 1998], we proposed partial solutions to 
solve these kinds of problems consisting of maximizing the 
average quality over a time interval. But the results achieved 
are limited to convex quality functions (whose second 
derivative is positive) which are the less probable ones in real 
applications. 

In this paper, after restating the problem of maximizing 
the average quality of an anytime contract algorithm over a 
time interval (section 2), we present general results about any 
kind of quality function approximated by a stepwise 
function. We prove that the problem is NP-hard, but becomes 
quadratic if the time interval is large enough (section 3). Wc 
then present empirical results which augurs well for the 
practical applicability of the approach (section 4). 

2 Maximizing the average quality over a time 
interval 

We use the notion of contract algorithms which was first 
coined by Zilberstein [Zilberstein, 1993], even though they 
appeared before, like RTA* [Korf, 1985]. Contract 
algorithms can also result from the composition of anytime 
modules. In this paper, we assume that the performance 
profiles are deterministic functions of time. It is sometimes 
difficult to construct them with such a confidence, but they 
are good approximations of the performance profiles used in 
real situations. 

2.1 Informal presentation 
A typical example is the following: an attack might happen 
with a uniform probability over a given time interval, and a 
contract algorithm, whose performance profile is increasing 
over time (figure 1) is available to counter-attack. The 
problem then consists in determining how to best prepare the 
counter-attack in order to get the best chance of survival over 
the time interval. 

An answer to the attack must be given between t0 and tc 
and it is possible to begin the computation at time t = 0. To 
answer to this problem, several solutions can be considered. 

First (figure 2) we activate the algorithm for a short 
contract (t1); in that case, the result has a relatively poor 
quality but this quality is available on a relatively long time 
interval 

figure 2: short but bad preparation 

To get a better quality, we have to start the algorithm with 
a longer contract (t2): the quality of the result is better, but 
most of the time, on [t(), t2), no "quality" (that is, no 
protection from the attack) is available (figure 3). 

These two cases lead to a simple observation: if the 
algorithm starts with a (sufficiently) short contract (t i), then 
the remaining time can be used to restart the algorithm with a 
contract t2 to get a better result. 

Hence an effective method is to start the contract 
algorithm several times to get a good cover of the time 
interval and a minimal quality early. We only have to respect 
two conditions: 
• The sum of all contracts must be strictly lower than the 

length of the interval where it is possible to compute 
• Every new contract must be longer than the previous one 

to improve the quality of the result 
Remark: 

Note that to maximize the average quality, we never 
execute more than one contract before t0. Should we do that, 
all contracts before t(), except the last, would be useless. 

2.2 Formalization 
Now let us give the definition of the average quality over an 
interval where denotes the duration of 
successive runs of the algorithm (contracts). 

definition 1 : integral quality 
Let f be the performance profile of a contract algorithm A. 
The integral quality of A over a time interval 
relative to a choice of n contracts with performance 
profile f is defined as follows: 
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2.3 The analytic case 
In [Delhay et al., 1998], we studied the maximization of the 
average quality for continuous and derivable performance 
profiles, leading to preliminary analytic results that partially 
cover functions with constant curvature, that is the convex 
case and the concave case for one contract. These results are 
shown below. 

A first theorem gives the value of a single contract. The 
linear performance profile is a limit and the single contract 
equals . For convex perfor ance profiles, the single 
contract is greater than In the concave case, it is lower 
than A second theorem states that, for convex 
performance profiles, there is no need to start several 
contracts over as a single contract always gives the 
best average quality. The value of this contract is 
analytically defined by a simple equation. 

The point we can add is that there is at least two contracts 
in the concave case because of the first theorem. As a matter 
of fact, as the single contract is lower than , it is possible 
to add a contract greater than the first one, but respecting the 
sum constraint, that improves the average quality. 

3 Average quality for stepwise constant 
performance profiles 

Because of the difficulties involved in solving this problem in 
the continuous and derivable case, we chose to solve the 
problem by approximating the performance profile in order 
to get a discrete problem. We first tried using a stepwise 
linear function. Even with this approximation, we did not 
manage to exhibit interesting properties. Then we 
approximated the performance profiles with stepwise 
constant functions. This approach not only enables us to 
avoid difficulties due to the continuous and derivable 
performance profiles, but also makes sense in the common 
representation of performance profiles, that is the discrete 
tabular representation. Moreover, lemma 1 states that the 
average quality is approximated with the same error as the 
error on performance profile itself. In particular, this is true 
when approximating the continuous performance profile f 
with a stepwise function. 

lemma 1 : approximation lemma 

Proof: This is a property of integrals applied to definition 1. 

So, hereafter the performance profiles are stepwise 
constant functions, either originally, or by approximation. A 
stepwise constant function is a function such as, for a finite 
set of thresholds , f is constant on every interval 

. The following lemma allows us to treat the 
maximization problem as a discrete problem, by only 
examining the steps of the performance profile instead of all 
values in the interval 

lemma 2 : (stepwise function lemma) 
To maximize average quality, it is sufficient to choose all 
contracts in the set of thresholds of the stepwise 
function. 

Proof: 
If a contract G is in the interval , replacing by 

increases the average quality. It can be checked by 
calculating the difference between the two average qualities 
(with and without 

Thanks to lemma 2, we call this (discrete) problem 
MAXQSF (MAXimization of the average Quality for a 
Stepwise Function). denotes the maximum of 
the integral quality of an increasing stepwise function f over 
the time interval . In the next subsections, the 
tractability of MAXQSF is considered. 

3.1 MAXQSF is NP-hard 
The following theorem states that the MAXQSF problem is 
intractable in general. 

theorem 1 : 

The proof consists in reducing polynomially the Knapsack 
problem to MAXQSF. The Knapsack problem is to 
find a part of , a set of naturals, whose sum 
of its elements is maximal and lower than a natural b. We 
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The above definition is only usable if the contracts respect 

the sum constraint, that is: 

The average quality is equal to the integral 
quality divided by the length of the interval _ 
Q(f) is the supremum of the integral quality, and Q(f) the 
sup re mum of the average quality. 



assume that the aj are sorted and distinct. This restriction is 
still NP-complete. The reduction consists in building a 
stepwise constant function steps that gives an 
instance of , . for any instance of 
Knapsack 

To do so, we use the fact that the increase of average 
quality obtained by adding a contract between two 
consecutive contracts only depends onand and 

(the last contract). 

The variation of the average quality induced by the choice 
of introducing a threshold as a contract depends on the other 
choices and is not easy to evaluate. That is why is 
constructed by alternating the thresholds (odd numbers) that 
corresponds to the elements of and thresholds (even 
numbers) that are chosen to necessary belong to the 
optimal choice of the best average quality. The even 
thresholds "isolate" the effects of a choice in the set of odd 
thresholds; hence, the improvement of the average quality 
obtained by adding an odd threshold (element of ) only 
depends on the two even thresholds surrounding it1. That is 
the reason why we chose them so that if the corresponding 
element of is in the solution, the improvement of the 
average quality is As a consequence, maximizing the 
average quality will maximize the load of the knapsack. 

The reduction also requires that optimizing the average 
quality satisfies the sum constraint of the Knapsack problem. 
This is obtained by choosing tc, the end of the time interval, 
such that: 

Since the sum of all contracts in MAXQSF must be less 
than te and that all the even thresholds belong to the solution 
by construction, we therefore have: 

which is the sum constraint of the Knapsack problem. 

We do not have enough space to include all the steps 
necessary to perform the reduction we have presented. Let's 
just say that the choice of the f function is done such that 

with K great enough (but polynomially linked 
to the size of <A>) and that the are chosen such that < 

This construction is polynomial in the size of 
<A> which proves that MAXQSF is NP-hard. For a detailed 
proof, see [Delhay and Dauchet, 1999]. 

Theorem 1 looks like an instance of theorem 4.2 presented 
by [Zilberstein and Russel, 1996] in the framework of 
composition of anytime algorithms. However, it is not the 
case: we look for the best average quality, whereas they look 
for the best final quality after a fixed contract, the most 
important difference being that we do not know the number 
of contracts necessary to get the best average quality. 

J .also on the last contract , but, since it's an even one, it 
belongs to the optimal choice. 

3.2 MAXQSF with no sum constraint is quadratic 
Our problem is intractable in general. The main difficulty 
comes from the search over the set of thresholds assuming 
that the sum constraint does not allow to take any subset of 
thresholds. As in Knapsack, it is necessary to judiciously 
choose the candidate contracts. So we could suppose that: 

where Si is a threshold of the performance profile f. 

Hence it is possible to add any contract because the time 
interval is large enough to contain all contracts. That restricts 
MAXQSF and leads to a lower complexity algorithm. 

The idea of this dynamic programming algorithm is 
founded on lemma 3 which allows the division of the set of 
combinations of thresholds into distinct subsets composed of 
the combinations finishing by a fixed threshold si. The 
lemma allows to iteratively compute , noted 
MAXQ(s,) for subset of combinations finishing by si with Si 
from Si to sp, to finally give is 
the ordered set finishing by si 

lemma 3 : 
Let Si and Sj be two thresholds of<s>, the set of thresholds 
off, with 
For any si, let MAXQ(Sj) be the maximum of integral 
quality with .Si, as the last contract and 
the remaining time for the optimal choice of contracts 
with Sj as the last contract. 

and especially: MAXQ(s ) = Q(f), where sp is the last 
threshold of <s>. 

Proof: 
• I t can be immediately proved that 

By using the 
maximum for both members, the result of the lemma 
comes as TR(S:) only depends on s;. Indeed, is the 
remaining time for the optimal choice of contracts with sj, 
as the last contract. 

• For the second part of the lemma, note that sp is necessary 
in the optimal choice of contracts. It could always be 
added to the choice of contracts (as there is no sum 
constraint) and improves the quality. By definition, 
MAXQ(Sp) gives the maximal integral quality at the last 
step of iteration. 

The complexity of the algorithm is with n the 
number of thresholds. 

Algorithm: 

Only one threshold 

CHOICE(SJ) denotes the optimal choice of contracts with Si 
as the last contract. 
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4 Empirical results 
The results obtained so far do not take into account the 
duration of the deliberation itself. It might be a serious 
impediment to the practical application of our approach since 
we proved that the general problem is NP-hard! Fortunately, 
achieving the optimal solution is not a necessary condition 
for applying our method: a set of contracts approaching the 
optimal value of the average quality on the time interval is 
sufficient. That is the reason why we conducted a set of 
experiments designed to estimate the practical complexity of 
our problem. And the result was far better than expected: for 
all the cases we studied, the average quality achieved by the 
best choice oi a set of 2 contracts was always at a distance 
lower than 2.75% from the quality of the optimal choice. 

These results concern a family of monotonic functions 
which approximate the quality functions most often 
encountered in practical cases. That is the reason why we 
think that these results can be of some general interest. 

The experiment was twofold. First, we studied the 
contribution of the shape of the quality function to the value 
of the average quality. For that, we considered the family of 
functions defined by the following equation where the 
parameter "a" permits the control of the curvature of the 
function as shown in the associated graphics. 

which we computed the optimal average quality; we also 
computed the error w.r.t. this optimal value when considering 
smaller sets of contracts. We relied upon integer 
programming in order to avoid the classic problems of 
floating point numbers and took advantage of the sum 
constraint to limit the computation time. The results are 
summarized in the following table where a is the curvature, n 
is the number of contracts and * is the optimal solution: 

For the optimal quality is obtained with only one 
contract which was the expected result because of theorem 2. 
In the other cases, it is clear that the optimal quality obtained 
with 2 contracts is very close to the best result obtained 
notwithstanding the number of contracts. 

We also investigated the influence of the temporal location 
of the time interval which was set to 0 in the first 
experiment, while remained equal to 1. This might be of 
importance for many applications when time is available 
before the "attack" might occur. Here again, as shown on the 
following figure, restricting the deliberation to the 
computation of only 2 contracts gives very accurate results 
(even if only one contract rapidly gives very good results): 
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Every function ("a" varying from 1 to 205 incremented by 
5) was approximated by a stepwise function of 50 steps for 



In that experiment, the curvature was set to 51 and, since 
te was increased, the "sum constraint heuristic" became less 
efficient; hence we operated with a stepwise function of only 
30 steps to keep the computation of optima tractable. 

5 Conclusion 
The aim of this paper was to present an off-line optimization 
of the time allocation for a contract algorithm so as to get the 
best chance of survival over a time interval. So far, no 
analytical method for solving the problem of maximizing the 
average quality over a time interval is known in the general 
case. That is the reason why we proposed solutions for 
discrete performance profiles. This restriction is not a real 
impediment since: 
• a discrete tabular representation for the performance 

profiles is not a rare occurrence, 
• the average quality resulting from a discrete performance 

profile can be as close as necessary to a given continuous 
performance profile (lemma 1). 

We showed that the so-called MAXQSF problem is NP-
hard in general, and quadratic if the time interval is large 
enough. This, unfortunately, is not frequently encountered in 
practical applications. Nonetheless, the experiments we 
carried out lead us to think that the "practical" complexity of 
that problem is quite low, which makes it possible to use the 
approach in real-lime applications. Further studies to find a 
theoretical explanation of this behavior could prove very 
interesting. 

The average quality of a contract algorithm A can be 
defined by: 

where f is the quality of an intcrruptiblc algorithm A 
associated to A by the relation: where is the 
last contract executed at t. 

[Zilberstein and Russel, 1996] gives a simple construction 
to transform a contract algorithm A of quality f into an 
interruptible algorithm A of quality f such as 
The first difference with our study is that we consider the 
case of a given time interval to optimize the average quality. 
In our case, this leads to a construction of A which 
optimizes the average quality. The second difference is that 
our problem permits cases where the length of each contract 
is imposed by a method, when Zilberstein and Russel assume 
that the length of each contract can be arbitrarily chosen. 

Note that a uniform probability of appearance of the 
attack over the interval has been considered. There arc 
situations where this probability is not constant, such as with 
a gaussian. A future study could concentrate on this point. 

Another extension could concentrate on our evaluation 
criteria, that is the average quality. Even if this criteria gives 
the best statistical results, there could exist others, for 
example that could take the number of contracts into account 
(a good solution therefore is a choice of few contracts). 
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